Перевод: с английского на все языки

со всех языков на английский

(made+recently)

  • 101 Turner, Richard

    [br]
    b. 1798 probably Dublin, Ireland d. 1881
    [br]
    Irish engineer offerrovitreous structures such as glasshouses and roofs of railway terminus buildings. Lime Street Station, Liverpool, erected 1849–50, was a notable example of the latter.
    [br]
    Turner's first glasshouse commission was for the Palm House at the Botanic Gardens in Belfast, begun in 1839; this structure was designed by Charles Lanyon, Turner being responsible for the ironwork construction. The Belfast Palm House was followed in 1843 by the Palm House for the Royal Dublin Society, but the structure for which Turner is best known is the famous Palm House in the Royal Botanic Gardens at Kew Gardens in London. This was originally designed in 1844 by the architect Decimus Burton, but his concept was rejected and Turner was asked to design a new one. Burton tried again, basing his new design upon that of Turner but also incorporating features that made it more similar to the famous Great Conservatory by Paxton at Chatsworth. Finally, Turner was contracted to build the Palm Stove in collaboration with Burton. Completed in 1848, the Kew Palm House is the finest example of the glasshouses of that era. This remarkable structure is simple but impressive: it is 362 ft (110 m) long and is covered by 45,000 ft2 (4,180 m2) of greenish glass. Inside, in the central taller part, a decorative, cast-iron, spiral staircase gives access to an upper gallery, from where tall plants may be clearly viewed; the roof rises to 62 ft (19 m). The curving, glazed panels, set in ribs of wrought iron, rise from a low masonry wall. The ingenious method of construction of these ribs was patented by Turner in 1846. It consists of wrought-iron tie rods inserted into hollow cast-iron tubes; these can be tightened after the erection of the building is complete, so producing a stable, balanced structure not unlike the concept of a timber-trussed roof. The Palm Stove has only recently undergone extensive adaptation to modern needs.
    [br]
    Further Reading
    J.Hix, 1974, The Glass House, Cambridge, Mass.: MIT Press, pp. 122–7 (the Palm House at Kew).
    U.Kulturmann, 1979, Architecture and Urbanism, Tokyo, pp. 76–81 (the Palm House at Kew).
    DY

    Biographical history of technology > Turner, Richard

  • 102 Vauban, Sébastien de

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 15 May 1633 St-Léger-de-Fougeret, Château Chinon, Nièvre, France
    d. 20 March 1707 Paris, France
    [br]
    French civil and military engineer.
    [br]
    Born of impecunious parents, Vauban joined Condé's regiment as a cadet in 1651, at the age of 17, although he had apparently acquired some knowledge of mathematics and fortifications in the Carmelite College of Semur-en-Auxois. In the war of the Fronde he was captured by the Royal troops in 1653 and was converted to the king's service. He was soon recognized as having engineering ability and was given the task of repairing the fortifications of Sainte-Menehould. During the next few years he was engaged on fortification repairs and assisting at sieges, including Ypres, Gravelines and Oudenarde in 1658. Vauban found favour with the king, Louis XIV, and was responsible for the fortifications of Lille, which had been captured in 1667; he commenced the defensive structures of the citadel and the town in 1668. These were completed in 1674 and consisted of a vast pentagonal fort with bastions and further detached works surrounded by water defences. In 1692 he was present at the siege of Namur and was responsible for its capture. He was then put in charge of re-establishing and improving the defences. He next developed a line of fortresses along the French border. He later was abandoned by the king, whom he had served so well, and, with his advice being ignored by the French forces, they suffered defeat after defeat in Marlborough's wars.
    Meanwhile he had been called in to inspect the recently completed Canal du Midi and subsequently made recommendations for its improvement. These included the extension of the Montagne Noire feeder, and the construction of the Cesse and Orbiel aqueducts which were carried out to his design and under his supervision in 1686–7. In 1700 he was consulted on and produced a plan for a canal across France from north to south, providing a barge waterway from Nîmes to Dunkirk, but this was not carried out.
    In 1703 he was created maréchal de France, and two years later he devised vast schemes for the development of the canal system in Flanders. Owing to determined opposition from the local people, these schemes were abandoned and not revived until 1770, by which time the locals were prepared to accept them.
    [br]
    Further Reading
    Sir Reginald Blomfield, 1938, Sébastien lePrestre de Vauban, 1633–1707, Methuen. D.Halevy, 1924, Vauban. Builder of Fortresses, trans. C.J.C.Street, Geoffrey Bles.
    JHB

    Biographical history of technology > Vauban, Sébastien de

  • 103 Computers

       The brain has been compared to a digital computer because the neuron, like a switch or valve, either does or does not complete a circuit. But at that point the similarity ends. The switch in the digital computer is constant in its effect, and its effect is large in proportion to the total output of the machine. The effect produced by the neuron varies with its recovery from [the] refractory phase and with its metabolic state. The number of neurons involved in any action runs into millions so that the influence of any one is negligible.... Any cell in the system can be dispensed with.... The brain is an analogical machine, not digital. Analysis of the integrative activities will probably have to be in statistical terms. (Lashley, quoted in Beach, Hebb, Morgan & Nissen, 1960, p. 539)
       It is essential to realize that a computer is not a mere "number cruncher," or supercalculating arithmetic machine, although this is how computers are commonly regarded by people having no familiarity with artificial intelligence. Computers do not crunch numbers; they manipulate symbols.... Digital computers originally developed with mathematical problems in mind, are in fact general purpose symbol manipulating machines....
       The terms "computer" and "computation" are themselves unfortunate, in view of their misleading arithmetical connotations. The definition of artificial intelligence previously cited-"the study of intelligence as computation"-does not imply that intelligence is really counting. Intelligence may be defined as the ability creatively to manipulate symbols, or process information, given the requirements of the task in hand. (Boden, 1981, pp. 15, 16-17)
       The task is to get computers to explain things to themselves, to ask questions about their experiences so as to cause those explanations to be forthcoming, and to be creative in coming up with explanations that have not been previously available. (Schank, 1986, p. 19)
       In What Computers Can't Do, written in 1969 (2nd edition, 1972), the main objection to AI was the impossibility of using rules to select only those facts about the real world that were relevant in a given situation. The "Introduction" to the paperback edition of the book, published by Harper & Row in 1979, pointed out further that no one had the slightest idea how to represent the common sense understanding possessed even by a four-year-old. (Dreyfus & Dreyfus, 1986, p. 102)
       A popular myth says that the invention of the computer diminishes our sense of ourselves, because it shows that rational thought is not special to human beings, but can be carried on by a mere machine. It is a short stop from there to the conclusion that intelligence is mechanical, which many people find to be an affront to all that is most precious and singular about their humanness.
       In fact, the computer, early in its career, was not an instrument of the philistines, but a humanizing influence. It helped to revive an idea that had fallen into disrepute: the idea that the mind is real, that it has an inner structure and a complex organization, and can be understood in scientific terms. For some three decades, until the 1940s, American psychology had lain in the grip of the ice age of behaviorism, which was antimental through and through. During these years, extreme behaviorists banished the study of thought from their agenda. Mind and consciousness, thinking, imagining, planning, solving problems, were dismissed as worthless for anything except speculation. Only the external aspects of behavior, the surface manifestations, were grist for the scientist's mill, because only they could be observed and measured....
       It is one of the surprising gifts of the computer in the history of ideas that it played a part in giving back to psychology what it had lost, which was nothing less than the mind itself. In particular, there was a revival of interest in how the mind represents the world internally to itself, by means of knowledge structures such as ideas, symbols, images, and inner narratives, all of which had been consigned to the realm of mysticism. (Campbell, 1989, p. 10)
       [Our artifacts] only have meaning because we give it to them; their intentionality, like that of smoke signals and writing, is essentially borrowed, hence derivative. To put it bluntly: computers themselves don't mean anything by their tokens (any more than books do)-they only mean what we say they do. Genuine understanding, on the other hand, is intentional "in its own right" and not derivatively from something else. (Haugeland, 1981a, pp. 32-33)
       he debate over the possibility of computer thought will never be won or lost; it will simply cease to be of interest, like the previous debate over man as a clockwork mechanism. (Bolter, 1984, p. 190)
       t takes us a long time to emotionally digest a new idea. The computer is too big a step, and too recently made, for us to quickly recover our balance and gauge its potential. It's an enormous accelerator, perhaps the greatest one since the plow, twelve thousand years ago. As an intelligence amplifier, it speeds up everything-including itself-and it continually improves because its heart is information or, more plainly, ideas. We can no more calculate its consequences than Babbage could have foreseen antibiotics, the Pill, or space stations.
       Further, the effects of those ideas are rapidly compounding, because a computer design is itself just a set of ideas. As we get better at manipulating ideas by building ever better computers, we get better at building even better computers-it's an ever-escalating upward spiral. The early nineteenth century, when the computer's story began, is already so far back that it may as well be the Stone Age. (Rawlins, 1997, p. 19)
       According to weak AI, the principle value of the computer in the study of the mind is that it gives us a very powerful tool. For example, it enables us to formulate and test hypotheses in a more rigorous and precise fashion than before. But according to strong AI the computer is not merely a tool in the study of the mind; rather the appropriately programmed computer really is a mind in the sense that computers given the right programs can be literally said to understand and have other cognitive states. And according to strong AI, because the programmed computer has cognitive states, the programs are not mere tools that enable us to test psychological explanations; rather, the programs are themselves the explanations. (Searle, 1981b, p. 353)
       What makes people smarter than machines? They certainly are not quicker or more precise. Yet people are far better at perceiving objects in natural scenes and noting their relations, at understanding language and retrieving contextually appropriate information from memory, at making plans and carrying out contextually appropriate actions, and at a wide range of other natural cognitive tasks. People are also far better at learning to do these things more accurately and fluently through processing experience.
       What is the basis for these differences? One answer, perhaps the classic one we might expect from artificial intelligence, is "software." If we only had the right computer program, the argument goes, we might be able to capture the fluidity and adaptability of human information processing. Certainly this answer is partially correct. There have been great breakthroughs in our understanding of cognition as a result of the development of expressive high-level computer languages and powerful algorithms. However, we do not think that software is the whole story.
       In our view, people are smarter than today's computers because the brain employs a basic computational architecture that is more suited to deal with a central aspect of the natural information processing tasks that people are so good at.... hese tasks generally require the simultaneous consideration of many pieces of information or constraints. Each constraint may be imperfectly specified and ambiguous, yet each can play a potentially decisive role in determining the outcome of processing. (McClelland, Rumelhart & Hinton, 1986, pp. 3-4)

    Historical dictionary of quotations in cognitive science > Computers

  • 104 Memory

       To what extent can we lump together what goes on when you try to recall: (1) your name; (2) how you kick a football; and (3) the present location of your car keys? If we use introspective evidence as a guide, the first seems an immediate automatic response. The second may require constructive internal replay prior to our being able to produce a verbal description. The third... quite likely involves complex operational responses under the control of some general strategy system. Is any unitary search process, with a single set of characteristics and inputoutput relations, likely to cover all these cases? (Reitman, 1970, p. 485)
       [Semantic memory] Is a mental thesaurus, organized knowledge a person possesses about words and other verbal symbols, their meanings and referents, about relations among them, and about rules, formulas, and algorithms for the manipulation of these symbols, concepts, and relations. Semantic memory does not register perceptible properties of inputs, but rather cognitive referents of input signals. (Tulving, 1972, p. 386)
       The mnemonic code, far from being fixed and unchangeable, is structured and restructured along with general development. Such a restructuring of the code takes place in close dependence on the schemes of intelligence. The clearest indication of this is the observation of different types of memory organisation in accordance with the age level of a child so that a longer interval of retention without any new presentation, far from causing a deterioration of memory, may actually improve it. (Piaget & Inhelder, 1973, p. 36)
       4) The Logic of Some Memory Theorization Is of Dubious Worth in the History of Psychology
       If a cue was effective in memory retrieval, then one could infer it was encoded; if a cue was not effective, then it was not encoded. The logic of this theorization is "heads I win, tails you lose" and is of dubious worth in the history of psychology. We might ask how long scientists will puzzle over questions with no answers. (Solso, 1974, p. 28)
       We have iconic, echoic, active, working, acoustic, articulatory, primary, secondary, episodic, semantic, short-term, intermediate-term, and longterm memories, and these memories contain tags, traces, images, attributes, markers, concepts, cognitive maps, natural-language mediators, kernel sentences, relational rules, nodes, associations, propositions, higher-order memory units, and features. (Eysenck, 1977, p. 4)
       The problem with the memory metaphor is that storage and retrieval of traces only deals [ sic] with old, previously articulated information. Memory traces can perhaps provide a basis for dealing with the "sameness" of the present experience with previous experiences, but the memory metaphor has no mechanisms for dealing with novel information. (Bransford, McCarrell, Franks & Nitsch, 1977, p. 434)
       7) The Results of a Hundred Years of the Psychological Study of Memory Are Somewhat Discouraging
       The results of a hundred years of the psychological study of memory are somewhat discouraging. We have established firm empirical generalisations, but most of them are so obvious that every ten-year-old knows them anyway. We have made discoveries, but they are only marginally about memory; in many cases we don't know what to do with them, and wear them out with endless experimental variations. We have an intellectually impressive group of theories, but history offers little confidence that they will provide any meaningful insight into natural behavior. (Neisser, 1978, pp. 12-13)
       A schema, then is a data structure for representing the generic concepts stored in memory. There are schemata representing our knowledge about all concepts; those underlying objects, situations, events, sequences of events, actions and sequences of actions. A schema contains, as part of its specification, the network of interrelations that is believed to normally hold among the constituents of the concept in question. A schema theory embodies a prototype theory of meaning. That is, inasmuch as a schema underlying a concept stored in memory corresponds to the mean ing of that concept, meanings are encoded in terms of the typical or normal situations or events that instantiate that concept. (Rumelhart, 1980, p. 34)
       Memory appears to be constrained by a structure, a "syntax," perhaps at quite a low level, but it is free to be variable, deviant, even erratic at a higher level....
       Like the information system of language, memory can be explained in part by the abstract rules which underlie it, but only in part. The rules provide a basic competence, but they do not fully determine performance. (Campbell, 1982, pp. 228, 229)
       When people think about the mind, they often liken it to a physical space, with memories and ideas as objects contained within that space. Thus, we speak of ideas being in the dark corners or dim recesses of our minds, and of holding ideas in mind. Ideas may be in the front or back of our minds, or they may be difficult to grasp. With respect to the processes involved in memory, we talk about storing memories, of searching or looking for lost memories, and sometimes of finding them. An examination of common parlance, therefore, suggests that there is general adherence to what might be called the spatial metaphor. The basic assumptions of this metaphor are that memories are treated as objects stored in specific locations within the mind, and the retrieval process involves a search through the mind in order to find specific memories....
       However, while the spatial metaphor has shown extraordinary longevity, there have been some interesting changes over time in the precise form of analogy used. In particular, technological advances have influenced theoretical conceptualisations.... The original Greek analogies were based on wax tablets and aviaries; these were superseded by analogies involving switchboards, gramophones, tape recorders, libraries, conveyor belts, and underground maps. Most recently, the workings of human memory have been compared to computer functioning... and it has been suggested that the various memory stores found in computers have their counterparts in the human memory system. (Eysenck, 1984, pp. 79-80)
       Primary memory [as proposed by William James] relates to information that remains in consciousness after it has been perceived, and thus forms part of the psychological present, whereas secondary memory contains information about events that have left consciousness, and are therefore part of the psychological past. (Eysenck, 1984, p. 86)
       Once psychologists began to study long-term memory per se, they realized it may be divided into two main categories.... Semantic memories have to do with our general knowledge about the working of the world. We know what cars do, what stoves do, what the laws of gravity are, and so on. Episodic memories are largely events that took place at a time and place in our personal history. Remembering specific events about our own actions, about our family, and about our individual past falls into this category. With amnesia or in aging, what dims... is our personal episodic memories, save for those that are especially dear or painful to us. Our knowledge of how the world works remains pretty much intact. (Gazzaniga, 1988, p. 42)
       The nature of memory... provides a natural starting point for an analysis of thinking. Memory is the repository of many of the beliefs and representations that enter into thinking, and the retrievability of these representations can limit the quality of our thought. (Smith, 1990, p. 1)

    Historical dictionary of quotations in cognitive science > Memory

См. также в других словарях:

  • Made in USA — For other uses, see Made in USA (disambiguation). The Made in USA mark is a country of origin label indicating the product is all or virtually all made in the U.S. The label is regulated by the Federal Trade Commission (FTC). Contents 1 Legal… …   Wikipedia

  • Made (TV series) — infobox Television show name = Made format = Reality runtime = 60 minutes (with commercials) creator = Dave Sirulnick country = USA network = MTV, MTV 2 first aired = April 22, 2002 last aired = Present num episodes = 250 website = http://www.mtv …   Wikipedia

  • Swiss Made — is a label used to indicate that a product was made in Switzerland. OverviewThe wording was formally adopted in the late 19th century [http://www.swissinfo.org/fre/culture/detail/Aux origines du Swiss made horloger.html?siteSect=201 sid=7998036… …   Wikipedia

  • Randall Made Knives — Infobox company company company name = Randall Made Knives parent = company type = Private company slogan = foundation = 1938 by Walter Doane “Bo” Randall, Jr.Jim Williamson. [http://www.knifeworld.com/randallstory.html “The Randall Story”] ,… …   Wikipedia

  • Look What You Made Me — Infobox Album Name = Look What You Made Me Type = Studio Artist = Yung Berg Released = August 12, 2008 (U.S.} [ [http://www.amazon.com/Look What You Made Me/dp/B001BTZKNQ/ref=sr 1 2?ie=UTF8 s=music qid=1216651601 sr=1 2 Yung Berg Look What You… …   Wikipedia

  • I Was Made to Love Her (song) — Infobox Single Name = I Was Made to Love Her Type = Single Artist = Stevie Wonder from Album = I Was Made to Love Her B side = Hold Me Released = 1967 Genre = Soul Length = 2:37 Label = Motown Writer = Stevie Wonder, Lula Mae Hardaway, Henry… …   Wikipedia

  • What's Made Milwaukee Famous (Has Made a Loser Out of Me) — Infobox Single Name = What s Made Milwaukee Famous (Has Made a Loser Out of Me) Artist = Jerry Lee Lewis from Album = Another Place Another Time B side = All the Good Is Gone Released = 1968 Format = Recorded = Genre = Country Length = 2:35 Label …   Wikipedia

  • Gangsta Rap Made Me Do It — Infobox Single Name = Gangsta Rap Made Me Do It Artist = Ice Cube from Album = Raw Footage B side = Released = 2008 Format = CD, digital download Recorded = 2007 Genre = West Coast hip hop, gangsta rap Length = 4:45 Label = Lench Mob Writer = O… …   Wikipedia

  • Legends are Made Not Born — DnDmodule| module title =Legends are Made Not Born module module code = DCC# 0 module rules = d20 3.5 module character levels = 0 module campaign = Generic D D module authors = Chris Doyle module first published = 2003 series = Dungeon Crawl… …   Wikipedia

  • new — W2S1 [nju: US nu:] adj ▬▬▬▬▬▬▬ 1¦(recently made)¦ 2¦(recently bought)¦ 3¦(not there before)¦ 4¦(not used before)¦ 5 like new/as good as new 6¦(unfamiliar)¦ 7¦(recently arrived)¦ 8¦(recently changed)¦ 9¦(recently discovered)¦ …   Dictionary of contemporary English

  • new — adjective 1 RECENTLY MADE recently made, built, or invented: the city s new hospital | Renault s newest GTI hatchback | the new issue of Time magazine | the new fashions | a new way of organizing data 2 RECENTLY BOUGHT recently bought: Do you… …   Longman dictionary of contemporary English

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»