Перевод: с русского на все языки

со всех языков на русский

без+колебания

  • 61 устойчивость


    stability
    (самолета)
    способность самолета самостоятельно уменьшать разности между возникшим под действием возмущения отклонением и предшествующим ему движением. — the property of an aircraft to maintain its attitude or to resist displacement, and, if displaced, to develop forces and moments tending to restore the original condition.
    -, аэродинамическая — aerodynamic stability
    -, боковая (поперечная) — lateral stability
    -, боковая (динамическая) — lateral-directional stability
    способность самолета самостоятельно устранять возникающие под действием возмущения боковые движения (скольжение, крен, рыскание). — the stability of those motions (side-slipping, rolling and yawing) which occur out of the plane of symmetry.
    -, боковая статическая способность самолета сохранять или восстанавливать равновесие статич. моментов крена и рыскания. — static lateral-directional stability
    -, динамическая — dynamic stability
    способность самолета после отклонения от исходного установившегося прямолинейного режима полета, вызванного действием возмущения, демпфировать колебания восстанавливающих моментов и плавно возвращаться к исходному положению. — the characteristics of an aircraft that causes it, when disturbed from an original state of steady flight or motion, to damp the oscillations set up by restoring moments and gradually return to its original state.
    -, коррозионная — corrosion resistance
    -, курсовая — directional stability
    - на водной поверхностиwater stability
    -, нейтральная — neutral stability
    способность самолета, находящегося в к-л режиме установившегося движения, легко переходить в другой режим также установившегося движения (не возвращаясь к исходному без вмешательства летчика). — the property of an aircraft in steady flight, to readily accomplish transition to another steady flight condition (not returning to the original state with the pilot not interferring with the aircraft control).
    -, ограниченная — limited stability
    - пограничного слояboundary layer stability
    - пo кренуrolling stability
    -, поперечная — lateral stability
    устойчивость в полете к возмущениям относительно продольной оси, т.е. возмущениям, вызывающим крен или боковое скольжение. — stability with reference to disturbances about the longitudinal axis of an aircraft, i.e. disturbances involving rolling or side-slipping.
    - поперечная (по крену)rolling stability
    - поперечная статическаяstatic lateral stability
    способность самолета при нейтральном положении элеронов автоматически устранять возникший при скольжении крен, или крениться в сторону, противоположную скольжению. — the static lateral stability is shown by the aircraft tendency to raise the low wing in а side-slip with the aileron controls free (or neutral).
    - по рысканиюyaw stability
    - по скоростиspeed stability
    - по тангажуpitch stability
    - потокаflow stability
    - пo углу атакиangle-of-attack stability
    - при скольженииside-slipping stability
    -, продольная — longitudinal stability
    способность самолета самостоятельно устранять возникающие под действием возмущения продольные движения в вертикальной плоскости. — the stability of those motions (vertical and forward motions and pitching) in the plane of symmetry.
    -, продольная статическая — static longitudinal stability
    -, путевая — directional stability
    способность самолета восстанавливать устойчивое путевое равновесие моментов рыскания, бокового скольжения. — the property of an aircraft to restore itself from a yawing or side-slipping condition.
    -, путевая статическая — static directional stability
    способность самолета с освобожденным или зажатым рулем направления сохранять устойчивое путевое равновесие. — the static directional stability (as shown by the tendency to recover from a skid with the rudder free) must be positive for any landing gear and flap position and symmetrical power condition.
    -, собственная — inherent stability
    -, статическая — static stability
    способность самолета восстанавливать нарушенное равновесие под действием стабилизирующих (восстанавливающих) аэродинамических моментов. — if the static margin is positive, the aircraft possesses static stability, and in general will not diverge when disturbed from a trimmed speed.
    -, флюгерная — weathercock stability
    изолированная путевая статическая устойчивость самолета, т.е. способность самолета сохранять или восстанавливать путевое равновесие (моментов рыскания). — the tendency to turn into the relative wind as determined by the change in aerodynamic moment about the center of gravity with change in wind direction, used for motion either in pitch or yaw.
    потеря у. (ла) — loss of stability
    потеря у. (конструкции, работающей на сжатие) — buckling
    обладать у. — possess stability
    повышать у. — improve stability

    Русско-английский сборник авиационно-технических терминов > устойчивость

  • 62 Глагол

    Общее: глагол Allgemeines (Verb)
    Основные формы правильных / слабых глаголов Grundformen von regelmäßigen / „schwachen" Verben
    Спряжение глаголов Konjugation der Verben
    Презенс Präsens
    Претерит Präteritum
    Пассив Passiv
    Безличный пассив Unpersönliches Passiv
    Перевод пассива на русский язык Übersetzung des Passivs ins Russische
    Употребление конъюнктива II Gebrauch des Konjunktivs II
    Конъюнктив I и II пассива Konjunktiv I und Konjunktiv II Passiv
    Другие способы выражения модальности Andere Ausdrucksmöglichkeiten der Modalität
    Глагол lassen Verb „lassen"
    Безличные глаголы Unpersönliche Verben
    Инфинитивный оборот с um … zu Infinitivkonstruktion mit „um... zu"
    Инфинитивный оборот с ohne … zu Infinitivkonstruktion mit „ohne... zu"
    Конструкции haben/sein + zu + инфинитив Konstruktion haben/sein + zu + Infinitiv
    Конструкция zu + партицип I( Герундив) Konstruktion „zu" + 1. Partizip (das Gerundiv)
    Глаголы, требующие номинатива Verben, die den Nominativ verlangen
    Глаголы, требующие аккузатива Verben, die den Akkusativ verlangen
    Глаголы, требующие генитива Verben, die den Genitiv verlangen

    Грамматика немецкого языка по новым правилам орфографии и пунктуации > Глагол

  • 63 пульсирующий ледник

    1. Surgegletscher

     

    пульсирующий ледник
    Ледник, которому свойственны периодические колебания, приводящие к быстрому продвижению и перераспределению вещества в ледниковой системе, без изменения его общей массы.
    [ ГОСТ 26463-85 ]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    • glacier "surgeur

    Русско-немецкий словарь нормативно-технической терминологии > пульсирующий ледник

  • 64 пульсирующий ледник

    1. surging glacier

     

    пульсирующий ледник
    Ледник, которому свойственны периодические колебания, приводящие к быстрому продвижению и перераспределению вещества в ледниковой системе, без изменения его общей массы.
    [ ГОСТ 26463-85 ]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    • glacier "surgeur

    Русско-английский словарь нормативно-технической терминологии > пульсирующий ледник

  • 65 управление аварийными сигналами

    1. alarm management

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление аварийными сигналами

  • 66 пульсирующий ледник

    1. glacier "surgeur

     

    пульсирующий ледник
    Ледник, которому свойственны периодические колебания, приводящие к быстрому продвижению и перераспределению вещества в ледниковой системе, без изменения его общей массы.
    [ ГОСТ 26463-85 ]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    • glacier "surgeur

    Русско-французский словарь нормативно-технической терминологии > пульсирующий ледник

См. также в других словарях:

  • Без Оглядки — нареч. 1. Не оглядываясь. // перен. Очень быстро, спеша. 2. перен. Не размышляя, не раздумывая, без колебания. // разг. Забывая обо всем, увлекаясь. 3. перен. Безгранично, не задумываясь (противоп.: с оглядкой). // разг. Решительно, без колебаний …   Современный толковый словарь русского языка Ефремовой

  • Без замедления — Устар. Не задерживаясь, немедленно, тотчас. Литвинов проворно, почти бесчувственно, без колебания и замедления отправился к Татьяне (Тургенев, Дым). Павел Егорович требовал, чтобы всё отпускалось покупателю без замедления и моментально. Если… …   Фразеологический словарь русского литературного языка

  • Колебания производства — (production fluctuations) — подъемы и спады производства продукции и потребления тех или иных товаров — являются одним один из основных элементов экономической конъюнктуры в стране (наряду с такими ее элементами как колебания… …   Экономико-математический словарь

  • колебания производства — Подъемы и спады производства продукции и потребления тех или иных товаров являются одним один из основных элементов экономической конъюнктуры в стране (наряду с такими ее элементами как колебания финансового оборота, колебания процентных ставок,… …   Справочник технического переводчика

  • Колебания (вибрация) случайные — – колебания (вибрация), представляющие собой случайный процесс. [ГОСТ 24346 80] Рубрика термина: Виды вибрации Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

  • КОЛЕБАНИЯ СЕЗОННЫЕ — SEASONAL VARIATIONБолее или менее регулярные колебания деловой активности, вызванные сезонными факторами. Напр., объем списания денег со счетов в банках в декабре обычно больше, чем в др. месяцы года; цены на яйца в январе почти всегда выше, чем… …   Энциклопедия банковского дела и финансов

  • Колебания, вековые, земной коры — Одним из основных явлений в жизни земной коры представляются те изменения ее конфигурации и ее облика, которые обусловлены перемещениями границ суши и моря. Материки и моря не отличаются, как можно было бы думать, постоянством формы и размеров.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Колебания вековые земной коры — Одним из основных явлений в жизни земной коры представляются те изменения ее конфигурации и ее облика, которые обусловлены перемещениями границ суши и моря. Материки и моря не отличаются, как можно было бы думать, постоянством формы и размеров.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ — взаимосвязанные колебания электрич. (E) и магн. ( Н )полей, составляющих единое эл. магн. поле. Распространение Э. к. происходит в виде эл. магн. волн. Э. к. представляют собой дискретную совокупность фотонов, и только при очень большом числе… …   Физическая энциклопедия

  • Электрические колебания* — Уже давно было замечено, что если обмотать стальную иглу проволокой и разрядить через эту проволоку лейденскую банку, то северный полюс не всегда получается на том конце иглы, где его можно было ожидать по направлению разрядного тока и по правилу …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электрические колебания — Уже давно было замечено, что если обмотать стальную иглу проволокой и разрядить через эту проволоку лейденскую банку, то северный полюс не всегда получается на том конце иглы, где его можно было ожидать по направлению разрядного тока и по правилу …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»