Перевод: со всех языков на все языки

со всех языков на все языки

women's+reading

  • 121 Champion, William

    SUBJECT AREA: Metallurgy
    [br]
    b. 1710 Bristol, England
    d. 1789 England
    [br]
    English metallurgist, the first to produce metallic zinc in England on an industrial scale.
    [br]
    William, the youngest of the three sons of Nehemiah Champion, stemmed from a West Country Quaker family long associated with the metal trades. His grandfather, also called Nehemiah, had been one of Abraham Darby's close Quaker friends when the brassworks at Baptist Mills was being established in 1702 and 1703. Nehemiah II took over the management of these works soon after Darby went to Coalbrookdale, and in 1719, as one of a group of Bristol copper smelters, he negotiated an agreement with Lord Falmouth to develop copper mines in the Redruth area in Cornwall. In 1723 he was granted a patent for a cementation brass-making process using finely granulated copper rather than the broken fragments of massive copper hitherto employed.
    In 1730 he returned to Bristol after a tour of European metallurgical centres, and he began to develop an industrial process for the manufacture of pure zinc ingots in England. Metallic zinc or spelter was then imported at great expense from the Far East, largely for the manufacture of copper alloys of golden colour used for cheap jewellery. The process William developed, after six years of experimentation, reduced zinc oxide with charcoal at temperatures well above the boiling point of zinc. The zinc vapour obtained was condensed rapidly to prevent reoxidation and finally collected under water. This process, patented in 1738, was operated in secret until 1766 when Watson described it in his Chemical Essays. After encountering much opposition from the Bristol merchants and zinc importers, William decided to establish his own integrated brassworks at Warmley, five meals east of Bristol. The Warmley plant began to produce in 1748 and expanded rapidly. By 1767, when Warmley employed about 2,000 men, women and children, more capital was needed, requiring a Royal Charter of Incorporation. A consortium of Champion's competitors opposed this and secured its refusal. After this defeat William lost the confidence of his fellow directors, who dismissed him. He was declared bankrupt in 1769 and his works were sold to the British Brass Company, which never operated Warmley at full capacity, although it produced zinc on that site until 1784.
    [br]
    Bibliography
    1723, British patent no. 454 (cementation brass-making process).
    1738, British patent no. 564 (zinc ingot production process).
    1767, British patent no. 867 (brass manufacture wing zinc blende).
    Further Reading
    J.Day, 1973, Bristol Brass: The History of the Industry, Newton Abbot: David \& Charles.
    A.Raistrick, 1970, Dynasty of Ironfounders: The Darbys and Coalbrookdale, Newton Abbot: David \& Charles.
    J.R.Harris, 1964, The Copper King, Liverpool University Press.
    ASD

    Biographical history of technology > Champion, William

  • 122 Clark, Edward

    [br]
    fl. 1850s New York State, USA
    [br]
    American co-developer of mass-production techniques at the Singer sewing machine factory.
    [br]
    Born in upstate New York, where his father was a small manufacturer, Edward Clark attended college at Williams and graduated in 1831. He became a lawyer in New York City and from then on lived either in the city or on his rural estate near Cooperstown in upstate New York. After a series of share manipulations, Clark acquired a one-third interest in Isaac M. Singer's company. They soon bought out one of Singer's earlier partners, G.B.Zeiber, and in 1851, under the name of I.M.Singer \& Co., they set up a permanent sewing machine business with headquarters in New York.
    The success of their firm initially rested on marketing. Clark introduced door-to-door sales-people and hire-purchase for their sewing machines in 1856 ($50 cash down, or $100 with a cash payment of $5 and $3 a month thereafter). He also trained women to demonstrate to potential customers the capabilities of the Singer sewing machine. At first their sewing machines continued to be made in the traditional way, with the parts fitted together by skilled workers through hand filing and shaping so that the parts would fit only onto one machine. This resembled European practice rather than the American system of manufacture that had been pioneered in the armouries in that country. In 1856 Singer brought out their first machine intended exclusively for home use, and at the same time manufacturing capacity was improved. Through increased sales, a new factory was built in 1858–9 on Mott Street, New York, but it soon became inadequate to meet demand.
    In 1863 the Singer company was incorporated as the Singer Manufacturing Co. and began to modernize its production methods with special jigs and fixtures to help ensure uniformity. More and more specialized machinery was built for making the parts. By 1880 the factory, then at Elizabethport, New Jersey, was jammed with automatic and semi-automatic machine tools. In 1882 the factory was producing sewing machines with fully interchangeable parts that did not require hand fitting in assembly. Production rose from 810 machines in 1853 to half a million in 1880. A new family model was introduced in 1881. Clark had succeeded Singer, who died in 1875, as President of the company, but he retired in 1882 after he had seen through the change to mass production.
    [br]
    Further Reading
    National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production, 1800–1932. The Development of Manufacturing Technology in the United States, Baltimore (a thorough account of Clark's role in the development of Singer's factories).
    F.B.Jewell, 1975, Veteran Sewing Machines. A Collector's Guide, Newton Abbot.
    RLH

    Biographical history of technology > Clark, Edward

  • 123 Ding Huan (Ting Huan)

    [br]
    fl. c.100 AD China
    [br]
    Chinese inventor of various devices.
    [br]
    Ding Huan invented a form of suspension rediscovered by the French Renaissance mathematician Jerome Cardan, although a reference in the "Ode to beautiful women" (c.740) indicates that the device was probably in existence earlier (see vol. IV.2, p. 233 in the reference given below). Ding Huan also invented the zoetrope lamp (c.180), which had a thin canopy bearing vanes at the top that were caused to rotate by an ascending current of warm air from the lamp. The canopy bore images which, if the canopy were rotated fast enough, gave the impression of movement, as in early forerunners of the cinematograph. In the Xi Jing Za Ji (Miscellaneous Records of the Western Capital), it is recorded that Ding Huan devised an air-conditioning fan that consisted of a set of seven fans, each 10 ft (3 m) in diameter, connected so that they could be worked together by one person. The device could cool a hall so that "people would even begin to shiver".
    [br]
    Further Reading
    J.Needham, 1972–4, Science and Civilisation in China, Cambridge: Cambridge University Press, vols IV. 1, pp. 123, 125; IV. 2, pp. 150–1, 233, 236; V. 2, p. 133.
    LRD

    Biographical history of technology > Ding Huan (Ting Huan)

  • 124 Flügge-Lotz, Irmgard

    SUBJECT AREA: Aerospace
    [br]
    b. 1903 Germany
    d. 1974 USA
    [br]
    German/American aeronautical engineer, specializing inflight control.
    [br]
    Both her father, a mathematician, and her mother encouraged Flügge-Lotz in her desire, unusual for a woman at that time, for a technical education. Her interest in aeronautics was awakened when she was a child, by seeing zeppelins (see Zeppelin, Ferdinand, Count von) being tested. In 1923 she entered the Technische Hochschule in Hannover to study engineering, specializing in aeronautics; she was often the only woman in the class. She obtained her doctorate in 1929 and began working in aeronautics. Two years later she derived the Lotz Method for calculating the distribution in aircraft wings of different shapes, which became widely used. Later, Flügge-Lotz took up an interest in automatic flight control of aircraft, notably of the discontinuous or "on-off" type. These were simple in design, inexpensive to manufacture and reliable in operation. By 1928 she had risen to the position of head of the Department of Theoretical Aerodynamics at Göttingen University, but she and her husband, Wilhelm Flügge, an engineering academic known for his anti-Nazi views, felt themselves increasingly discriminated against by the Hitler regime. In 1948 they emigrated to the USA, where Flügge was soon offered a professorship in engineering, while his wife had at first to make do with a lectureship. But her distinguished work eventually earned her appointment as the first woman full professor in the Engineering Department at Stanford University.
    She later extended her work on automatic flight control to the guidance of rockets and missiles, earning herself the description "a female Werner von Braun ".
    [br]
    Principal Honours and Distinctions
    Society of Women Engineers Achievement Award 1970. Fellow, Institution of Aeronautics and Astronautics.
    Bibliography
    Flügge-Lotz was the author of two books on automatic control and over fifty scientific papers.
    Further Reading
    A.Stanley, 1993, Mothers and Daughters of Invention, Meruchen, NJ: Scarecrow Press, pp. 899–901.
    LRD

    Biographical history of technology > Flügge-Lotz, Irmgard

  • 125 Heathcote, John

    SUBJECT AREA: Textiles
    [br]
    b. 7 August 1783 Duffield, Derbyshire, England
    d. 18 January 1861 Tiverton, Devonshire, England
    [br]
    English inventor of the bobbin-net lace machine.
    [br]
    Heathcote was the son of a small farmer who became blind, obliging the family to move to Long Whatton, near Loughborough, c.1790. He was apprenticed to W.Shepherd, a hosiery-machine maker, and became a frame-smith in the hosiery industry. He moved to Nottingham where he entered the employment of an excellent machine maker named Elliott. He later joined William Caldwell of Hathern, whose daughter he had married. The lace-making apparatus they patented jointly in 1804 had already been anticipated, so Heathcote turned to the problem of making pillow lace, a cottage industry in which women made lace by arranging pins stuck in a pillow in the correct pattern and winding around them thread contained on thin bobbins. He began by analysing the complicated hand-woven lace into simple warp and weft threads and found he could dispense with half the bobbins. The first machine he developed and patented, in 1808, made narrow lace an inch or so wide, but the following year he made much broader lace on an improved version. In his second patent, in 1809, he could make a type of net curtain, Brussels lace, without patterns. His machine made bobbin-net by the use of thin brass discs, between which the thread was wound. As they passed through the warp threads, which were arranged vertically, the warp threads were moved to each side in turn, so as to twist the bobbin threads round the warp threads. The bobbins were in two rows to save space, and jogged on carriages in grooves along a bar running the length of the machine. As the strength of this fabric depended upon bringing the bobbin threads diagonally across, in addition to the forward movement, the machine had to provide for a sideways movement of each bobbin every time the lengthwise course was completed. A high standard of accuracy in manufacture was essential for success. Called the "Old Loughborough", it was acknowledged to be the most complicated machine so far produced. In partnership with a man named Charles Lacy, who supplied the necessary capital, a factory was established at Loughborough that proved highly successful; however, their fifty-five frames were destroyed by Luddites in 1816. Heathcote was awarded damages of £10,000 by the county of Nottingham on the condition it was spent locally, but to avoid further interference he decided to transfer not only his machines but his entire workforce elsewhere and refused the money. In a disused woollen factory at Tiverton in Devonshire, powered by the waters of the river Exe, he built 300 frames of greater width and speed. By continually making inventions and improvements until he retired in 1843, his business flourished and he amassed a large fortune. He patented one machine for silk cocoon-reeling and another for plaiting or braiding. In 1825 he brought out two patents for the mechanical ornamentation or figuring of lace. He acquired a sound knowledge of French prior to opening a steam-powered lace factory in France. The factory proved to be a successful venture that lasted many years. In 1832 he patented a monstrous steam plough that is reputed to have cost him over £12,000 and was claimed to be the best in its day. One of its stated aims was "improved methods of draining land", which he hoped would develop agriculture in Ireland. A cable was used to haul the implement across the land. From 1832 to 1859, Heathcote represented Tiverton in Parliament and, among other benefactions, he built a school for his adopted town.
    [br]
    Bibliography
    1804, with William Caldwell, British patent no. 2,788 (lace-making machine). 1808. British patent no. 3,151 (machine for making narrow lace).
    1809. British patent no. 3,216 (machine for making Brussels lace). 1813, British patent no. 3,673.
    1825, British patent no. 5,103 (mechanical ornamentation of lace). 1825, British patent no. 5,144 (mechanical ornamentation of lace).
    Further Reading
    V.Felkin, 1867, History of the Machine-wrought Hosiery and Lace Manufacture, Nottingham (provides a full account of Heathcote's early life and his inventions).
    A.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London (provides more details of his later years).
    W.G.Allen, 1958 John Heathcote and His Heritage (biography).
    M.R.Lane, 1980, The Story of the Steam Plough Works, Fowlers of Leeds, London (for comments about Heathcote's steam plough).
    W.English, 1969, The Textile Industry, London, and C.Singer (ed.), 1958, A History of
    Technology, Vol. V, Oxford: Clarendon Press (both describe the lace-making machine).
    RLH

    Biographical history of technology > Heathcote, John

  • 126 McAdam, John Loudon

    [br]
    b. 21 September 1756 Ayr, Ayrshire, Scotland
    d. 26 November 1836 Moffat, Dumfriesshire, Scotland
    [br]
    Scottish road builder, inventor of the macadam road surface.
    [br]
    McAdam was the son of one of the founder of the first bank in Ayr. As an infant, he nearly died in a fire which destroyed the family's house of Laywyne, in Carsphairn parish; the family then moved to Blairquhan, near Straiton. Thence he went to the parish school in Maybole, where he is said to have made a model section of a local road. In 1770, when his father died, he was sent to America where he was brought up by an uncle who was a merchant in New York. He stayed in America until the close of the revolution, becoming an agent for the sale of prizes and managing to amass a considerable fortune. He returned to Scotland where he settled at Sauchrie in Ayrshire. There he was a magistrate, Deputy-Lieutenant of the county and a road trustee, spending thirteen years there. In 1798 he moved to Falmouth in Devon, England, on his appointment as agent for revictualling of the Royal Navy in western ports.
    He continued the series of experiments started in Ayrshire on the construction of roads. From these he concluded that a road should be built on a raised foundation with drains formed on either side, and should be composed of a number of layers of hard stone broken into angular fragments of roughly cubical shape; the bottom layer would be larger rocks, with layers of progressively smaller rocks above, all bound together with fine gravel. This would become compacted and almost impermeable to water by the action of the traffic passing over it. In 1815 he was appointed Surveyor-General of Bristol's roads and put his theories to the test.
    In 1823 a Committee of the House of Commons was appointed to consider the use of "macadamized" roads in larger towns; McAdam gave evidence to this committee, and it voted to give him £10,000 for his past work. In 1827 he was appointed Surveyor-General of Roads and moved to Hoddesdon, Hertfordshire. From there he made yearly visits to Scotland and it was while returning from one of these that he died, at Moffat in the Scottish Borders. He had married twice, both times to American women; his first wife was the mother of all seven of his children.
    McAdam's method of road construction was much cheaper than that of Thomas Telford, and did much to ease travel and communications; it was therefore adopted by the majority of Turnpike Trusts in Britain, and the macadamization process quickly spread to other countries.
    [br]
    Bibliography
    1819. A Practical Essay on the Scientific Repair and Preservation of Roads.
    1820. Present State of Road-Making.
    Further Reading
    R.Devereux, 1936, John Loudon McAdam: A Chapter from the History of Highways, London: Oxford University Press.
    IMcN

    Biographical history of technology > McAdam, John Loudon

  • 127 Smith, Oberlin

    [br]
    b. 22 March 1840 Cincinnati, Ohio, USA
    d. 18 July 1926
    [br]
    American mechanical engineer, pioneer in experiments with magnetic recording.
    [br]
    Of English descent, Smith embarked on an education in mechanical engineering, graduating from West Jersey Academy, Bridgeton, New Jersey, in 1859. In 1863 he established a machine shop in Bridgeton, New Jersey, that became the Ferracute Machine Company in 1877, eventually specializing in the manufacture of presses for metalworking. He seems to have subscribed to design principles considered modern even in the 1990s, "always giving attention to the development of artistic form in combination with simplicity, and with massive strength where required" (bibliographic reference below). He was successful in his business, and developed and patented a large number of mechanical constructions.
    Inspired by the advent of the phonograph of Edison, in 1878 Smith obtained the tin-foil mechanical phonograph, analysed its shortcomings and performed some experiments in magnetic recording. He filed a caveat in the US Patent Office in order to be protected while he "reduced the invention to practice". However, he did not follow this trail. When there was renewed interest in practical sound recording and reproduction in 1888 (the constructions of Berliner and Bell \& Tainter), Smith published an account of his experiments in the journal Electrical World. In a corrective letter three weeks later it is clear that he was aware of the physical requirements for the interaction between magnetic coil and magnetic medium, but his publications also indicate that he did not as such obtain reproduction of recorded sound.
    Smith did not try to develop magnetic recording, but he felt it imperative that he be given credit for conceiving the idea of it. When accounts of Valdemar Poulsen's work were published in 1900, Smith attempted to prove some rights in the invention in the US Patent Office, but to no avail.
    He was a highly respected member of both his community and engineering societies, and in later life became interested in the anti-slavery cause that had also been close to the heart of his parents, as well as in the YMCA movement and in women's suffrage.
    [br]
    Bibliography
    Apart from numerous technical papers, he wrote the book Press Working of Metals, 1896. His accounts on the magnetic recording experiments were "Some possible forms of phonograph", Electrical World (8 September 1888): 161 ff, and "Letter to the Editor", Electrical World (29 September 1888): 179.
    Further Reading
    F.K.Engel, 1990, Documents on the Invention of Magnetic Recording in 1878, New York: Audio Engineering Society, Reprint no. 2,914 (G2) (a good overview of the material collected by the Oberlin Smith Society, Bridgeton, New Jersey, in particular as regards the recording experiments; it is here that it is doubted that Valdemar Poulsen developed his ideas independently).
    GB-N

    Biographical history of technology > Smith, Oberlin

  • 128 Snodgrass, Neil

    SUBJECT AREA: Textiles
    [br]
    fl. late 1790s Scotland
    [br]
    Scottish inventor of the scutcher for opening and cleaning raw cotton.
    [br]
    Raw cotton arrived in Britain in tightly packed bales. Before spinning, the fibres had to be opened out, and dirt, seeds and bits of plant had to be removed. This was an unpleasant and fatiguing job usually carried out by women and children. By 1800 it could be done by two machines. The first stage in opening was the "willow" and then the cotton was passed through the "scutcher" to open it further and give it a more effective cleaning. These machines reduced the labour of the operation to about one-twentieth of what it had been. The scutching machine was constructed by Snodgrass and first used at Houston's mill in Johnstone, near Paisley, in 1797. It was derived from the threshing machine invented by Andrew Meikle of Phantassie in 1786. In the scutcher, revolving bars beat the cotton to separate the fibres from the trash. As the dirt fell out, the cotton was blown forward by a fan and was rolled up into a lap at the end of the machine. Scutchers were not introduced to Manchester until 1808 or 1809 and further improvements were soon made to them.
    [br]
    Further Reading
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (covers the development of the scutcher).
    W.English, 1970, The Textile Industry, London (provides a brief account).
    RLH

    Biographical history of technology > Snodgrass, Neil

См. также в других словарях:

  • women's reading — женское чтение …   Термины гендерных исследований

  • Reading Lolita in Tehran — Reading Lolita in Tehran: A Memoir in Books is a book by Iranian author and professor, Azar Nafisi.Published in 2003, it has been on the New York Times bestseller list for over one hundred weeks and has been translated into thirty two languages.… …   Wikipedia

  • Women of the Wall — (WOW) is an organization in Israel, with members and supporters around the world, who have organized a series of Women s prayer groups at the Kotel (Western Wall) each month on Rosh Hodesh. The groups have included women reading from the Torah… …   Wikipedia

  • Reading the Romance — is a book by Janice Radway that analyzes the Romance novel genre using reader response criticism. It was first published in 1984 and had a reprint in 1991. The 1984 edition of the book is comprised of an introduction, six chapters, and a… …   Wikipedia

  • Women's writing in English — Women s writing as a discrete area of literary studies is based on the notion that the experience of women, historically, has been shaped by their gender, and so women writers by definition are a group worthy of separate study. Their texts emerge …   Wikipedia

  • READING, FANNY — (1884–1974), Australian communal leader. Born Fanny Rabinowich near Minsk, she migrated with her family to Victoria, Australia, in 1889. Active from her youth in Melbourne Jewish communal affairs, she was originally a music teacher but in 1916–22 …   Encyclopedia of Judaism

  • Women in Ancient Rome — Women in ancient Roman society were given considerable honor, possibly as a result of treaties between the Romans and the Sabines from earlier Roman history,Fact|date=May 2008 and as a result of the emphasis on child bearing in a society with… …   Wikipedia

  • READING — READING, family of British statesmen and lawyers. RUFUS DANIEL ISAACS (1860–1935), first marquess of Reading, British statesman, advocate and lord chief justice. Born in London into a family of fruit merchants, and a relative of the famous boxer… …   Encyclopedia of Judaism

  • Reading F.C. — Reading Football Club Reading FC Club fondé en …   Wikipédia en Français

  • Reading FC — Reading Football Club Reading FC Club fondé en …   Wikipédia en Français

  • Women in science — Women have contributed to science from its earliest days, but as contributors they have generally not been acknowledged. Historians with an interest in gender and science have illuminated the contributions women have made, the barriers they have… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»