Перевод: с английского на все языки

со всех языков на английский

(bohemia)

  • 101 Sleeked Dowlas

    A low quality linen cloth made in Bohemia, plain weave and exported to Spain.

    Dictionary of the English textile terms > Sleeked Dowlas

  • 102 CZECH

    Чєси
    plural Czech Lands, Bohemia

    English to old Church Slavonic > CZECH

  • 103 LANDS

    Чєси
    plural Czech Lands, Bohemia

    English to old Church Slavonic > LANDS

  • 104 PLURAL

    Чєси
    plural Czech Lands, Bohemia

    English to old Church Slavonic > PLURAL

  • 105 Belidor, Bernard Forest de

    SUBJECT AREA: Weapons and armour
    [br]
    b. 1698 Catalonia, Spain
    d. 8 September 1761 Paris, France
    [br]
    French engineer and founder of the science of modern ballistics.
    [br]
    Belidor was the son of a French army officer, who died when he was six months old, and was thereafter brought up by a brother officer. He soon demonstrated a scientific bent, and gravitated to Paris, where he became involved in the determination of the Paris meridian. He was then appointed Professor at the artillery school at La Fère, where he began to pursue the science of ballistics in earnest. He was able to disprove the popular theory that range was directly proportional to the powder charge, and also argued that the explosive power of a charge was greatest at the end of the explosion; he advocated spherical chambers in order to take advantage of this. His ideas made him unpopular with the "establishment", especially the Master of the King's artillery, and he was forced to leave France for a time, becoming a consultant to authorities in Bohemia and Bavaria. However, he was reinstated, and in 1758 he was appointed Royal Inspector of Artillery, a post that he held until his death.
    Belidor also made a name for himself in hydraulics and influenced design in this field for more than a century after his death. In addition, he was the first to make practical application of integral calculus.
    [br]
    Bibliography
    Belidor was the author of several books, of which the most significant were: 1739, La Science des ingénieurs, Paris (reprinted several times, the last edition being as late as 1830).
    1731, Le Bombardier françois, Paris: L'lmprimerie royale.
    1737, Architecture hydraulique, 2 vols, Paris.
    Further Reading
    R.S.Kirby and P.G.Laurson, 1932, The Early History of Modern Civil Engineering, New Haven: Yale University Press (describes his work in the field of hydraulics).
    D.Chandler, 1976, The An of Warfare in the Age of Marlborough, London: Batsford (mentions the ballistics aspect).
    CM

    Biographical history of technology > Belidor, Bernard Forest de

  • 106 Brotan, Johann

    [br]
    b. 24 June 1843 Kattau, Bohemia (now in the Czech Republic)
    d. 20 November 1923 Vienna, Austria
    [br]
    Czech engineer, pioneer of the watertube firebox for steam locomotive boilers.
    [br]
    Brotan, who was Chief Engineer of the main workshops of the Royal Austrian State Railways at Gmund, found that locomotive inner fireboxes of the usual type were both expensive, because the copper from which they were made had to be imported, and short-lived, because of corrosion resulting from the use of coal with high sulphur content. He designed a firebox of which the side and rear walls comprised rows of vertical watertubes, expanded at their lower ends into a tubular foundation ring and at the top into a longitudinal water/steam drum. This projected forward above the boiler barrel (which was of the usual firetube type, though of small diameter), to which it was connected. Copper plates were eliminated, as were firebox stays.
    The first boiler to incorporate a Brotan firebox was built at Gmund under the inventor's supervision and replaced the earlier boiler of a 0−6−0 in 1901. The increased radiantly heated surface was found to produce a boiler with very good steaming qualities, while the working pressure too could be increased, with consequent fuel economies. Further locomotives in Austria and, experimentally, elsewhere were equipped with Brotan boilers.
    Disadvantages of the boiler were the necessity of keeping the tubes clear of scale, and a degree of structural weakness. The Swiss engineer E. Deffner improved the latter aspect by eliminating the forward extension of the water/steam drum, replacing it with a large-diameter boiler barrel with the rear section of tapered wagon-top type so that the front of the water/steam drum could be joined directly to the rear tubeplate. The first locomotives to be fitted with this Brotan-Deffner boiler were two 4−6−0s for the Swiss Federal Railways in 1908 and showed very favourable results. However, steam locomotive development ceased in Switzerland a few years later in favour of electrification, but boilers of the Brotan-Deffner type and further developments of it were used in many other European countries, notably Hungary, where more than 1,000 were built. They were also used experimentally in the USA: for instance, Samuel Vauclain, as President of Baldwin Locomotive Works, sent his senior design engineer to study Hungarian experience and then had a high-powered 4−8−0 built with a watertube firebox. On stationary test this produced the very high figure of 4,515 ihp (3,370 kW), but further development work was frustrated by the trade depression commencing in 1929. In France, Gaston du Bousquet had obtained good results from experimental installations of Brotan-Deffner-type boilers, and incorporated one into one of his high-powered 4−6−4s of 1910. Experiments were terminated suddenly by his death, followed by the First World War, but thirty-five years later André Chapelon proposed using a watertube firebox to obtain the high pressure needed for a triple-expansion, high-powered, steam locomotive, development of which was overtaken by electrification.
    [br]
    Further Reading
    G.Szontagh, 1991, "Brotan and Brotan-Deffner type fireboxes and boilers applied to steam locomotives", Transactions of the Newcomen Society 62 (an authoritative account of Brotan boilers).
    PJGR

    Biographical history of technology > Brotan, Johann

  • 107 Klic, Karol (Klietsch, Karl)

    [br]
    b. 31 May 1841 Arnau, Bohemia (now Czech Republic)
    d. 16 November 1826 Vienna, Austria
    [br]
    Czech inventor of photogravure and rotogravure.
    [br]
    Klic, sometimes known by the germanized form of his name Karl Klietsch, gained a knowledge of chemistry from his chemist father. However, he inclined towards the arts, preferring to mix paints rather than chemicals, and he trained in art at the Academy of Painting in Prague. His father thought to combine the chemical with the artistic by setting up his son in a photographic studio in Brno, but the arts won and in 1867 Klic moved to Vienna to practise as an illustrator and caricaturist. He also acquired skill as an etcher, and this led him to print works of art reproduced by photography by means of an intaglio process. He perfected the process c.1878 and, through it, Vienna became for a while the world centre for high-quality art reproductions. The prints were made by hand from flat plates, but Klic then proposed that the images should be etched onto power-driven cylinders. He found little support for rotary gravure, or rotogravure, on the European continent, but learning that Storey Brothers, textile printers of Lancaster, England, were working in a similar direction, he went there in 1890 to perfect his idea. Rotogravure printing on textiles began in 1893. They then turned to printing art reproductions on paper by rotogravure and in 1895 formed the Rembrandt Intaglio Printing Company. Their photogra-vures attracted worldwide attention when they appeared in the Magazine of Art. Klic saw photogravure as a small-scale medium for the art lover and not for mass-circulation publications, so he did not patent his invention and thought to control it by secrecy. That had the usual result, however, and knowledge of the process leaked out from Storey's, spreading to other countries in Europe and, from 1903, to the USA. Klic lived on in a modest way in Vienna, his later years troubled by failing sight. He hardly earned the credit for the invention, let alone the fortune reaped by others who used, and still use, photogravure for printing long runs of copy such as newspaper colour supplements.
    [br]
    Further Reading
    Obituary, 1927, Inland Printer (January): 614.
    Karol Klic. vynálezu hlubotisku, 1957, Prague (the only full-length biography; in Czech, with an introduction in English, French and German).
    S.H.Horgan, 1925, "The invention of photogravure", Inland Printer (April): 64 (contains brief details of his life and works).
    G.Wakeman, 1973, Victorian Book Illustration, Newton Abbot: David \& Charles, pp. 126–8.
    LRD

    Biographical history of technology > Klic, Karol (Klietsch, Karl)

  • 108 Mannesmann, Reinhard

    SUBJECT AREA: Metallurgy
    [br]
    b. 13 May 1856 Remscheid, Bleidinghausen, Germany
    d. 22 February 1922 Remscheid, Bleidinghausen, Germany
    [br]
    German metallurgical engineer.
    [br]
    Reinhard Mannesmann and his four brothers developed the engineering works at Remscheid that had been founded by their father. With his brother Max, Reinhard devised c. 1885 a method of producing seamless tubes by a rolling process. Factories for manufacturing tubes by this process were established at Remscheid, at Bous in the Saar district and at Komotau in Bohemia. Further developments of the process were patented by the brothers in the years following the initial patent of 1885. The British patent rights for the Mannesmann process were purchased by the Landore Siemens Steel Company in 1888, and the Mannesmann Tube Company was established at Landore in South Wales. This company went into liquidation in 1899 after ten years of production and the Tube Works was then purchased by the Mannesmann family, and a new company, the British Mannesmann Tube Company, was formed. Reinhard and Max Mannesmann took up residence near the Landore works and the business prospered so that by 1914 Landore was employing 1,500 men and producing 35,000 tons of tubing each year. The company was taken over during the First World War by the Custodian of Enemy Property, and after the war a new tube works which had been planned in 1914 was built at Newport, Monmouthshire. The Mannesmann family were able to resume control in 1926 for some ten years, but in 1938 the company became part of the Stewarts \& Lloyds organization.
    [br]
    Further Reading
    G.Evans, 1934, Manufacture of Seamless Tubes Ferrous and Non-Ferrous, London; 1940, Proceedings of the Institution of Mechanical Engineers 143:62–3 (both provide technical details of the Mannesmann process for forming seamless tubes).
    RTS

    Biographical history of technology > Mannesmann, Reinhard

  • 109 Senefelder, Alois

    SUBJECT AREA: Paper and printing
    [br]
    b. 6 November 1771 Prague, Bohemia (now Czech Republic)
    d. 26 February 1834 Munich, Germany
    [br]
    German inventor of lithography.
    [br]
    Soon after his birth, Senefelder's family moved to Mannheim, where his father, an actor, had obtained a position in the state theatre. He was educated there, until he gained a scholarship to the university of Ingolstadt. The young Senefelder wanted to follow his father on to the stage, but the latter insisted that he study law. He nevertheless found time to write short pieces for the theatre. One of these, when he was 18 years old, was an encouraging success. When his father died in 1791, he gave up his studies and took to a new life as poet and actor. However, the wandering life of a repertory actor palled after two years and he settled for the more comfortable pursuit of playwriting. He had some of his work printed, which acquainted him with the art of printing, but he fell out with his bookseller. He therefore resolved to carry out his own printing, but he could not afford the equipment of a conventional letterpress printer. He began to explore other ways of printing and so set out on the path that was to lead to an entirely new method.
    He tried writing in reverse on a copper plate with some acid-resisting material and etching the plate, to leave a relief image that could then be inked and printed. He knew that oily substances would resist acid, but it required many experiments to arrive at a composition of wax, soap and charcoal dust dissolved in rainwater. The plates wore down with repeated polishing, so he substituted stone plates. He continued to etch them and managed to make good prints with them, but he went on to make the surprising discovery that etching was unnecessary. If the image to be printed was made with the oily composition and the stone moistened, he found that only the oily image received the ink while the moistened part rejected it. The printing surface was neither raised (as in letterpress printing) nor incised (as in intaglio printing): Senefelder had discovered the third method of printing.
    He arrived at a workable process over the years 1796 to 1799, and in 1800 he was granted an English patent. In the same year, lithography (or "writing on stone") was introduced into France and Senefelder himself took it to England, but it was some time before it became widespread; it was taken up by artists especially for high-quality printing of art works. Meanwhile, Senefelder improved his techniques, finding that other materials, even paper, could be used in place of stone. In fact, zinc plates were widely used from the 1820s, but the name "lithography" stuck. Although he won world renown and was honoured by most of the crowned heads of Europe, he never became rich because he dissipated his profits through restless experimenting.
    With the later application of the offset principle, initiated by Barclay, lithography has become the most widely used method of printing.
    [br]
    Bibliography
    1911, Alois Senefelder, Inventor of Lithography, trans. J.W.Muller, New York: Fuchs \& Line (Senefelder's autobiography).
    Further Reading
    W.Weber, 1981, Alois Senefelder, Erfinder der Lithographie, Frankfurt-am-Main: Polygraph Verlag.
    M.Tyman, 1970, Lithography 1800–1950, London: Oxford University Press (describes the invention and its development; with biographical details).
    LRD

    Biographical history of technology > Senefelder, Alois

  • 110 Taylor, John

    SUBJECT AREA: Medical technology
    [br]
    b. 16 August 1703 Norwich, England
    d. 17 September 1772 Prague, Bohemia
    [br]
    English oculist and exponent of surgical treatment of squint and cataract.
    [br]
    In 1722, employed as an apothecary's assistant, he studied surgery and especially diseases of the eye under Cheselden at St Thomas's Hospital, London. He returned to Norwich to practise, but in 1727 he assumed the role of itinerant surgeon oculist, with a particular reputation for putting eyes straight; at first he covered the major part of the British Isles and then he extended his activities to Europe.
    He obtained MDs from Basle in 1733, and from Liège and Cologne in 1734. In 1736 he was appointed Oculist to George II. It is likely that he was responsible for Johann Sebastian Bach's blindness, and Gibbon was one of his patients. The subject of considerable obloquy on account of his self-advertisement in the crudest and most bombastic terms, it is none the less certain that he had developed a technique, probably related to couching, which was considerably in advance of that of other practitioners and at least offered a prospect of assistance where none had been available.
    Dr Johnson declared him "an instance of how far impudence will carry ignorance". Without justification, he styled himself "Chevalier". He is said, not improbably having regard to his age, to have become blind himself later in life. His son carried on his practice.
    [br]
    Bibliography
    Further Reading
    1761, The History of the Travels and Adventures of the Chevalier John Taylor, Ophthalmiater, London.
    MG

    Biographical history of technology > Taylor, John

См. также в других словарях:

  • Bohemia — ( cs. Čechy; [There is no distinction in the Czech language between adjectives referring to Bohemia and to the Czech Republic; i.e. český means both Bohemian and Czech .] Audio de|Böhmen|Böhmen.ogg; la. Bohemia; pl. Czechy) is a historical region …   Wikipedia

  • BOHEMIA — (Cz. Čecny, Česko, Tschechien; Ger. Boehmen; Heb. פעהם, פיהם, כנען, בהם), independent kingdom in Central Europe, until the beginning of the 14th century, affiliated later in the Middle Ages with the Holy Roman Empire. In 1526 it became part of… …   Encyclopedia of Judaism

  • Bohemia — Saltar a navegación, búsqueda Para otros usos de este término, véase Bohemia (desambiguación). Bohemia en la República Checa Bohemia (Čechy en checo y eslovaco, Böhmen en …   Wikipedia Español

  • Bohemia — • Crown province of the Austro Hungarian Monarchy, which until 1526 was an independent kingdom Catholic Encyclopedia. Kevin Knight. 2006. Bohemia     Bohemia      …   Catholic encyclopedia

  • BOHEMIA — ist der Titel einer deutsch tschechischen Zeitung (Tschechisch: Česko německé noviny BOHEMIA), die aus der Deutsch Tschechischen Zeitung für gute Nachbarschaft hervorgegangen ist. Die Bohemia erscheint unter diesem Titel seit 2000. Die Archive… …   Deutsch Wikipedia

  • Bohemia —    Bohemia, a kingdom of east central Europe occupying roughly the western twothirds of the current Czech Republic, lost its political independence in the seventeenth century during the Thirty Years War. In the revolution of 1848, an uprising in… …   Encyclopedia of the Age of Imperialism, 1800–1914

  • Bohemia — Bohemia, NY U.S. Census Designated Place in New York Population (2000): 9871 Housing Units (2000): 3387 Land area (2000): 8.725651 sq. miles (22.599332 sq. km) Water area (2000): 0.032120 sq. miles (0.083190 sq. km) Total area (2000): 8.757771 sq …   StarDict's U.S. Gazetteer Places

  • Bohemia, NY — U.S. Census Designated Place in New York Population (2000): 9871 Housing Units (2000): 3387 Land area (2000): 8.725651 sq. miles (22.599332 sq. km) Water area (2000): 0.032120 sq. miles (0.083190 sq. km) Total area (2000): 8.757771 sq. miles… …   StarDict's U.S. Gazetteer Places

  • Bohemia — central European kingdom, mid 15c., Beeme, from M.Fr. Boheme Bohemia, from L. Boiohaemum (Tacitus), from Boii, the Celtic people who settled in what is now Bohemia (and were driven from it by the Germanic Marcomans early 1c.; sing. Boius, fem.… …   Etymology dictionary

  • Bohemia — Bo*he mi*a, n. 1. A country of central Europe. [1913 Webster] 2. Fig.: The region or community of social Bohemians. See {Bohemian}, n., 3. [1913 Webster] She knew every one who was any one in the land of Bohemia. Compton Reade. [1913 Webster] …   The Collaborative International Dictionary of English

  • Bohemĭa — Bohemĭa, lateinischer Name für Böhmen, s.d …   Pierer's Universal-Lexikon

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»