Перевод: с русского на английский

с английского на русский

базисное+решение

  • 1 базисное решение

    Русско-английский новый политехнический словарь > базисное решение

  • 2 базисное решение

    Mechanics: basic solution

    Универсальный русско-английский словарь > базисное решение

  • 3 базисное решение

    Русско-английский словарь по машиностроению > базисное решение

  • 4 базисное решение

    Русско-английский научно-технический словарь Масловского > базисное решение

  • 5 базисное решение (опорный план)

    1. basic solution

     

    базисное решение (опорный план)
    Термин линейного программирования, одно из допустимых решений, находящихся в вершинах области допустимых решений, либо, если кривая безразличия параллельна одному из отрезков границы области, то Б. р. – весь этот отрезок (см. рис. Л.1 к ст. Линейное программирование). Оно является решением системы линейных ограничений, которое нельзя представить в виде линейной комбинации никаких других решений. При решении задачи линейного программирования можно поступить следующим образом: найти любое из таких «вершинных» решений, не обязательно оптимальное, и принять его за исходный пункт расчетов. Такое решение и будет базисным. Если окажется, что оно и оптимальное, расчет на этом закончен, если нет – последовательно проверяют, не будут ли оптимальными соседние вершинные точки. Ту из них, в которой план эффективнее, принимают снова за исходную точку и так, последовательно проверяя на оптимальность аналогичные вер­шины, приходят к искомому оптимуму. На этом принципе строятся так называемый симплексный метод решения задач линейного программирования, а также ряд других способов, объединенных общим названием «методы последовательного улучшения допустимого решения (МПУ)»: метод обратной матрицы или модифицированный симплекс-метод, метод потенциалов для транспортной задачи и др. Они отличаются друг от друга вычислительными особенностями перехода от одного базисного решения к другому, улучшенному.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > базисное решение (опорный план)

  • 6 базисное возможное решение

    Универсальный русско-английский словарь > базисное возможное решение

  • 7 basic feasible solution

    базисное допустимое решение (базисное решение задачи линейного программирования, принадлежащее выпуклому допустимому множеству задачи)

    Англо-русский словарь промышленной и научной лексики > basic feasible solution

  • 8 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 9 итеративные методы решения оптимизационных задач

    1. iterative methods for optimal solutions

     

    итеративные методы решения оптимизационных задач
    Заключаются в том, что вычислительный процесс начинают с некоторого пробного (произвольного) допустимого решения, а затем применяют алгоритм, обеспечивающий последовательное улучшение этого решения. Процесс таких проб продолжается до тех пор, пока не станет ясно, что либо дальнейшее улучшение решения невозможно (достигнут оптимум, причем во многих случаях требуется дополнительно проверить — локальный или глобальный), либо дальнейшие вычисления нецелесообразны, поскольку возможное улучшение результата не окупит дополнительных затрат. (В последнем случае для определения момента окончания вычислений используется прием, называемый методом Лас Вегаса). Алгоритмы, применяемые при этом («итеративные алгоритмы методов последовательного улучшения плана”), можно подразделить на три класса: 1) при которых известно, что на каждой итерации решение улучшается, причем число таких итераций для достижения оптимума конечно; 2) при которых также каждая итерация улучшает решение, но оптимум достигается лишь как предел бесконечной последовательности решений (бесконечного вычислительного процесса); 3) алгоритмы, основанные на методе проб и ошибок, обеспечивают улучшение решения в целом, но не на отдельной итерации. Примеры практического применения итерационных методов см. в статьях Базисное решение, Симплексный метод
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > итеративные методы решения оптимизационных задач

  • 10 методы последовательного улучшения допустимого решения

    1. sequential perfection of feasible solutions technique

     

    методы последовательного улучшения допустимого решения
    МПУ

    Один из общих подходов к решению дискретных задач оптимального программирования, основанный на том, что вначале выбирается произвольно выбирается некоторое допустимое решение задачи, а далее тем или иным способом ищется решения, все более соответствующие оптимальному. См. Базисное решение (опорный план).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > методы последовательного улучшения допустимого решения

  • 11 симплексный метод решения задач линейного программирования

    1. simplex method

     

    симплексный метод решения задач линейного программирования
    симплекс-метод

    Вычислительная процедура, основанная на принципе последовательного улучшения решений — перехода от одной базисной точки (см. Базисное решение) к другой, для которой значение целевой функции больше (эти операции фиксируются в симплексной таблице). Доказано, что если оптимальное решение существует, то оно обязательно будет найдено через конечное число шагов (за исключением так называемой вырожденной задачи, при которой возможно явление “зацикливания”, т.е. многократного возврата к одному и тому же положению). Название метод получил от термина “n-мерный симплекс”. Геометрическая интерпретация метода состоит в последовательном движении по вершинам симплекса. C.м., разработанный Дж.Данцигом, послужил исходным пунктом для разработки целого семейства алгоритмов решения как линейных, так и нелинейных выпуклых задач оптимизации. Реализация решения симплекс-методом наглядно показана на блок- схеме, рис. C.4. Рис. С.4 Симплексный метод (блок-схема)
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > симплексный метод решения задач линейного программирования

  • 12 базисный

    Русско-английский словарь по информационным технологиям > базисный

  • 13 вершина допустимого многогранника

    1. corner point

     

    вершина допустимого многогранника
    (области допустимых решений в задачах линейного программирования) - точка пересечения линейных ограничений (см. рис.Л.1. к статье Линейное программирование). Поскольку множество допустимых решений в задаче линейного программирования всегда выпукло, вершинная точка является крайней точкой множества и она может быть принята за допустимое базисное решение задачи.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > вершина допустимого многогранника

  • 14 многогранник

    1. polihedron

     

    многогранник
    Выпуклое ограниченное множество точек, удовлетворяющих одновременно конечному числу неравенств типа: a11x1 + … + a1nxn ? b1 ……………….. am1x1 + … + amnxn ? bm или в матричной записи M = {x?En | Ax ? B}. М. имеет конечное число крайних точек, называемых его вершинами, экстремальными точками (это такие точки, которые не могут лежать внутри отрезка, соединяющего две точки выпуклого множества, а могут быть только одной из концевых точек этого отрезка). Понятие М. используется в геометрической интерпретации задач линейного программирования: множество допустимых решений задачи является выпуклым М., базисное решение или опорный план — одной из его вершин. (См. Вершина допустимого многогранника).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > многогранник

  • 15 условно-оптимальный план (в математическом программировании)

    1. conventional optimal plan

     

    условно-оптимальный план (в математическом программировании)
    Промежуточный план, получаемый в процессе решения оптимизационной задачи при неполном учете отдельных ограничений. Существует группа алгоритмов (методов) решения задач линейного программирования, основанных на том, что сначала отыскивается оптимальный план, хотя бы удовлетворяющий некоторым из ограничений; он проверяется на допустимость и постепенно доводится до такого состояния, когда одновременно удовлетворяет критерию оптимальности и является допустимым с точки зрения всей системы ограничений задачи. Такой принцип в известном смысле противоположен методам последовательного улучшения допустимого решения, описанным в статье Базисное решение (опорный план), когда вначале определяется некоторый допустимый базисный план, а затем он постепенно улучшается, пока не становится оптимальным. У.-о.п. применяются также в экономико-математическом анализе решения оптимизационных задач. См. также Потенциально-оптимальный план.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > условно-оптимальный план (в математическом программировании)

См. также в других словарях:

  • Базисное решение — (опорный план) [basic solution] – термин линейного программирования, одно из допустимых решений, находящихся в вершинах области допустимых решений, либо, если кривая безразличия параллельна одному из отрезков границы области, то Б. р. – весь этот …   Экономико-математический словарь

  • Базисное решение — (опорный план) [basic solution] – термин линейного программирования, одно из допустимых решений, находящихся в вершинах области допустимых решений, либо, если кривая безразличия параллельна одному из отрезков границы области, то Б. р. – весь этот …   Экономико-математический словарь

  • базисное решение (опорный план) — Термин линейного программирования, одно из допустимых решений, находящихся в вершинах области допустимых решений, либо, если кривая безразличия параллельна одному из отрезков границы области, то Б. р. – весь этот отрезок (см. рис. Л.1 к ст.… …   Справочник технического переводчика

  • Диофантовы уравнения — Диофантово уравнение или уравнение в целых числах это уравнение с целыми коэффициентами и неизвестными, которые могут принимать только целые значения. Названы в честь древнегреческого математика Диофанта. Содержание 1 Линейные диофантовы… …   Википедия

  • Диофантов анализ — Диофантово уравнение или уравнение в целых числах это уравнение с целыми коэффициентами и неизвестными, которые могут принимать только целые значения. Названы в честь древнегреческого математика Диофанта. Содержание 1 Линейные диофантовы… …   Википедия

  • Уравнение Диофанта — Диофантово уравнение или уравнение в целых числах это уравнение с целыми коэффициентами и неизвестными, которые могут принимать только целые значения. Названы в честь древнегреческого математика Диофанта. Содержание 1 Линейные диофантовы… …   Википедия

  • Линейное программирование — [linear programming] область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны… …   Экономико-математический словарь

  • Линейное программирование — [linear programming] область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны… …   Экономико-математический словарь

  • линейное программирование — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] линейное программирование Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между… …   Справочник технического переводчика

  • Итеративные методы решения оптимизационных задач — [iterative methods for optimal solutions] заключаются в том, что вычислительный процесс начинают с некоторого пробного (произвольного) допустимого решения, а затем применяют алгоритм, обеспечивающий последовательное улучшение этого решения.… …   Экономико-математический словарь

  • итеративные методы решения оптимизационных задач — Заключаются в том, что вычислительный процесс начинают с некоторого пробного (произвольного) допустимого решения, а затем применяют алгоритм, обеспечивающий последовательное улучшение этого решения. Процесс таких проб продолжается до тех пор,… …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»