Перевод: с русского на все языки

со всех языков на русский

времени+измерение

  • 101 многоточечное измерение времени

    Универсальный русско-немецкий словарь > многоточечное измерение времени

  • 102 тайминг

    ("измерение времени" живым организмом)

    Русско-английский биологический словарь > тайминг

  • 103 on-line gaging

    измерение (напр., обрабатываемого диаметра) в реальном масштабе времени ( в процессе обработки)

    Англо-русский словарь промышленной и научной лексики > on-line gaging

  • 104 time of flight measurement

    Англо-русский словарь промышленной и научной лексики > time of flight measurement

  • 105 ultrasonic pulse transit time measurement

    Англо-русский словарь промышленной и научной лексики > ultrasonic pulse transit time measurement

  • 106 UTC

    1. UTC

    UTC

    Шкала всемирного координированного времени. Шкала времени, рассчитываемая Международным бюро мер и весов и Международной службой вращения Земли так, что смещение относительно Международной шкалы атомного времени составляет целое число секунд, а относительно шкалы всемирного времени не превышает 0,9 с по ГОСТ 8.567 и [1]

    Источник: ГОСТ 8.515-84: Государственная система обеспечения единства измерений. Эталонные сигналы частоты и времени, излучаемые специализированными радиостанциями Государственной службы времени и частоты СССР. Временной код оригинал документа

    UTC

    Шкала всемирного координированного времени. Шкала времени, рассчитываемая Международным бюро мер и весов и Международной службой вращения Земли так, что смещение относительно Международной шкалы атомного времени составляет целое число секунд, а относительно шкалы всемирного времени не превышает 0,9 с по ГОСТ 8.567 и [1]

    Источник: 1:

    Русско-английский словарь нормативно-технической терминологии > UTC

  • 107 мониторинг

    1. monitoring
    2. monitor

    4.19 мониторинг (monitoring): Текущий контроль состояния деятельности поставщика и результатов этой деятельности, проводимый приобретающей или третьей стороной.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    3.1 мониторинг (monitoring):

    (1) В широком смысле, повторные измерения для отслеживания изменений за некоторый период времени.

    (2) В узком смысле, регулярные измерения уровней содержания загрязнителя относительно некоторого эталона или для оценки эффективности системы регулирования и контроля (см. ИСО 4225).

    Источник: ГОСТ Р ИСО 10155-2006: Выбросы стационарных источников. Автоматический мониторинг массовой концентрации твердых частиц. Характеристики измерительных систем, методы испытаний и технические требования оригинал документа

    2.31 мониторинг (monitoring): Непрерывная или периодическая оценка выбрасываемых и удаляемых ПГ или других сопутствующих данных по ПГ.

    Источник: ГОСТ Р ИСО 14064-3-2007: Газы парниковые. Часть 3. Требования и руководство по валидации и верификации утверждений, касающихся парниковых газов оригинал документа

    2.28 мониторинг (monitoring): Постоянная проверка, надзор, критическое наблюдение или определение состояния, с целью идентифицировать изменения относительно требуемого или ожидаемого уровня.

    Примечание - Мониторинг можно применять к инфраструктуре менеджмента риска (2.3), процессу менеджмента риска (2.8), риску (2.1) или контролю риска (2.26).

    [Руководство ИСО 73:2009, определение 3.8.2.1]

    Источник: ГОСТ Р ИСО 31000-2010: Менеджмент риска. Принципы и руководство оригинал документа

    2.94 мониторинг (monitoring): Наблюдения, выполненные путем контроля параметров в соответствии с определенным методом и программой для получения данных о работе чистых помещений.

    Примечание - Эта информация может быть использована для определения тенденций изменения параметров воздуха чистого помещения в эксплуатируемом (2.97) состоянии и для обеспечения стабильности процесса.

    [ИСО 14644-2:2000, статья 3.1.3]

    Источник: ГОСТ Р ИСО 14644-6-2010: Чистые помещения и связанные с ними контролируемые среды. Часть 6. Термины оригинал документа

    3.25 мониторинг (monitor): Проверка, наблюдение, критический обзор или измерение процесса деятельности, действий или системы через запланированные интервалы времени, направленные на идентификацию отличий между наблюдаемым и требуемым или ожидаемым уровнем выполнения деятельности.

    Источник: Р 50.1.068-2009: Менеджмент риска. Рекомендации по внедрению. Часть 1. Определение области применения

    9.5.1 мониторинг (monitoring): Проведение непрерывной или периодической оценки выбросов парниковых газов (9.1.1)и удаления парниковых газов (9.1.6) или других сопутствующих данных по ПГ.

    [ИСО 14064-1:2006]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    3.11 мониторинг (monitor): Проверка, наблюдение, критический обзор или измерение процесса деятельности, действий или системы через запланированные интервалы времени, направленные на идентификацию отличий между наблюдаемым и требуемым или ожидаемым уровнем выполнения деятельности.

    Источник: Р 50.1.069-2009: Менеджмент риска. Рекомендации по внедрению. Часть 2. Определение процесса менеджмента риска

    3.8 мониторинг (monitor): Проверка, наблюдение, критический обзор или измерение процесса деятельности, действий или системы через запланированные интервалы времени, направленные на идентификацию отличий между наблюдаемым и требуемым или ожидаемым уровнем выполнения деятельности.

    Источник: Р 50.1.070-2009: Менеджмент риска. Рекомендации по внедрению. Часть 3. Обмен информацией и консультации

    Русско-английский словарь нормативно-технической терминологии > мониторинг

  • 108 уровень звукового воздействия

    1. sound exposure level
    2. A-weighted sound exposure level

    3.11 уровень звукового воздействия (sound exposure level), дБ: Десять десятичных логарифмов отношения звукового воздействия к опорному звуковому воздействию; опорное звуковое воздействие - произведение квадрата опорного звукового давления и опорного интервала времени 1 с.

    Примечания

    1. Корректированный по A уровень звукового воздействия LAE связан с соответствующим средним по времени корректированным по А уровнем звука LAT или LAeqT соотношением:

    x014.gif                                    (4)

    где ЕА - корректированное по А звуковое воздействие, Па2 · с [см. формулу (3)];

    E0 - опорное звуковое воздействие, равное (20 мкПа)2 · (1 с) = 400 · 10-12 Па2 · с;

    T0 = 1 с;

    Т = t2 - t1, интервал времени измерений в секундах для уровня звукового воздействия и среднего по времени уровня звука.

    2. Средний по времени корректированный по A уровень звука LAT или LAeqT в течение интервала времени T связан с общим корректированным по A звуковым воздействием ЕА за этот интервал соотношением:

    x016.gif                                                                          (5а)

    или

    x018.gif                                                           (5b)

    Источник: ГОСТ Р 53188.1-2008: Шумомеры. Часть 1. Технические требования оригинал документа

    3.11 уровень звукового воздействия (sound exposure level), дБ: Десять десятичных логарифмов отношения звукового воздействия к опорному звуковому воздействию; опорное звуковое воздействие - произведение квадрата опорного звукового давления и опорного интервала времени 1 с.

    Примечания

    1 Корректированный по А уровень звукового воздействия LAEсвязан с соответствующим средним по времени корректированным по А уровнем звука LAT или LAeqT соотношением:

    x007.png                                (4)

    где EA - корректированное по А звуковое воздействие, Па2с [см. формулу (3)];

    E0 - опорное звуковое воздействие, равное (20 мкПа)2×(1 с) = 400×10-12 Па2с;

    T0 = 1 с;

    T = t2 - t1 - интервал времени измерений уровня звукового воздействия и среднего по времени уровня звука, с.

    2 Средний по времени корректированный по A уровень звука LAT или LAeqT в течение интервала времени Т связан с общим корректированным по А звуковым воздействием ЕА за этот интервал соотношением:

    x008.png                                                                           (5a)

    или

    x009.png                                                     (5b)

    Источник: ГОСТ 17187-2010: Шумомеры. Часть 1. Технические требования оригинал документа

    3.5 уровень звукового воздействия (A-weighted sound exposure level) LAE, дБА: Величина, равная десяти десятичным логарифмам отношения дозы шума ЕАк опорному значению дозы Е0, равному произведению квадрата звукового давления р0 = 20 мкПа на опорное значение продолжительности T0 = 1 с x005.png

    Примечания

    1 Уровень звукового воздействия LAE события [например, прохождения судна (см. А.7.2)] заданной продолжительности Т = t2 - t1, связан с эквивалентным уровнем звука LpАeq зависимостью

    x006.png                                     (2)

    где x007.png - квадрат мгновенного звукового давления.

    2 Для обозначения уровня звукового воздействия LAEприменяют аббревиатуру «SEL».

    3 В настоящем стандарте уровень звукового воздействия характеризует звуковое излучение источника шума, а не уровень воздействия шума на человека.

    Источник: ГОСТ Р 53646-2009: Шум машин. Измерение шума малых моторных прогулочных судов оригинал документа

    Русско-английский словарь нормативно-технической терминологии > уровень звукового воздействия

  • 109 UT1

    1. UT1

    UT1

    Шкала всемирного времени. Шкала времени, основанная на вращении Земли вокруг своей оси по ГОСТ 8.567 и [1]

    Источник: 1:

    Русско-английский словарь нормативно-технической терминологии > UT1

  • 110 DUT1

    1. DUT1

    DUT1

    Величина прогнозируемой разности UT1 - UTC в числах, кратных 0,1 с, по ГОСТ 8.567 и рекомендации МСЭ - RTF

    Источник: 1:

    Русско-английский словарь нормативно-технической терминологии > DUT1

  • 111 тональный шум

    1. tonal sound
    2. tonal noise

     

    тональный шум
    -

    1. Классификация шумов, воздействующих на человека
    (в соответствии с СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, помещениях жилых, общественных зданий и на территории жилой застройки»)

    1.1. По характеру спектра шума выделяют:
    • широкополосный шум  с непрерывным спектром шириной  более 1 октавы;
    тональный шум, в спектре которого имеются выраженные тоны.
    Тональный  характер  шума  для  практических  целей  устанавливается измерением  в  1/3  октавных  полосах  частот  по  превышению  уровня  в одной полосе над соседними не менее чем на 10 дБ.

    1.2. По временным характеристикам шума выделяют:
    • постоянный шум,  уровень  звука  которого  за  8-часовой  рабочий день  или  за  время  измерения  в  помещениях  жилых  и  общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике шумомера «медленно»;
    • непостоянный шум, уровень которого за 8-часовой рабочий день, рабочую  смену  или  во  время  измерения  в  помещениях  жилых  и общественных  зданий,  на  территории  жилой  застройки  изменяется  во времени  более  чем  на  5  дБА  при  измерениях  на  временной характеристике шумомера «медленно».

    1.3. Непостоянные шумы подразделяют на:
    • колеблющийся  во  времени  шум,  уровень  звука  которого непрерывно изменяется во времени;
    • прерывистый  шум,  уровень  звука  которого  ступенчато изменяется  (на  5дБА  и  более),  причем  длительность  интервалов,  в течение которых уровень остается постоянным, составляет 1 с и более;
    • импульсный шум, состоящий из одного или нескольких звуковых сигналов,  каждый  длительностью  менее  1  с,  при  этом  уровни  звука  в дБАI и дБА, измеренные соответственно на временных характеристиках «импульс» и «медленно», отличаются не менее чем на 7 дБ.
    [ http://www.kaskavella.ru/klasizmnormshuma.html]

    Тематики

    • шум, звук

    EN

    3.2.2 тональный шум (tonal noise): Шум, в котором доминируют один или несколько ясно различаемых тонов.

    Примечание - На практике шум считают тональным, если при измерениях в третьоктавных полосах частот превышение уровня звукового давления в одной полосе над уровнями звукового давления в соседних полосах составляет не менее 10 дБ.

    Источник: ГОСТ 31301-2005: Шум. Планирование мероприятий по управлению шумом установок и производств, работающих под открытым небом оригинал документа

    3.4.9 тональный шум (tonal sound): Шум, характеризующийся единственной частотой или узкополосными компонентами, различаемыми на слух на фоне общего шума.

    Примечание - На практике шум считают тональным, если при измерениях в третьоктавных полосах частот превышение уровня звукового давления в одной полосе над соседними не менее 10 дБ.

    Источник: ГОСТ 31296.1-2005: Шум. Описание, измерение и оценка шума на местности. Часть 1. Основные величины и процедуры оценки оригинал документа

    3.1.6 тональный шум (tonal sound): Шум, характеризуемый единственной частотой или узкополосными компонентами, различаемыми на слух на фоне общего шума.

    Примечание - На практике шум считают тональным, если при измерениях в третьоктавных полосах частот превышение уровня звукового давления в одной полосе над соседними больше или равно 10 дБ.

    Источник: ГОСТ Р 53187-2008: Акустика. Шумовой мониторинг городских территорий оригинал документа

    Русско-английский словарь нормативно-технической терминологии > тональный шум

  • 112 эквивалентный уровень звукового давления

    1. equivalent sound pressure level
    2. equivalent continuous sound pressure level

    3.1.6 эквивалентный уровень звукового давления (equivalent sound pressure level): Величина, рассчитываемая как десять десятичных логарифмов отношения квадрата среднеквадратичного звукового давления на заданном временном интервале, измеренного при стандартной частотной характеристике шумомера, к квадрату опорного звукового давления.

    Примечания

    1 Эквивалентный уровень звука LAeqTрассчитывают по формуле

    x008.gif

    где pA(t) - мгновенное корректированное по частотной характеристике А звуковое давление в момент времени t;

    р0- опорное звуковое давление, равное 20 мкПа.

    2 Эквивалентный уровень звука выражают в дБА

    3 Эквивалентный уровень звукового давления также называют усредненным по времени уровнем звукового давления (например, усредненный уровень звука).

    Источник: ГОСТ 31296.1-2005: Шум. Описание, измерение и оценка шума на местности. Часть 1. Основные величины и процедуры оценки оригинал документа

    3.8 эквивалентный уровень звукового давления (equivalent continuous sound pressure level) Leq,T, дБ: Усредненный по времени уровень звукового давления, равный уровню звукового давления постоянного шума, имеющего такое же среднее значение квадрата звукового давления, что и данный непостоянный шум за тот же период времени усреднения Т, равный продолжительности измерений.

    Примечание - Эквивалентный уровень звукового давления Leq,T рассчитывают по формуле

    x004.gif

    где р0- опорное звуковое давление, равное 20 мкПа;

    pt- мгновенное звуковое давление, Па.

    Другие примененные в стандарте термины - по ГОСТ 31252( приложение Е).

    Используемые в стандарте величины, кроме указанных выше, обозначены:

    d - среднее измерительное расстояние, м;

    h - высота микрофона, м;

    hk- высота акустического центра k-гоисточника шума, м. Если положение акустического центра неизвестно, то в качестве него принимают среднюю точку источника шума;

    i - номер точки измерений;

    l - длина измерительного контура, м;

    x006.gif- средний октавный (третьоктавный) уровень звукового давления на измерительном контуре, дБ;

    x008.gif - корректированный средний октавный (третьоктавный) уровень звукового давления на измерительном контуре, дБ;

    Lpi- октавный (третьоктавный) уровень звукового давления в i-й точке на измерительном контуре, дБ;

    n - число источников шума предприятия;

    N - число точек измерений на измерительном контуре;

    S0 - опорное значение площади, м2;

    a - коэффициент затухания звука в атмосфере, дБ/м;

    DLa - затухание звука в атмосфере, дБ;

    DLF- ошибка ближнего поля (поправка, учитывающая влияние ближнего звукового поля), дБ;

    DLM- поправка, учитывающая влияние направленности микрофона, дБ;

    DLS - поправка, учитывающая влияние площади измерительной поверхности, дБ;

    θ - угол поворота остронаправленного микрофона от направления на источник шума, при котором его чувствительность снижается на 3 дБ, угловые градусы (...°);

    j - угол между лучами из точки измерений в крайние видимые точки периметра производственной площадки предприятия,...°.

    Графические пояснения величин даны на рисунке 1.

    Источник: ГОСТ 31297-2005: Шум. Технический метод определения уровней звуковой мощности промышленных предприятий с множественными источниками шума для оценки уровней звукового давления в окружающей среде оригинал документа

    Русско-английский словарь нормативно-технической терминологии > эквивалентный уровень звукового давления

  • 113 фоновый шум

    1. L
    2. equivalent A-weighted sound pressure level
    3. background noise for reacreational craft
    4. background noise

     

    фоновый шум
    Сигналы, обнаруженные во время испытания ЧР, которые не происходят в испытываемом объекте.
    Примечание
    Фоновый шум может состоять или из белого шума в системе измерения, транслирования радиопередач или других непрерывных или импульсных сигналов. Для дальнейшей информации, смотри приложение G.
    [МЭК 60270]

    фоновый шум
    Шум, происходящий от геометрических и металлургических изменений в контролируемом изделии (эти явления могут быть измерены)
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]


    Тематики

    EN

    3.6 фоновый шум (background noise for reacreational craft, background noise): Шум других источников, кроме испытуемого судна.

    Пример - Шум плеска волн об испытуемое судно или о берег, шум других судов или оборудования, шум ветра.

    Источник: ГОСТ Р 53646-2009: Шум машин. Измерение шума малых моторных прогулочных судов оригинал документа

    3.6 фоновый шум (background noise): Шум всех других источников, кроме шума судна.

    Источник: ГОСТ 31329-2006: Шум. Измерение шума судов на внутренних линиях и в портах оригинал документа

    3.6 фоновый шум (background noise): Шум от всех источников, кроме испытуемой машины.

    3.7 эквивалентный уровень звука (equivalent A-weighted sound pressure level) LpAeqT, дБА: Уровень звука постоянного шума, у которого средний по времени квадрат корректированного по частотной характеристике А звукового давления имеет то же значение, что у данного непостоянного шума при заданной продолжительности измерений.

    Примечание - Эквивалентный уровень звука определяют по формуле

    x006.gif

    где Т - продолжительность измерений.

    Источник: ГОСТ 31325-2006: Шум. Измерение шума строительного оборудования, работающего под открытым небом. Метод установления соответствия нормам шума оригинал документа

    Русско-английский словарь нормативно-технической терминологии > фоновый шум

  • 114 расходомер жидкости (газа)

    1. Durchflußmeßgerät

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 115 доступность (в информационных технологиях)

    1. availability

     

    доступность (в информационных технологиях)
    Способность конфигурационной единицы или ИТ-услуги выполнять согласованную функцию, когда это требуется. Доступность определяется через надежность, сопровождаемость, обслуживамость, производительность и безопасность. Доступность обычно измеряется в процентах. Это измерение часто базируется на согласованном времени предоставления услуги и простое. Лучшей практикой является вычисление доступности через измерение результатов ИТ-услуги, значимых для бизнеса.
    [ http://www.dtln.ru/slovar-terminov]

    доступность
    (ITIL Service Design)
    Способность ИТ-услуги или другой конфигурационной единицы выполнять согласованную функцию, когда это требуется. Доступность определяется надёжностью, сопровождаемостью, обслуживаемостью, производительностью и безопасностью. Доступность обычно расчитывается в процентах. Этот расчёт часто основывается на согласованном времени предоставления услуги и простое. Лучшей практикой является вычисление доступности ИТ-услуги на основании значимых для Бизнеса показателей.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    доступность
    1. Возможность использования каналов или линий связи.
    2. Вероятность получения потребителем навигационной информации в заданном интервале времени с требуемой точностью.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    EN

    availability
    (ITIL Service Design)
    Ability of an IT service or other configuration item to perform its agreed function when required. Availability is determined by reliability, maintainability, serviceability, performance and security. Availability is usually calculated as a percentage. This calculation is often based on agreed service time and downtime. It is best practice to calculate availability of an IT service using measurements of the business output.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > доступность (в информационных технологиях)

  • 116 развертка

    1. sweep
    2. scanning
    3. scan

     

    развертка
    -
    [IEV number 314-06-03]

    развертка
    Определенное и повторяющееся перемещение изображающей точки по одной из координат на дисплее. Для развертки типа А в ультразвуковом эходефектоскопе это перемещение прямо пропорционально времени от начала цикла
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    EN

    sweep
    spot displacement produced by the time base
    [IEV number 314-06-03]

    FR

    balayage
    déplacement du spot produit par la base de temps
    [IEV number 314-06-03]

    Тематики

    • измерение электр. величин в целом

    EN

    DE

    FR

     

    развёртка

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    3.24.3. Развертка

    Осевой режущий инструмент для повышения точности формы и размеров отверстия и уменьшения шероховатости поверхности

    '

    Источник: ГОСТ 25751-83: Инструменты режущие. Термины и определения общих понятий оригинал документа

    Русско-английский словарь нормативно-технической терминологии > развертка

  • 117 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 118 коррекция

    1. equalization
    2. en
    3. correction
    4. adjustment

    3.6.6 коррекция (correction): Действие, предпринятое для устранения обнаруженного несоответствия (3.6.2).

    Примечания

    1 Коррекция может осуществляться в сочетании с корректирующим действием (3.6.5).

    2 Коррекция может включать в себя, например, переделку (3.6.7)или снижение градации (3.6.8).

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3 коррекция (correction): Действие, предпринятое для устранения обнаруженного несоответствия (3.18).

    Примечание - Определение соответствует приведенному в ИСО 9000:2000, 3.6.6.

    Источник: ГОСТ Р ИСО 14004-2007: Системы экологического менеджмента. Общее руководство по принципам, системам и методам обеспечения функционирования оригинал документа

    3.6.6 коррекция (en correction; fr correction): Действие, предпринятое для устранения обнаруженного несоответствия (3.6.2).

    Примечания

    1 Коррекция может осуществляться в сочетании с корректирующим действием (3.6.5).

    2 Коррекция может включать, например переделку (3.6.7) или снижение градации (3.6.8).

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.3.1 коррекция (adjustment): Любая величина, положительная или отрицательная, постоянная или переменная, которую прибавляют к прогнозируемому или измеренному значению физической величины (уровню), чтобы учесть какую-нибудь особенность шума, влияние времени дня, типа источника шума и т.д.

    Источник: ГОСТ 31296.1-2005: Шум. Описание, измерение и оценка шума на местности. Часть 1. Основные величины и процедуры оценки оригинал документа

    3.4.1 коррекция (adjustment): Любая величина, положительная или отрицательная, постоянная или переменная, которую прибавляют к прогнозируемому или измеренному уровню, чтобы учесть происхождение шума, характер источника шума, влияние времени суток.

    Примечание - Под прогнозируемым уровнем понимают уровень, определенный расчетным путем, исходя из плана рассматриваемой территории с нанесенными на нем существующими или планируемыми строениями и источниками шума, а также сведений о времени, режимах работы и соответствующих им шумовых характеристиках источников шума. Расчет выполняют в соответствии с методами, установленными национальными, межгосударственными и международными техническими документами (например, ГОСТ 31295.1, ГОСТ 31295.2, [3], [4], [5]).

    Источник: ГОСТ Р 53187-2008: Акустика. Шумовой мониторинг городских территорий оригинал документа

    3.6.6 коррекция (correction): Действие, предпринятое для устранения обнаруженного несоответствия (3.6.2).

    Примечания

    1 Коррекция может осуществляться в сочетании с корректирующим действием (3.6.5).

    2 Коррекция может включать в себя, например, переделку (3.6.7)или снижение градации (3.6.8).

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    3.2.42 коррекция (correction): Действие, предпринятое для устранения обнаруженного несоответствия.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > коррекция

  • 119 доза шума

    1. A-weighted sound exposure

    3.4 доза шума (A-weighted sound exposure) EA, Па2 ∙ с: Интеграл по времени квадрата корректированного по частотной характеристике А шумомера (далее - корректированного по А) звукового давления на установленном временном интервале или на продолжительности события.

    Примечание - Дозу шума на установленном временном интервале (например, при прохождении судна) рассчитывают по формуле

    x003.png                                                            (1)

    где x004.png - квадрат мгновенного звукового давления;

    t1 и t2 - начало и конец интервала интегрирования соответственно (см. А.7.2).

    Источник: ГОСТ Р 53646-2009: Шум машин. Измерение шума малых моторных прогулочных судов оригинал документа

    1. Доза шума (A-weighted sound exposure) ЕА,Т, Па2×с - интеграл по времени квадрата уровня звука на установленном временном интервале Т.

    Примечания:

    1. Временный интервал Т, с, обычно равен 8-часовой рабочей смене, но может быть и более длителен, например, равен рабочей неделе.

    2. Уровень экспозиции (sound exposure level) LEA, дБА, определяют по формуле

    x048.gif

    где Е0 = 4·10-10 Па2×с.

    Источник: ГОСТ 12.1.050-86: Система стандартов безопасности труда. Методы измерения шума на рабочих местах оригинал документа

    1. Доза шума (A-weighted sound exposure) ЕА,Т, Па2×с - интеграл по времени квадрата уровня звука на установленном временном интервале Т.

    Примечания:

    1. Временной интервал Т, с, обычно равен 8-часовой рабочей смене, но может быть и более длителен, например, равен рабочей неделе.

    2. Уровень экспозиции (sound exposure level), LEA,T, дБА, определяют по формуле

    LEA,T = 10 lgx040.gif,

    где Ео= 4 10-10 Па2×с.

    Источник: 1:

    Русско-английский словарь нормативно-технической терминологии > доза шума

  • 120 расходомер жидкости (газа)

    1. débitmètre

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > расходомер жидкости (газа)

См. также в других словарях:

  • ВРЕМЕНИ ИЗМЕРЕНИЕ — Отсчёт времени связан с периодич. процессами. Система исчисления времени, применяемая в повседневной жизни, основана на солн. сутках, а соответствующая ед. времени секунда солнечного времени определяется как 1/86400 ср. солн. суток (в году… …   Физическая энциклопедия

  • ИЗМЕРЕНИЕ — представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или… …   Философская энциклопедия

  • измерение интервала времени — Экспериментальное определение длительности измеряемого интервала времени в принятых единицах величин. [ГОСТ 8.567 99] Тематики метрология, основные понятия Обобщающие термины измерения времени …   Справочник технического переводчика

  • измерение инфляции — Строится несколькими методами. Наиболее распространенный на основе обобщенного индекса потребительских цен (обычно он относится к сумме потребительских цен в расчете на «среднюю семью, среднее домохозяйство«, причем за относительно… …   Справочник технического переводчика

  • ИЗМЕРЕНИЕ — последовательность эксперим. и вычислит. операций, осуществляемая с целью нахождения значения физ. величины, характеризующей нек рый объект или явление. И. завершается определением степени приближения найденного значения к истинному значению… …   Физическая энциклопедия

  • Измерение национального дохода и продукта — определение произведенного нацией в течение фиксированного отрезка времени объема товаров и услуг, а также доходов, которые нация получила от их производства. По английски: Measuring national income & product См. также: Измерение национального… …   Финансовый словарь

  • измерение в реальном масштабе времени — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN one line measurement …   Справочник технического переводчика

  • измерение времени — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN time measurement …   Справочник технического переводчика

  • измерение времени задержки кадра — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN frame delay measurementETH DM …   Справочник технического переводчика

  • измерение времени первых вступлений (сейсм.) — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN first peak measurement …   Справочник технического переводчика

  • измерение времени прохождения круга — [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов] EN Тематики спорт (общая терминология) EN lap timing …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»