Перевод: с русского на английский

с английского на русский

(атм)

  • 21 папка ячеек АТМ

    Русско-английский словарь по солнечной энергии > папка ячеек АТМ

  • 22 система АТМ

    Русско-английский словарь по солнечной энергии > система АТМ

  • 23 стандарт МРОА маршрутизации для сеией АТМ

    Русско-английский словарь по солнечной энергии > стандарт МРОА маршрутизации для сеией АТМ

  • 24 технология АТМ

    Русско-английский словарь по солнечной энергии > технология АТМ

  • 25 большое кольцо

    атм. опт. halo of 46 degrees

    Русско-английский физический словарь > большое кольцо

  • 26 ложная Луна

    атм. опт. paraselene

    Русско-английский физический словарь > ложная Луна

  • 27 околозенитный круг

    атм. опт. circumzenithal circle

    Русско-английский физический словарь > околозенитный круг

  • 28 световой крест

    атм. опт. light cross

    Русско-английский физический словарь > световой крест

  • 29 атмосфера

    air метео, atmosphere, medium
    * * *
    атмосфе́ра ж.
    1. ( единица давления) atmosphere, atm
    2. atmosphere, air
    возмуща́ть атмосфе́ру — disturb the atmosphere, disturb the air
    входи́ть в атмосфе́ру — enter the atmosphere; ( о возвращающемся космическом летательном аппарате) re-enter the atmosphere
    загрязня́ть атмосфе́ру — pollute the atmosphere
    заража́ть атмосфе́ру (напр. при ядерном взрыве) — contaminate the air
    зонди́ровать атмосфе́ру (напр. ракетами) — sound [probe] the atmosphere
    перепуска́ть, напр. пар, во́здух в атмосфе́ру — bypass, e. g., steam, air to waste
    сообща́ться с атмосфе́рой — be vented to atmosphere
    вну́треннее простра́нство прибо́ра сообща́ется с атмосфе́рой — the insides of the meter are vented to atmosphere
    атмосфе́ра стано́вится неприго́дной для дыха́ния — the air is rendered [becomes] irrespirable
    абсолю́тная атмосфе́ра [атм] ( единица давления) — absolute atmosphere, atm(abs)
    адиабати́ческая атмосфе́ра — adiabatic atmosphere
    барокли́нная атмосфе́ра — baroclinic atmosphere
    барометри́ческая атмосфе́ра — barometric atmosphere
    безопа́сная атмосфе́ра — non-hazardous [safe] atmosphere
    ве́рхняя атмосфе́ра — upper atmosphere
    взрывоопа́сная атмосфе́ра — explosive atmosphere
    вла́жная атмосфе́ра — damp atmosphere
    восстанови́тельная атмосфе́ра — reducing atmosphere
    га́зовая атмосфе́ра — gaseous atmosphere
    загазо́ванная атмосфе́ра — gas-laden atmosphere
    защи́тная атмосфе́ра — protective atmosphere
    звё́здная атмосфе́ра — stellar atmosphere
    атмосфе́ра Земли́ — Earth [terrestrial] atmosphere
    земна́я атмосфе́ра — terrestrial atmosphere
    избы́точная атмосфе́ра ( единица давления) — gauge atmosphere, atm gauge
    ио́нная атмосфе́ра — ionic atmosphere, ionic medium
    иску́сственная атмосфе́ра — prepared atmosphere
    нейтра́льная атмосфе́ра — neutral atmosphere
    атмосфе́ра неприго́дная для дыха́ния — irrespirable atmosphere
    ни́жняя атмосфе́ра — lower atmosphere
    норма́льная атмосфе́ра [атм] ( единица давления) — atmosphere, atm
    окисли́тельная атмосфе́ра — oxidizing atmosphere
    окружа́ющая атмосфе́ра — ambient air
    опа́сная атмосфе́ра — hazardous atmosphere
    атмосфе́ра пе́чи — furnace atmosphere
    печна́я атмосфе́ра — furnace atmosphere
    пло́тная атмосфе́ра — dense atmosphere
    политро́пная атмосфе́ра — polytropic atmosphere
    разрежё́нная атмосфе́ра — rarefied [tenuous] atmosphere
    рудни́чная атмосфе́ра — underground air, mine atmosphere
    атмосфе́ра с за́данными сво́йствами — controlled atmosphere
    со́лнечная атмосфе́ра — solar atmosphere
    станда́ртная атмосфе́ра [СА] ( единица давления) — standard atmosphere, SA (не путать с норма́льной атмосфе́рой, атм)
    … в усло́виях станда́ртной атмосфе́ры — in standard atmosphere, in SA
    техни́ческая атмосфе́ра [ат] ( единица давления) — technical atmosphere, at
    турбуле́нтная атмосфе́ра — turbulent atmosphere, turbulent [rough] air
    соверша́ть полё́т в турбуле́нтной атмосфе́ре — fly in turbulent [rough] air
    уду́шливая атмосфе́ра — irrespirable atmosphere
    усло́вная атмосфе́ра см. стандартная атмосфера
    физи́ческая атмосфе́ра [атм] ( единица давления) — (physical) atmosphere, atm
    этало́нная лаборато́рная атмосфе́ра — standard laboratory atmosphere
    * * *

    Русско-английский политехнический словарь > атмосфера

  • 30 технология коммутации

    1. switching technology

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технология коммутации

  • 31 абсолютная атмосфера

    Универсальный русско-английский словарь > абсолютная атмосфера

  • 32 внесистемная единица физической величины

    [франц. unite de mesure hors systeme]
    единица физической величины, не входящая ни в одну из официально принятых систем единиц, напр. единицы давления 1 ат (техническая атмосфера) = 1 кгс / см 2 = 98,0665 кПа и 1 атм (физическая атмосфера), равная атмосферному давлению 760 мм ртутного столбца или 1 атм = 1,0332 кгс / см 2 = 101,325 кПа.

    Толковый биотехнологический словарь. Русско-английский. > внесистемная единица физической величины

  • 33 стерилизация

    [лат. sterilis — бесплодный]
    1) полное уничтожение как вегетативных форм микроорганизмов, так и их спор, которое осуществляют несколькими способами: а) физическими методами — нагреванием воздуха в сушильном шкафу до 160—180 °С ("сухим жаром"), паром под давлением от 0,5 атм до 1,5 атм и температурой до 120 °С (в автоклаве) или УФ-облучением; б) механическим способом — пу тем фильтрации жидкостей через асбестовые, нитроцеллюлозные и др. виды фильтров, приготовленных из пористых материалов (см. стерилизация фильтрованием); в) химическим методом — путем обработки материала дезинфицирующими или антисептическими веществами;
    2) искусственное индуцирование стерильности (см. стерильность (1)) организма в основном путем поражения или удаления половых органов или нарушения процессов гаметогенеза (см. гаметогенез).

    Толковый биотехнологический словарь. Русско-английский. > стерилизация

  • 34 атмосфера (металлургия)

    1. atmosphere

     

    атмосфера
    1. Газ. среда, в к-рой получают или обрабатывают материал (изделие).
    2. Газ. фаза Земли, состоящая из мае. %: 78,1 N2, 21 О2, 0,9 Аг, а также долей процента СО2, Н2, Не, Ne и др. газов. Существование окислит, а. определяет разные виды коррозии металлов (газ., атм., почв., био и др.). В металлургии состав и св-ва а. играют большую роль: как правило, а. является контролируемой, м. б. окислит., восстановит. и нейтр. и состоит из О2, СО, СО2, Н2, СН4, NH3, N2, Ar. Контролируемую а. производят как внутри металлургич. агрегата, так и вне его. Окислит, а. используется в кислородно-конвертерном и электросталеплавильном способах получения стали; восстановит, а. - в агломерац., доменном и бескоксовых способах получения железа и чугуна. Нейтр. а. - при внепечной обработке жидкой стали газом и при вакуумировании. При термич. обработке сталей состав а. определяется из условий равновесия системы по реакциям, соответств. науглерож. и обезуглероживанию, азотир. и деазотир., окислению и восстановлению. Ед. атм. давления паскаль (Па), а также внесистемные: норм., или физ. атмосфера 1 ат = = 760 мм от. ст. = 101325 Па; технич. 1 ат = = 1 кгс/см2= 735,6 мм рт. ст. = 98066,5 Па. При давлении < 1 ат а. называют разреженной.
    3. Область повыш. локальной концентрации (по сравнению со средней в твердом растворе) примесных атомов в металлах и сплавах.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > атмосфера (металлургия)

  • 35 градирня (металлургия)

    1. water-cooling tower

     

    градирня
    Устр-во для охлажд. воды атм. воздухом. Соврем. г. применяются, гл. обр., в системах оборотного (циркуляц.) водоснабжения промышл., в т. ч. металлургич. предприятий для понижения темп-ры воды, отводящей тепло от теплообменных аппаратов, технологич. агрегатов, компрессоров и т.п. Охлаждение происходит в осн. за счет испарения части воды, стекающей по оросителю в виде пленок или капель под действием силы тяжести (испарение 1 % воды понижает ее темп-ру на ~ 6 °С). По типу оросителя г. подразделяют на пленочные, капельные и брызгальные; по способу подачи воздуха — на вентиляторные, башенные ( в к-рых создается тяга воздуха при помощи высокой вытяжной башни) и открытые (или атм.), использующие силу ветра и отчасти естеств. конвекцию для протока воздуха через ороситель. Произв-ть г. характериз. плотностью орошения - расходом охлажд. воды на 1 м2 площади орошения.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > градирня (металлургия)

  • 36 магниетермия

    1. magnesium reduction

     

    магниетермия
    Металлотермич. экзотермич. процесс восстановления элементов из их оксидов, галогенов и др. магнием по реакции: МХ+ Mg -> -> MgA" + М + Q. Наряду с наиб, развитой алюминотермией М. получила особенно глубокое и широкое развитие в связи с организацией промыш. произ-ва титана (по р-ции TiCl4 + 2Mg = Ti + 2MgCl2), др. легких и тугоплавких металлов. М. позволяет синтезировать мн. соединения магния с металлами и неметаллами, обладающие особыми функцион. св-вами.
    Существует много вариантов магниетермич. способа восстановления, среди к-рых выделяют две осн. группы процессов: внепечные — в тиглях при своб. доступе воздуха, в спец. реакторах в вакууме, в нейтр. атм-ре; печные — в тиглях при своб. доступе воздуха, в вакууме и в нейтр. атм-ре.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > магниетермия

  • 37 миллиметр ртутного столба

    1. mm Hg
    2. millimeter Hg

     

    миллиметр ртутного столба
    Внесистемная ед. давления, примен. при измер. атм. давления водяного пара, высокого вакуума и т. д. Обозн.: рус. — мм рт. ст., междунар. — mm Hg. 1 мм рт. ст. равен гидростатич. давлению столба ртути высотой 1 мм и плотностью 13,5951 • 103 при ускорении своб. падения g = 9,80665 м/с2. 1 мм рт. ст. = 133,332 Н/м2 = 1,35951 • 10~3 атм. = 13,5951 мм вод. ст.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > миллиметр ртутного столба

  • 38 СА

    2) History: stormtroopers
    6) Astronautics: dm
    8) Chemical weapons: chemical agent
    9) Makarov: standard atmosphere (SA) (не путать с нормальной атмосферой, атм; единица давления; стандартная атмосфера), спускаемый аппарат

    Универсальный русско-английский словарь > СА

  • 39 атмосферная глубина

    Универсальный русско-английский словарь > атмосферная глубина

  • 40 атмосферный

    2) Military: endoatmospheric
    3) Construction: weather
    4) Music: ambient
    5) Oil: air
    7) Makarov: aerial, barometric, free (о воздухе, не заключённом в объёме)

    Универсальный русско-английский словарь > атмосферный

См. также в других словарях:

  • АТМ — автомобильная типография малая авто атм атмосфера физическая физ. Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с. АТМ алкогольная технология модернизированная …   Словарь сокращений и аббревиатур

  • атм — АТМ. atmosphère f. Сокращение слова атмосфера (о атмосферном давлении). Тогда полагали, что наиболее вероятное давление у поверхности Венеры 10 атм. Природа 1997 2 127 …   Исторический словарь галлицизмов русского языка

  • атм. — атм. атмосфера атмосферный Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с …   Словарь сокращений и аббревиатур

  • АТМ Сентър Отель — (София,Болгария) Категория отеля: 2 звездочный отель Адрес: ул. Цариградско шоссе 131, 1784 С …   Каталог отелей

  • АТМ Сентър Отель — (София,Болгария) Категория отеля: 2 звездочный отель Адрес: ул. Цариградско шоссе 131, 1784 С …   Каталог отелей

  • АТМ-Турбо — ATM Turbo серия 8 разрядных бытовых компьютеров. Первая модель серии создавалась как один из многочисленных отечественных клонов ZX Spectrum, имеющий ряд своих особенностей. Из за этих особенностей, которые получили развитие в последующих моделях …   Википедия

  • Атм — …   Википедия

  • атм — атмосфера физическая …   Русский орфографический словарь

  • атм. — атмосферный …   Русский орфографический словарь

  • АТМ — Асинхронный режим передачи …   Универсальный дополнительный практический толковый словарь И. Мостицкого

  • АТМ — (анг ATM, скр од Adobe type manager) комп услужна програма за креирање на векторски фонтови за програми што работат во околина на виндоус и на макинтош …   Macedonian dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»