Перевод: с русского на все языки

со всех языков на русский

specific+power

  • 101 полупроводниковый преобразователь электроэнергии

    1. convertisseur à semiconducteurs

     

    полупроводниковый преобразователь электроэнергии
    полупроводниковый преобразователь
    Устройство, основанное на применении полупроводниковых приборов, обеспечивающее изменение одного или нескольких параметров электрической энергии.
    Примечание.
    1. В зависимости от видов использованных полупроводниковых приборов вместо слова "полупроводниковый" допускается применять "диодный", "транзисторный", "тиристорный", например "Диодный преобразователь электроэнергии".
    2. К параметрам электроэнергии относятся частота (включая нулевое значение), напряжение, число фаз.
    3. В зависимости от назначения и схемного решения в состав полупроводникового преобразователя, кроме одного или нескольких полупроводниковых приборов, могут входить трансформаторы, фильтры, вспомогательные и другие устройства
    [ ГОСТ 23414-84]

    EN

    semiconductor converter
    an electronic power converter with semiconductor valve devices
    NOTE – Similar terms are used for converters in general or for specific kinds of converters and for converters with other or specific electronic valve devices, e.g. thyristor converter, transistor inverter.
    0520
    [IEV number 551-12-42]

    FR

    convertisseur à semiconducteurs
    convertisseur électronique de puissance comportant des valves électroniques à semiconducteurs
    NOTE – On utilise des termes similaires pour les convertisseurs en général ou pour des types particuliers de convertisseurs et pour des convertisseurs comportant des valves électroniques particulières ou spéciales, par exemple: convertisseur à thyristors, onduleur à transistors.
    0521
    [IEV number 551-12-42]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > полупроводниковый преобразователь электроэнергии

  • 102 удельная аккумулирующая способность защитного полимерного покрытия

    1. une capacité d’accumulation spécifique de la couverture polymère

     

    удельная аккумулирующая способность защитного полимерного покрытия
    удельная аккумулирующая способность

    Количество радиоактивного вещества, аккумулированного единицей поверхности защитного полимерного покрытия для улучшения радиационной обстановки.
    [ ГОСТ 19465-74]

    Тематики

    • покрытия для улучшения радиац. обстан.

    Синонимы

    EN

    DE

    FR

    • une capacité d’accumulation spécifique de la couverture polymère

    9. Удельная аккумулирующая способность защитного полимерного покрытия

    Удельная аккумулирующая способность

    D. Spezifische Speicherfähigkeit des Polymeranstriches

    E. Specific accumulating power of protective covering

    F. Une capacité d’accumulation spécifique de la couverture polymère

    Количество радиоактивного вещества, аккумулированного единицей поверхности защитного полимерного покрытия для улучшения радиационной обстановки

    Источник: ГОСТ 19465-74: Покрытия полимерные защитные для улучшения радиационной обстановки. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > удельная аккумулирующая способность защитного полимерного покрытия

  • 103 удельный порог чувствительности ФЭПП

    1. puissance réduite équivalente au bruit

     

    удельный порог чувствительности ФЭПП
    удельный порог

    Порог чувствительности ФЭПП, приведенный к единичной полосе частот и единичному по площади фоточувствительному элементу.
    Обозначение
    ФП*
    NEP*
    [ ГОСТ 21934-83

    Тематики

    • приемники излуч. полупроводн. и фотоприемн. устр.

    Синонимы

    EN

    DE

    FR

    80. Удельный порог чувствительности ФЭПП

    Удельный порог

    D. Spezifischc äquivalente Rauschleistung

    E. Specific noise equivalent power

    F. Puissance réduite équivalente au bruit

    Фп*

    Порог чувствительности ФЭПП, приведенный к единичной полосе частот и единичному по площади фоточувствительному элементу

    Источник: ГОСТ 21934-83: Приемники излучения полупроводниковые фотоэлектрические и фотоприемные устройства. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > удельный порог чувствительности ФЭПП

  • 104 длительный допустимый ток

    1. Strombelastbarkeit, f
    2. Dauerstrombelastbarkeit, f

     

    (длительный) допустимый ток
    Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
    [ ГОСТ Р МЭК 60050-826-2009]

    Этот ток обозначают IZ
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    EN

    (continuous) current-carrying capacity
    ampacity (US)
    maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
    [IEV number 826-11-13]

    ampacity
    The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
    [National Electrical Cod]

    FR

    courant (permanent) admissible, m
    valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
    [IEV number 826-11-13]

    Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

    • its insulation temperature rating;
    • conductor electrical properties for current;
    • frequency, in the case of alternating currents;
    • ability to dissipate heat, which depends on cable geometry and its surroundings;
    • ambient temperature.

    Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

    The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

    In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.

    Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.

    The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.

    For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

    Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

    When designing an electrical system, one will normally need to know the current rating for the following:

    Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

    [http://en.wikipedia.org/wiki/Ampacity]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    • Dauerstrombelastbarkeit, f
    • Strombelastbarkeit, f

    FR

    • courant admissible, m
    • courant permanent admissible, m

    Русско-немецкий словарь нормативно-технической терминологии > длительный допустимый ток

  • 105 длительный допустимый ток

    1. current-carrying capacity
    2. continuous current-carrying capacity
    3. continuous current
    4. ampacity (US)

     

    (длительный) допустимый ток
    Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
    [ ГОСТ Р МЭК 60050-826-2009]

    Этот ток обозначают IZ
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    EN

    (continuous) current-carrying capacity
    ampacity (US)
    maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
    [IEV number 826-11-13]

    ampacity
    The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
    [National Electrical Cod]

    FR

    courant (permanent) admissible, m
    valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
    [IEV number 826-11-13]

    Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

    • its insulation temperature rating;
    • conductor electrical properties for current;
    • frequency, in the case of alternating currents;
    • ability to dissipate heat, which depends on cable geometry and its surroundings;
    • ambient temperature.

    Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

    The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

    In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.

    Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.

    The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.

    For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

    Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

    When designing an electrical system, one will normally need to know the current rating for the following:

    Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

    [http://en.wikipedia.org/wiki/Ampacity]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    • Dauerstrombelastbarkeit, f
    • Strombelastbarkeit, f

    FR

    • courant admissible, m
    • courant permanent admissible, m

    Русско-английский словарь нормативно-технической терминологии > длительный допустимый ток

  • 106 длительный допустимый ток

    1. courant permanent admissible, m
    2. courant admissible, m

     

    (длительный) допустимый ток
    Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
    [ ГОСТ Р МЭК 60050-826-2009]

    Этот ток обозначают IZ
    [ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]

    EN

    (continuous) current-carrying capacity
    ampacity (US)
    maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
    [IEV number 826-11-13]

    ampacity
    The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
    [National Electrical Cod]

    FR

    courant (permanent) admissible, m
    valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
    [IEV number 826-11-13]

    Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:

    • its insulation temperature rating;
    • conductor electrical properties for current;
    • frequency, in the case of alternating currents;
    • ability to dissipate heat, which depends on cable geometry and its surroundings;
    • ambient temperature.

    Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.

    The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.

    In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.

    Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.

    The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.

    For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.

    Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.

    When designing an electrical system, one will normally need to know the current rating for the following:

    Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.

    [http://en.wikipedia.org/wiki/Ampacity]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

    DE

    • Dauerstrombelastbarkeit, f
    • Strombelastbarkeit, f

    FR

    • courant admissible, m
    • courant permanent admissible, m

    Русско-французский словарь нормативно-технической терминологии > длительный допустимый ток

  • 107 удельная плотность

    1) Telecommunications: relative density
    3) Astronautics: power density
    4) Drilling: SG (specific gravity)

    Универсальный русско-английский словарь > удельная плотность

  • 108 удельный расход условного топлива

    Универсальный русско-английский словарь > удельный расход условного топлива

  • 109 коэффициент


    coefficient (coeff.), factor
    безразмерное число, в основном отношение к-п. величин, характеризующих заданные условия. — а number indicating the amount of some change under certain specified сoпditions, often expressed as a ratio.
    - безопасностиfactor of safety
    число, равное отношению расчетной нагрузки к эксплуатационной. расчетная нагрузка - произведение эксплуатационной нагрузки на коэффициент безопасности. — а number indicating the ratio between the ultimate load and limit load (maximum load expected in service). ultimate load is limit load multiplied by factor of safety.
    - восстановления давленияpressure recovery factor
    - двухконтурности (дтрд)bypass ratio
    - загрузки пассажирами, безубыточный — passenger break-even load factor
    - запаса длины вппfield length factor
    - запаса длины летной полосыfield length factor
    - запаса длины летной полосы в направлении взлетаtakeoff field length factor
    - запаса длины летной полосы в направлении посадкиlanding field length factor
    - запаса длины летной полосы при всех работающих двигателейfield length factor for all-engines-operating сase
    - запаса длины летной полосы при одном отказавшем двигателеfield length factor for one-engine-inoperative ease
    - запаса прочностиreserve factor
    отношение фактической прочности конструкции к минимально-потребной в данных условиях. — а ratio of the actual strength of the structure to the minimum required to specific condition.
    - заполнения (в вычислительном уст-ве) — duty factor in computer, the ratio of active time to total time.
    - заполнения (воздушного) винтаpropeller solidity ratio
    отношение суммарной площади всех лопастей винта к сметаемой ими площади. — the ratio of the total projected blade area to the area of the projected outline of the propeller disc.
    - заполнения несущего винта (вертолета) — rotor solidity ratio solidity of rotor is a ratio of the total blade area to the disc area.
    - лобового сопротивления (сх)drag coefficient (cd)
    коэффициент, характеризующий лобовое сопротивление рассматриваемого аэродинамического профиля. — а coefficient representing the drag on а given airfoil.
    - маневренной перегрузкиmaneuvering load factor
    - момента кренаrolling-moment coefficient
    - момента рысканияyawing-moment coefficient
    - момента тангажаpitching-moment coefficient
    - мощностиpower factor
    - мощности (воздушного винта)activity factor
    - мощности лопасти (возд. винта) — blade activity factor
    безразмерная функция поверхности лопасти, характеризующая способность лопасти использовать прикладываемую мощность. — а non-dimensional function of the blade surface used to express capacity of a blade for absorbing power.
    - несущей поверхности (покрытия аэродрома), калифорнийский — californian bearing ratio (с.в.r.)
    -, относительный (воздушного винта) — figure of merit
    - перегрузки (n)load factor (n)
    число, показывающее, во сколько раз нагрузки, действующие на самолет (или его отдельные части), превышает нагрузки в равномерном горизонтальном полете или нагрузки от веса при стоянке. — the ratio to the weight of an aircraft of а specified exterпаl load. such load may arise from aerodynamic forces, gravity, ground or water reaction, or from combinations of these forces.
    - перегрузки, максимальный эксплуатационный — limit load factor
    - перегрузки, (полетный) — flight load factor
    отношение составляющей аэродинамической нагрузки (действующей перпендикулярно продольной оси ла) к весу ла. — the ratio of the aerodynamic force component (acting normal to the assumed longitudiпа1 axis of the airplane) to the weight of the airplane.
    - перегрузки (полетной), отрицательный — negative load factor
    - перегрузки (полетной), положительный — positive load factor
    в данном случае аэродинамичеекая сила воздействует на ла снизу вверх. — in positive load factor the aerodynamic force acts upward with respect to the airplane.
    - перегрузки при маневреmaneuvering load factor
    - перегрузки при маневре, максимальный эксплуатационный — limit maneuvering load factor
    - перегрузки, расчетный — ultimate load factor
    - передачи (коэффициент передаточного числа в системе управления ла)gain
    - подъемной силы (су) безразмерная величина, определяемая по формуле. — lift coefficient (cl) а coefficient representing the lift of а given airfoil or other body. the lift coefficient is obtained ьу dividing the lift by the free-stream dynamic pressure and by the representative area under consideration.
    - полезного действия (кпд)efficiency (n)

    the ratio of the useful output of the quantity to its total input.
    - полезного действия, общий — overall efficiency
    - полезного действия,тепловой — thermal efficiency
    -, поправочный — correction factor
    например, для учета влияния погодных (сезонных) условий (температура наружного воздуха, атмосферные осадки, обледенение) на характеристики тормозного участка впп в пределах установленных эксплуатационных ограничений. — the correction factors must account for the particular surface characteristics of the stopway and the variations in these characteristics with seasonal weather conditions (such as temperature, rain, snow, and ice) within the established operational limits.
    - предельной перегрузкиultimate load factor
    - преобразования (в преобразователе) — conversion efficiency ratio of dc output power to ас input power.
    - профильного сопротивленияprofile drag coefficient
    - прочности грунта, калифорнийский — californian bearing ratio (c.b.r.)
    (к. несущей способности покрытия аэродрома, впп) — c.b.r. is used to measure subsoil strength of the runways and airfields.
    - связи (эл.) — coupling coefficient
    - сжимаемостиcoefficient of compressibility
    относительное уменьшение объема газа при повышении давления в изотермическом процессе. — the relative decrease of the volume of а gaseous system with increasing pressure in an isothermal process.
    - совершенства (воздушного винта)figure of merit
    - сопротивления (лобовой, сx) — drag coefficient (cd)
    - сопротивления (сx) груза на внешней подвеске (вертолета) — drag coefficient (cd) representing а drag caused by an externally-slung load
    - стоячей волныstanding wave ratio (swr)
    - схождения картыchart convergence factor (ccf)
    - сцепления (между шиной колеса и поверхностью впп)coefficient of friction
    -, сцепления (между шиной и впп при торможении) — braking coefficient of friction
    - трансформации (в трансформаторе) — transformation ratio compensation windings are used to correct for variations in the resolvers transformation ratio.
    - тренияcoefficient of friction
    - трения торможенияbraking coefficient of friction
    коэффициент трения между шиной и поверхностью взлетно-посадочной полосы при торможении самолета. — braking coefficient of friction between the aircraft wheel tires and runway (surface).
    - трения торможения, осредненный приведенный — (mean) corrected braking coefficient of friction
    - тяги (воздушного винта)thrust coefficient (ст)
    - усиления (эл.) — amplification factor

    the ratio of output magnitude to input magnitude.
    - усиления антенныantenna gain
    - усиления (передаточное число в системе управления)gain
    - усиления, самонастраивающийся (системы управления) — adaptive gain
    - утечкиleakage factor
    - шарнирного моментаhinge moment factor
    - шарнирного момента от порыва ветра на земле, предельный — limit hinge moment factor (к) for ground gusts
    в отношении элеронов и рулей высоты, коэффициент имеет положительный знак, если момент, воздействующий на поверхность управления, вызывает ее опускание. — for ailerons and elevators, а positive value of к indicates а moment tending to depress the surface, and а negative value of к - to raise the surface.
    - шумаnoise factor
    для данной полосы частот, отношение суммарной величины помех на выходе к величине помехи на входе. — for а given bandwidth, the ratio оf total noise at the output, to the noise at the input.
    - эксплуатационной маневренной перегрузки (максимальный), или эксплуатационной перегрузки при маневрировании (отрицательный или попожительный) — (negative, positive) limit maneuvering load factor rotorcraft must be designed for positive limit maneuvering load factor of 3.5 and negafive limit maneuvering load factor of 1.0.

    Русско-английский сборник авиационно-технических терминов > коэффициент

  • 110 тяга


    thrust
    (пропульсивное усилие, создаваемое реактивным двигателем или возд. винтом) — pushing or pulling force developed by aircraft engine or propeller
    - (проводки управления) — rod, link
    - (соединительный элемент)link
    -, асимметричная — asymmetric thrust
    для путевого управления (при пробеге) используются тормоза и асимметричная тяга двигателей. — the brakes and asymmetric thrust are used, if required, for directional control.
    - без впрыска водыdry thrust
    - без потерь (чистая)net thrust
    тяга гтд без учета потерь на сопротивление, создаваемое набегающим потоком, — the gross thrust of а jet engine minus the drag due to the momentum of the incoming air.
    -, бесфорсажная — non-afterburning thrust, dry thrust
    -, бесфорсажная, максимальная — dry (thrust) rating
    -, взлетная (дв.) — takeoff /liftoff/ thrust
    тяга, развиваемая двигателем на взлетном режиме его работы. — а thrust developed by an engine at takeoff power (setting).
    -, взлетная...кг — take-off thrust rated at...rq
    - винтового типа, раздвижная (напр., рулевой агрегат элерона) — screwjack link
    - винтового типа, электромеханическая, раздвижная (механизм рау) — electically-driven screwjack link
    - воздушного винтаpropeller thrust
    -, гарантированная (дв.) — guaranteed thrust
    - двигателяengine thrust
    - двигателя в условиях пониженной температуры — engine thrust on cold day /at low ambient temperature/
    - замка выпущенного положения (шасси)down-lock actuating rod
    -, избыточная (дв.) — excess thrust
    разность между располагаемой и потребной тягами для данного режима полета. — а difference between the thrust available and required for the given flight condition.
    -, клапанная (пд) — valve push rod
    -, компенсирующая — compensating rod
    - крестовины (хвостового винта)spider link
    - малого газа, обратная — reverse idle thrust
    - малого газа, прямая — forward idle thrust

    set the reverse levers to fwd idle position.
    - на большом газе — full throttle thrust /power/
    - на взлетном режиме — takeoff /liftoff/ thrust
    - на всех режимахthrust at any operating condition
    - на максимальном продолжительном режиме (дв.) — maximum continuous thrust
    остальные двигатели работают на мпр. — the remaining engines at the available maximum continuous power or thrust.
    - на стороне исправного шасси (при посадке на одну основную опору)reverse thrust on the good (landing) gear side
    - на установившемя режиме (дв.) — steady thrust
    -, нежелательная реверсивная — unwanted reverse thrust
    одиночный отказ или неисправность системы реверса тяги не должен создавать нежелательной реверсивной тяги на всех режимах, — no single failure or malfunction of the reversing system shall result in an unwanted reverse thrust under any operating conditions.
    -, номинальная (дв.) — rated thrust, normal standard rating thrust
    - (или мощность), номинальная (дв.) — rating rating is а designated limit of operating characteristics based on definite conditions.
    -, обратная, на малом газе — reverse idle thrust
    - несущего винта (создающая подъемную силу или учитываемая при копровых испытаниях) — rotor lift а rotor lift may be assumed to act through the center of gravity.
    - несущего винта при управлении общим и циклическим шагомrotor thrust
    - несущего винта (создающая вертикальное, поступательнoe движение вертолета, или его движение вправо, влево или назад) — (vertical, forward, right, left or aft) rotor thrust
    -, обратная — reverse /backward/ thrust
    тяга в направлении обратном направлению движения самолета. — thrust applied to а moving aircraft in а direction to орpose the aircraft motion.
    -, общая обратная (реверсивная) — otal reverse thrust
    общ. обратная тяга может составлять (50 %) от прямой тяги при одинаковой степени повышения давления двигателя. — the total reverse thrust is аррох. (50) percent of the forward thrust at the same epr.
    -, отрицательная (возд. винта при шаге около оо) — (propeller) drag
    -, отрицательная (реверсивная) — reverse thrust
    - подвески двигателя — engine mount/ support, suspension/ arm
    - полная прямаяfull forward thrust
    -, полная реверсивная — full reverse thrust
    использование полной реверсивной тяги допускается в течение...сек. — the reverser need only be operated at full reverse thrust for...
    -, пониженная (ниже расчетного номинала) — derated thrust
    -, потребная (дв.) — thrust required
    тяга, необходимая для выдерживания данного режима полета. — а thrust needed to maintain the set light condition.
    -, приведенная тяга двигателя, приведенная к стандартным атмосферным условиям (или мса) — thrust based upon standard atmosphere conditions, thrust in isa conditions
    -, пружинная — spring-loaded link/rod
    -, пружинная, загрузочная — feel spring link
    -, прямая (создающая поступательное движение) — forward thrust
    -, прямая (на режиме малого газа) — forward (idle) thrust
    -, прямая, на малом газе — forward idle thrust reverser levers at fwd idle.
    -, развязывающая, пружинная — spring-loaded override link
    для обеспечения возможности управления исправными секциями руля (элерона) при заклинивании одной из секций.
    -, располагаемая (дв.) — thrust available
    наибольшая тяга, развиваемая двигателем на данных высоте и скорости полета при работе на номинальном режиме (иногда на взлетном ипи форсированном). — the maximum thrust developed by the engine at the given altitude and speed with the engine operating at maximum continuous (or takeoff, augmented) power.
    -, распорная (шасси) (рис. 27) — lock strut
    -, расчетная — design /rated/ thrust
    - (или мощность), расчетная (дв.) — rating
    -, реактивная — jet thrust
    тяга, создаваемая турбореактивным двигателем. — the thrust of а jet engine.
    - реверса, эффективная — effective reverse thrust
    эффективная реверсивная тяга должна обеспечивать сокращение дистанции торможения не менее чем на 10%. — reverse thrust is regarded as effective if its use results in а reduction in groundborne stopping distance of at least 10%.
    -, реверсивная (воздушного винта) — propeller reverse thrust
    -, реверсивная (двигателя) — engine reverse thrust
    -, реверсивная, создаваемая реверсированием потока воздуха за (передним) вентилятором — reverse thrust (obtained) from front fan cold steam airflow
    -, регулируемая (дв.) — variable thrust
    -, режимная — operating thrust
    -, режимная (полетная) — flight thrust
    -, регулируемая (проводка управления) — djustable control rod
    - с вспрыскам водыwet thrust
    - с вспрыскам воды при взлете — wet takeoff thrust turn off water injection pumps after 2 minutes of wet takeaff thrust.
    - сервопривода (звено сервосистемы)servo link
    -, силовая — drive rod
    - синхронизации закрылковflap interconnection rod
    -, соединительная — link
    -, статическая (дв.) — static thrust
    тяга, развиваемая двигателем на земле (на месте). — а thrust developed by eпgine on the ground (at rest).
    - статическая, взлетная (на уровне моря, в условиях стандартной атмосферы) — static takeoff thrust (at sea level, standard conditions)
    - створки реверсивного устройства, силовая — thrust reverser bucket drive /linkage, actuator/ rod
    - створки шасси — landing gear door drive /linkage, actuator/ rod
    - страгивания (ла)break-away thrust
    -, суммарная (двигателей) — total/ powerplant/ thrust
    - толкателя клапана (дв.) — valve tappet push rod
    -, тормозная (компенсирующая) — brake compensating rod
    -, удельная (дв.) — specific thrust
    тяга, развиваемая двигателем и отнесенная к секундному весовому расходу воздуха в нем.
    - управленияcontrol rod
    - управления общим шагом (несущего винта)(rotor) collective pitch control rod
    - управления, раздвижная, — screwjack link
    - управления створкой шасси — landing gear door linkage/ drive, actuator/ rod
    - управления циклическим шагом (несущего винта)(rotor) cyclic pitch control rod
    - управления шагом (хвостового или несущего винта)(rotor) pitch control rod
    -, фактическая (полученная) — actual /observed/ thrust
    -, форсажная — reheat/ afterburning/ thrust
    -, форсированная (усиленная) — augmented thrust
    -, чистая — net thrust
    тяга без потерь на преодоление сопротивления, создаваемого набегающим потоком. — the gross thrust of a jet спgine minus the drag due to the momentum of the incoming air.
    -, эффективная — effective thrust
    запас т. — thrust reserve
    избыток т. — margin of engine thrust
    избыток т. над сопротивлением — thrust/drag margin
    килограмм на килограмм т. в час (кг/кг тяги/час) — kg/kg thrust/hr
    падение т. — thrust dacay
    форсирование т. — thrust augmentation
    центр т. — thrust axis
    восстанавливать т. — regain thrust
    работать на прямой (обратной) т. (дв.) — operate at forward (reverse) thrust
    развивать (создавать) т. — develop thrust
    реверсировать т. — reverse thrust
    форсировать т. — augment thrust

    Русско-английский сборник авиационно-технических терминов > тяга

  • 111 электрическая нагрузка

    1. Leistungsabgabe (2)
    2. Last (1)

    1. Любой потребитель электроэнергии

     

    электрическая нагрузка
    Любой приемник (потребитель) электрической энергии в электрической цепи 1)
    [БЭС]

    нагрузка
    Устройство, потребляющее мощность
    [СТ МЭК 50(151)-78]

    EN

    load (1), noun
    device intended to absorb power supplied by another device or an electric power system
    [IEV number 151-15-15]

    FR

    charge (1), f
    dispositif destiné à absorber de la puissance fournie par un autre dispositif ou un réseau d'énergie électrique
    [IEV number 151-15-15]

    1)   Иными словами (электрическая)  нагрузка, это любое устройство или группа устройств, потребляющих электрическую энергию (электродвигатель, электролампа, электронагреватель и т. д.)
    [Интент]

    Термимн нагрузка удобно использовать как обощающее слово.
    В приведенном ниже примере термин нагрузка удачно используется для перевода выражения any other appliance:

    Make sure that the power supply and its frequency are adapted to the required electric current of operation, taking into account specific conditions of the location and the current required for any other appliance connected with the same circuit.

    Ток, напряжение и частота источника питания должны соответствовать параметрам агрегата с учетом длины и способа прокладки питающей линии, а также с учетом другой нагрузки, подключенной к этой же питающей линии.
    [Перевод Интент]


    ... подключенная к трансформатору нагрузка
    [ ГОСТ 12.2.007.4-75*]

    Поскольку приемник электрической энергии это любой аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии [ПУЭ], то термин нагрузка может характеризовать электроприемник с точки зрения тока, сопротивления или мощности.
    2. Потребитель энергоэнергии, с точки зрения потребляемой мощности

     

    нагрузка
    Мощность, потребляемая устройством
    [СТ МЭК 50(151)-78]

    EN

    load (2), noun
    power absorbed by a load
    [IEV number 151-15-16]

    FR

    charge (2), f
    puissance absorbée par une charge
    Source: 151-15-15
    [IEV number 151-15-16]


    При
    проектировании электроснабжения энергоемких предприятий следует предусматривать по согласованию с заказчиком и с энергоснабжающей организацией регулирование электрической нагрузки путем отключения или частичной разгрузки крупных электроприемников, допускающих без значительного экономического ущерба для технологического режима перерывы или ограничения в подаче электроэнергии.
    [СН 174-75 Инструкция по проектированию электроснабжения промышленных предприятий]

    В настоящее время характер коммунально-бытовой нагрузки кардинально изменился в результате широкого распространения новых типов электроприемников (микроволновых печей, кондиционеров, морозильников, люминесцентных светильников, стиральных и посудомоечных машин, персональных компьютеров и др.), потребляющих из питающей сети наряду с активной мощностью (АМ) также и значительную реактивную мощность (РМ).

    Недопустимые, нерекомендуемые

      Тематики

      Классификация

      >>>

      Близкие понятия

      Действия

      Синонимы

      Сопутствующие термины

      EN

      DE

      FR

      Русско-немецкий словарь нормативно-технической терминологии > электрическая нагрузка

    • 112 электрическая нагрузка

      1. load
      2. electrical load
      3. electrical demand
      4. electric load
      5. electric energy demand
      6. electric demand

      1. Любой потребитель электроэнергии

       

      электрическая нагрузка
      Любой приемник (потребитель) электрической энергии в электрической цепи 1)
      [БЭС]

      нагрузка
      Устройство, потребляющее мощность
      [СТ МЭК 50(151)-78]

      EN

      load (1), noun
      device intended to absorb power supplied by another device or an electric power system
      [IEV number 151-15-15]

      FR

      charge (1), f
      dispositif destiné à absorber de la puissance fournie par un autre dispositif ou un réseau d'énergie électrique
      [IEV number 151-15-15]

      1)   Иными словами (электрическая)  нагрузка, это любое устройство или группа устройств, потребляющих электрическую энергию (электродвигатель, электролампа, электронагреватель и т. д.)
      [Интент]

      Термимн нагрузка удобно использовать как обощающее слово.
      В приведенном ниже примере термин нагрузка удачно используется для перевода выражения any other appliance:

      Make sure that the power supply and its frequency are adapted to the required electric current of operation, taking into account specific conditions of the location and the current required for any other appliance connected with the same circuit.

      Ток, напряжение и частота источника питания должны соответствовать параметрам агрегата с учетом длины и способа прокладки питающей линии, а также с учетом другой нагрузки, подключенной к этой же питающей линии.
      [Перевод Интент]


      ... подключенная к трансформатору нагрузка
      [ ГОСТ 12.2.007.4-75*]

      Поскольку приемник электрической энергии это любой аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии [ПУЭ], то термин нагрузка может характеризовать электроприемник с точки зрения тока, сопротивления или мощности.
      2. Потребитель энергоэнергии, с точки зрения потребляемой мощности

       

      нагрузка
      Мощность, потребляемая устройством
      [СТ МЭК 50(151)-78]

      EN

      load (2), noun
      power absorbed by a load
      [IEV number 151-15-16]

      FR

      charge (2), f
      puissance absorbée par une charge
      Source: 151-15-15
      [IEV number 151-15-16]


      При
      проектировании электроснабжения энергоемких предприятий следует предусматривать по согласованию с заказчиком и с энергоснабжающей организацией регулирование электрической нагрузки путем отключения или частичной разгрузки крупных электроприемников, допускающих без значительного экономического ущерба для технологического режима перерывы или ограничения в подаче электроэнергии.
      [СН 174-75 Инструкция по проектированию электроснабжения промышленных предприятий]

      В настоящее время характер коммунально-бытовой нагрузки кардинально изменился в результате широкого распространения новых типов электроприемников (микроволновых печей, кондиционеров, морозильников, люминесцентных светильников, стиральных и посудомоечных машин, персональных компьютеров и др.), потребляющих из питающей сети наряду с активной мощностью (АМ) также и значительную реактивную мощность (РМ).

      Недопустимые, нерекомендуемые

        Тематики

        Классификация

        >>>

        Близкие понятия

        Действия

        Синонимы

        Сопутствующие термины

        EN

        DE

        FR

        Русско-английский словарь нормативно-технической терминологии > электрическая нагрузка

      • 113 электрическая нагрузка

        1. charge

        1. Любой потребитель электроэнергии

         

        электрическая нагрузка
        Любой приемник (потребитель) электрической энергии в электрической цепи 1)
        [БЭС]

        нагрузка
        Устройство, потребляющее мощность
        [СТ МЭК 50(151)-78]

        EN

        load (1), noun
        device intended to absorb power supplied by another device or an electric power system
        [IEV number 151-15-15]

        FR

        charge (1), f
        dispositif destiné à absorber de la puissance fournie par un autre dispositif ou un réseau d'énergie électrique
        [IEV number 151-15-15]

        1)   Иными словами (электрическая)  нагрузка, это любое устройство или группа устройств, потребляющих электрическую энергию (электродвигатель, электролампа, электронагреватель и т. д.)
        [Интент]

        Термимн нагрузка удобно использовать как обощающее слово.
        В приведенном ниже примере термин нагрузка удачно используется для перевода выражения any other appliance:

        Make sure that the power supply and its frequency are adapted to the required electric current of operation, taking into account specific conditions of the location and the current required for any other appliance connected with the same circuit.

        Ток, напряжение и частота источника питания должны соответствовать параметрам агрегата с учетом длины и способа прокладки питающей линии, а также с учетом другой нагрузки, подключенной к этой же питающей линии.
        [Перевод Интент]


        ... подключенная к трансформатору нагрузка
        [ ГОСТ 12.2.007.4-75*]

        Поскольку приемник электрической энергии это любой аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии [ПУЭ], то термин нагрузка может характеризовать электроприемник с точки зрения тока, сопротивления или мощности.
        2. Потребитель энергоэнергии, с точки зрения потребляемой мощности

         

        нагрузка
        Мощность, потребляемая устройством
        [СТ МЭК 50(151)-78]

        EN

        load (2), noun
        power absorbed by a load
        [IEV number 151-15-16]

        FR

        charge (2), f
        puissance absorbée par une charge
        Source: 151-15-15
        [IEV number 151-15-16]


        При
        проектировании электроснабжения энергоемких предприятий следует предусматривать по согласованию с заказчиком и с энергоснабжающей организацией регулирование электрической нагрузки путем отключения или частичной разгрузки крупных электроприемников, допускающих без значительного экономического ущерба для технологического режима перерывы или ограничения в подаче электроэнергии.
        [СН 174-75 Инструкция по проектированию электроснабжения промышленных предприятий]

        В настоящее время характер коммунально-бытовой нагрузки кардинально изменился в результате широкого распространения новых типов электроприемников (микроволновых печей, кондиционеров, морозильников, люминесцентных светильников, стиральных и посудомоечных машин, персональных компьютеров и др.), потребляющих из питающей сети наряду с активной мощностью (АМ) также и значительную реактивную мощность (РМ).

        Недопустимые, нерекомендуемые

          Тематики

          Классификация

          >>>

          Близкие понятия

          Действия

          Синонимы

          Сопутствующие термины

          EN

          DE

          FR

          Русско-французский словарь нормативно-технической терминологии > электрическая нагрузка

        • 114 коэффициент

          coefficient, constant, factor, figure, index, modulus, rate, ratio
          * * *
          коэффицие́нт м.
          coefficient
          коэффицие́нт при … — the coefficient of …
          коэффицие́нт учи́тывает (напр. трение, турбулентность и т. п.) — the coefficient corrects for (e. g., friction, turbulence, etc.)
          коэффицие́нт абрази́вности — abrasion factor
          коэффицие́нт абсо́рбции — absorption factor, absorptance, absorptivity
          коэффицие́нт авари́йного просто́я — emergency shut-down coefficient
          аку́стико-электри́ческий коэффицие́нт — acoustic-electric factor, acousto-electric index
          коэффицие́нт амплиту́дного искаже́ния — amplitude distortion factor
          коэффицие́нт амплиту́ды (напряжения тока и т. п.) — peak factor
          коэффицие́нт амплиту́ды и́мпульса — crest factor of a pulse
          коэффицие́нт анаморфо́зы опт. — anamorphic ratio, anamorphosing factor
          коэффицие́нт асимме́трии индикатри́сы рассе́яния — scattering indicatrix, asymmetry coefficient
          барометри́ческий коэффицие́нт — barometric coefficient
          коэффицие́нт бегу́щей волны́ — travelling-wave factor
          коэффицие́нт безопа́сности — safety factor, margin of safety
          коэффицие́нт безопа́сности по отноше́нию к … — factor of safety on …
          коэффицие́нт блокиро́вки вчт.blocking factor
          бу́квенный коэффицие́нт вчт.literal coefficient
          коэффицие́нт быстрохо́дности ( гидротурбины) — specific speed, type characteristic
          вариацио́нный коэффицие́нт — coefficient of variation
          коэффицие́нт вертика́льной полноты́ мор.vertical prismatic coefficient
          весово́й коэффицие́нт — weight coefficient, weight factor
          коэффицие́нт взаи́мной инду́кции — mutual inductance
          коэффицие́нт ви́димости — visibility factor
          коэффицие́нт вихрево́го сопротивле́ния — eddy-making resistance coefficient
          коэффицие́нт влия́ния ко́рпуса мор.hull efficiency
          коэффицие́нт возвра́та — reset ratio
          коэффицие́нт возвра́та тепла́ — reheat factor
          коэффицие́нт возде́йствия по интегра́лу — integral action coefficient
          коэффицие́нт возде́йствия по произво́дной — derivative action coefficient
          коэффицие́нт волново́го сопротивле́ния — wave-resistance [wave-drag] coefficient
          коэффицие́нт волоче́ния — drag coefficient
          коэффицие́нт воспроизводи́мости — repeatability factor
          коэффицие́нт воспроизво́дства ( ядерного горючего) — breeding ratio
          коэффицие́нт воспроизво́дства, избы́точный ( ядерного горючего) — breeding gain
          коэффицие́нт втори́чной эми́ссии — secondary emission ratio
          коэффицие́нт вы́годности автотрансформа́тора — co-ratio of an autotransformer
          коэффицие́нт га́зового усиле́ния — gas amplification factor
          коэффицие́нт геометри́ческого подо́бия — coefficient of geometric similarity
          коэффицие́нт гистере́зиса — hysteresis constant
          коэффицие́нт гото́вности — availability (factor)
          коэффицие́нт дальноме́ра — stadia factor
          коэффицие́нт деле́ния (делителя частоты, пересчётной схемы и т. п.) — count-down (ratio), division ratio
          коэффицие́нт демпфи́рования — damping factor
          коэффицие́нт диэлектри́ческих поте́рь — dielectric loss factor
          коэффицие́нт дневно́го освеще́ния — daylight factor
          коэффицие́нт добро́тности — (контура, катушки и т. п.) factor of merit Q-factor; ( измерительного прибора) torque-to-weight ratio
          коэффицие́нт дове́рия стат.confidence coefficient
          коэффицие́нт дроссели́рования — throttling coefficient
          коэффицие́нт ду́бности — degree of tannage, tanning number
          коэффицие́нт есте́ственной освещё́нности — daylight factor
          коэффицие́нт жё́сткости — stiffness coefficient
          жи́дкостный коэффицие́нт кож. — volume [water-to-goods, water-to-pelt] ratio
          коэффицие́нт загру́зки — loading factor
          коэффицие́нт загру́зки турби́ны — turbine load factor
          коэффицие́нт загрязне́ния — fouling factor
          коэффицие́нт заня́тия тлф.call fill
          коэффицие́нт запа́здывания — lag coefficient
          коэффицие́нт запа́са при отпуска́нии реле́ — safety factor for drop-out
          коэффицие́нт запа́са при сраба́тывании реле́ — safety factor for pick-up
          коэффицие́нт заполне́ния ( отношение длительности импульса к периоду повторения) — pulse ratio, pulse duty factor
          коэффицие́нт заполне́ния обмо́тки — space factor of a winding
          коэффицие́нт заполне́ния су́дна — block coefficient of a ship
          коэффицие́нт затуха́ния — damping factor; ( линии передачи) attenuation constant
          коэффицие́нт защи́тного де́йствия анте́нны — front-to-back ratio of an antenna
          коэффицие́нт звукопоглоще́ния — sound absorption coefficient, acoustical absorptivity
          коэффицие́нт звукопропуска́ния — sound transmission coefficient acoustical transmittivity
          коэффицие́нт зерка́льных поме́х радиоimage ratio
          коэффицие́нт избы́тка во́здуха — excess-air-coefficient
          коэффицие́нт излуче́ния — emissivity
          коэффицие́нт инве́рсии — inversion level ratio
          коэффицие́нт инду́кции — self-inductance
          коэффицие́нт иониза́ции — ionization coefficient
          коэффицие́нт искаже́ния — distortion factor
          коэффицие́нт искаже́ния площаде́й картогр.area-distortion ratio
          коэффицие́нт искаже́ния форм картогр.shape-distortion ratio
          коэффицие́нт испо́льзования — utilization factor
          коэффицие́нт ка́чества ( в радиобиологии) — relative biological effectiveness
          коэффицие́нт ка́чества (телегра́фной) свя́зи — error rate of (telegraph) communication
          коэффицие́нт кисло́тности — acid number
          коэффицие́нт когере́нтности — normalized coherence function
          коэффицие́нт контра́стности — gamma
          коэффицие́нт концентра́ции свз. — demand [load, capacity] factor
          коэффицие́нт концентра́ции напряже́ний (напр. в металле) — notch-sensitivity index
          коэффицие́нт концентра́ции телефо́нной нагру́зки — telephone traffic load factor
          коэффицие́нт кру́тки — coefficient of twist, twist factor
          коэффицие́нт лету́чести — fugacity coefficient
          коэффицие́нт лине́йного расшире́ния — coefficient of linear expansion
          коэффицие́нт лобово́го сопротивле́ния — drag coefficient
          коэффицие́нт массообме́на — mass-transfer coefficient
          коэффицие́нт массопереда́чи — mass-transfer coefficient
          масшта́бный коэффицие́нт вчт.scale factor
          уточня́ть масшта́бный коэффицие́нт — revise (and improve) scale factor
          коэффицие́нт моде́ли ( в моделировании) — coefficient of the model equation
          деформи́ровать коэффицие́нты моде́ли — strain the coefficients in the model equation(s)
          коэффицие́нт модуля́ции — ( при амплитудной модуляции) брит. depth of modulation; амер. percent modulation; ( при частотной модуляции) modulation index
          коэффицие́нт моме́нта — torque coefficient
          коэффицие́нт мо́щности — power factor, cos \\
          коэффицие́нт нагру́зки эл.load factor
          коэффицие́нт надё́жности — reliability index
          коэффицие́нт нака́чки элк.pumping ratio
          коэффицие́нт напра́вленного де́йствия анте́нны — directive (antenna) gain
          коэффицие́нт нелине́йного искаже́ния — non-linear distortion [klirr] factor
          коэффицие́нт неодновреме́нности — diversity factor
          неопределё́нный коэффицие́нт — undetermined coefficient
          коэффицие́нт обжа́тия прок. — draft ratio, reduction coefficient
          коэффицие́нт обра́тной свя́зи — feedback factor
          коэффицие́нт о́бщей полноты́ мор.block coefficient
          коэффицие́нт объедине́ния по вхо́ду элк.fan-in
          коэффицие́нт объё́много расшире́ния — coefficient of volumetric expansion
          коэффицие́нт ослабле́ния синфа́зных сигна́лов — common-mode rejection ratio
          коэффицие́нт оста́точного сопротивле́ния — residual-resistance coefficient
          коэффицие́нт отда́чи — yield efficiency
          коэффицие́нт отпуска́ния реле́ — reset factor of a relay
          коэффицие́нт отраже́ния — reflectance, reflectivity, reflection factor
          переводно́й коэффицие́нт — conversion factor
          коэффицие́нт переда́чи элк., автмт.gain (factor)
          коэффицие́нт переда́чи дифференциа́льного регуля́тора — derivative gain (factor)
          коэффицие́нт переда́чи интегра́льного регуля́тора — integral gain (factor)
          коэффицие́нт переда́чи по напряже́нию — voltage transfer ratio
          коэффицие́нт переда́чи преобразова́теля — transducer gain
          коэффицие́нт переда́чи пропорциона́льного регуля́тора — proportional gain [factor]
          коэффицие́нт переда́чи прямо́го тра́кта — forward-circuit gain
          коэффицие́нт перекрё́стных поме́х — crosstalk factor
          коэффицие́нт перено́са — (base) transport factor
          коэффицие́нт переориенти́рования топ.overcorrection factor
          коэффицие́нт пересчё́та — scaling ratio, scaling factor
          коэффицие́нт пло́тности укла́дки ( лесоматериалов) — stacking factor
          коэффицие́нт пове́рхностного расшире́ния — coefficient of surface expansion
          коэффицие́нт повторе́ния вчт.replication factor
          коэффицие́нт поглоще́ния — absorption factor, absorptance, absorptivity
          коэффицие́нт подавле́ния синфа́зной поме́хи — common-mode rejection factor
          коэффицие́нт подъё́мной си́лы — lift coefficient
          коэффицие́нт поле́зного де́йствия [кпд] — efficiency
          коэффицие́нт поле́зного де́йствия излуче́ния анте́нны — radiation efficiency
          коэффицие́нт поле́зного де́йствия, индика́торный — indicated efficiency
          коэффицие́нт поле́зного де́йствия по ано́ду — plate efficiency
          коэффицие́нт поле́зного де́йствия, тя́говый — propulsion efficiency
          коэффицие́нт поле́зного де́йствия, эффекти́вный — effective [net] efficiency
          коэффицие́нт по́лного сопротивле́ния — total-resistance coefficient
          коэффицие́нт полнодреве́сности — stacking factor
          коэффицие́нт полноты́ водоизмеще́ния — block coefficient
          коэффицие́нт полноты́ ми́дель-шпанго́ута — midship(-section) coefficient
          коэффицие́нт полноты́ пло́щади ватерли́нии — waterplane (area) coefficient
          коэффицие́нт полноты́ пло́щади пла́вания — waterplane (area) coefficient
          коэффицие́нт полноты́ сгора́ния — combustion efficiency
          коэффицие́нт по́лных затра́т — coefficient of overall outlays
          коэффицие́нт по́ля эл.field-form factor
          коэффицие́нт попере́чной полноты́ мор.transverse prismatic coefficient
          попра́вочный коэффицие́нт — correction factor
          коэффицие́нт попу́тного пото́ка мор.wake fraction
          коэффицие́нт по́ристости — voids ratio
          коэффицие́нт поры́вистости — gust factor
          постоя́нный коэффицие́нт — constant coefficient
          коэффицие́нт поте́рь — loss factor
          коэффицие́нт потокосцепле́ния — linkage coefficient
          коэффицие́нт преломле́ния — index of refraction, refractive index
          коэффицие́нт продо́льной полноты́ мор.prismatic coefficient
          коэффицие́нт проница́емости се́тки ( лампы) — penetration factor, durchgriff, through-grip
          коэффицие́нт пропорциона́льного возде́йствия — proportional action (factor)
          коэффицие́нт пропорциона́льности — coefficient [factor] of proportionality, proportionality factor
          пропульси́вный коэффицие́нт мор.propulsive coefficient
          коэффицие́нт просто́я — downtime rate, downtime ratio
          коэффицие́нт профила́ктики — preventive maintenance ratio
          коэффицие́нт прямоуго́льности
          2. (усилителей, приёмников) bandwidth ratio, (bandwidth) shape factor, relative bandwidth
          коэффицие́нт прямы́х затра́т — cost coefficient
          коэффицие́нт Пуассо́на сопр.Poisson's ratio
          коэффицие́нт пульса́ции — ripple factor, ripple ratio, percent ripple
          коэффицие́нт пусто́тности — void ratio
          коэффицие́нт разбавле́ния — dilution ratio
          коэффицие́нт разветвле́ния по вы́ходу элк.fan-out
          коэффицие́нт распростране́ния — propagation factor; ( линии передачи) propagation constant
          коэффицие́нт расшире́ния, терми́ческий — thermal coefficient of expansion
          коэффицие́нт регре́ссии — coefficient of regression
          коэффицие́нт регули́рования — control factor
          коэффицие́нт самовыра́внивания — self-regulation
          коэффицие́нт самоинду́кции — (self-)inductance
          коэффицие́нт свя́зи — coupling coefficient
          коэффицие́нт скольже́ния — coefficient of sliding [kinetic] friction
          коэффицие́нт скру́тки ( кабеля) — lay ratio
          коэффицие́нт слы́шимости — audibility factor
          коэффицие́нт стабилиза́ции — stabilization factor
          коэффицие́нт стати́ческой оши́бки — position error coefficient
          коэффицие́нт стоя́чей волны́ — standing-wave ratio, SWR
          коэффицие́нт стоя́чей волны́ по напряже́нию — voltage standing-wave rate, VSWR
          коэффицие́нт суже́ния струи́ — contraction coefficient
          коэффицие́нт та́ры ваго́на — tare-load ratio of a railway car
          коэффицие́нт температу́рного расшире́ния — coefficient of thermal expansion
          температу́рный коэффицие́нт — temperature coefficient
          температу́рный коэффицие́нт ё́мкости — temperature coefficient of capacitance
          температу́рный коэффицие́нт индукти́вности — temperature coefficient of inductance
          температу́рный коэффицие́нт сопротивле́ния — temperature coefficient of resistance
          температу́рный коэффицие́нт частоты́ — temperature coefficient of frequency
          температу́рный коэффицие́нт электродви́жущей си́лы — temperature coefficient of electromotive force
          коэффицие́нт температуропрово́дности — thermal diffusivity
          коэффицие́нт тензочувстви́тельности — the gauge factor of a strain gauge
          коэффицие́нт теплово́го расшире́ния — coefficient of thermal expansion
          коэффицие́нт термоэлектродви́жущей си́лы — thermoelectric coefficient
          коэффицие́нт трансформа́ции — transformation ratio
          коэффицие́нт тре́ния — friction coefficient
          коэффицие́нт тре́ния движе́ния — coefficient of sliding [kinetic] friction
          коэффицие́нт тре́ния поко́я — coefficient of friction of rest, coefficient of static friction
          трёхцве́тный коэффицие́нт (в колориметрии, телевидении) — trichromatic coefficient, chromaticity coordinate
          углово́й коэффицие́нт ( прямой линии) — slope
          уде́льный коэффицие́нт ( в колориметрии) — relative trichromatic coordinate, distribution coefficient
          коэффицие́нт уплотне́ния ( в порошковой металлургии) — compression ratio
          коэффицие́нт уса́дки — shrinkage factor, shrinkage ratio
          коэффицие́нт усиле́ния
          1. ( лампы) amplification factor
          2. (каскада, схемы) gain (factor)
          коэффицие́нт усиле́ния анте́нны — antenna gain
          коэффицие́нт усиле́ния без обра́тной свя́зи — open-loop gain
          коэффицие́нт усиле́ния по то́ку — current gain
          коэффицие́нт уста́лости — fatigue ratio
          коэффицие́нт утри́рования релье́фной ка́рты — ratio of exaggeration
          коэффицие́нт фа́зового регули́рования — phase control factor
          коэффицие́нт фа́зы ( линии передачи) — phase (shift) constant
          коэффицие́нт фо́рмы
          1. (напряжения, тока) form factor
          2. ( лесоматериала) diameter quotient
          холоди́льный коэффицие́нт — coefficient of performance of a refrigerating machine
          числово́й коэффицие́нт — numerical coefficient
          коэффицие́нт шерохова́тости — roughness factor, roughness coefficient
          коэффицие́нт шу́ма — noise factor, noise figure
          коэффицие́нт шунти́рования изм.multiplying power of a shunt
          коэффицие́нт экрани́рования — screening number, screening constant
          коэффицие́нт электровооружё́нности труда́ — electric power (available) per worker
          коэффицие́нт эффекти́вности усили́теля — root gain-bandwidth product
          коэффицие́нт я́ркости — luminance factor

          Русско-английский политехнический словарь > коэффициент

        • 115 полномочие полномочи·е

          authority, plenary powers, power, discretion; (доверенность) commission

          возражать против чьих-л. полномочий — to make objection to smb.'s credentials

          выйти за пределы полномочий — to exceed authority, to go beyond one's powers

          давать полномочия — to empower, to give authority (for), to grant powers

          иметь полномочия — to exercise / to have / to possess powers; have authority

          наделить / облечь полномочиями — to invest with powers / authority

          не выходить за пределы полномочий — to keep to / within the terms of reference

          не признавать чьи-л. полномочия — to renounce smb.'s authority

          передавать полномочия — to hand over one's authority, delegate the power / responsibility (to), to devolve the power (on), to communicate credentials (to)

          получать полномочия на что-л. / сделать что-л. — to receive authority for smth. / to do smth.

          предоставить полномочияto grant powers (to), to confer powers (on), to furnish with powers

          превышать свои полномочия — to override one's commission, to exceed / to go beyond one's powers

          продлить полномочия — to extend / to prolong the mandate

          исключительные полномочия — exclusive authority, exceptional powers

          неограниченные полномочия — plenary / plenipotentiary powers, unrestricted / unlimited authority / powers

          ограниченные полномочие — limited / restricted powers

          чрезвычайные полномочия — emergency / extraordinary powers

          широкие полномочия — broad / wide / sweeping powers, large discretion

          в пределах своих полномочий — within one's powers / commission

          круг полномочий — reference, terms of reference

          ограниченный круг полномочий — limited reference, terms of reference

          передача полномочий — delegation of powers, transfer of authority

          полномочия, которыми он наделён — authority vested in him

          полномочие по служебному положению / должности — ex-officio full powers

          разделение полномочий — division / separation of powers

          по истечении срока полномочий — on the expiry / expiration of the term of office

          Russian-english dctionary of diplomacy > полномочие полномочи·е

        • 116 агрегат


          unit, accessory, assembly,

          component
          - (блок, установка) — unit
          блок или сборка деталей и узлов, выполняющих автономную функцию в различных условиях (режимах), напр., двигатели, редукторы, исполнительные механизмы, блоки оборудования. — an assembly or any combination of parts, sub-assemblies and assemblies mounted together, normally capable of independent operation in a variety of situations (ata-100, 1-5-0). examples: engines, gear boxes, actuators, communications equipment.
          - (сборка)assembly
          агрегат, демонстрируемый или заменяемый как одно целое и состоящий из вcпомогательных агрегатов и узлов, выполняющих общую определенную функцию, напр., двигатели, редукторы, исполнительные механизмы. — a unit which is normally removed or replaced as a single item and consists of accessories and components that collectively perform a specific functional operation. examples: engines, control packages, actuators and equipment.
          - (устройство для работы совместно с др. основным агрегатом или в качестве дополнительного агрегата) — accessory a part, sub-assembly or assembly designed for use in conjunction with or to supplement another assembly or a unit.
          - (деталь, узел, блок, установка) — component
          напр., трубопровод, кран, распределительное устройство, выключатель, переключатель и т.п.) — a self-contained unit of a sub-assembly of relatively simple design which is replaceable as a unit. examples: tubing, valves, junction boxes, switches, etc.
          -, аэродромный пусковой (апа) — ground power unit (gpu)
          специальная наземная установка для выработки электроэнергии, используемой для запуска двигателей и проверок оборудования ла. — the gpu is designed to generate electrical power used for starting the engines and testing the equipment of the aircraft on the ground.
          - воздушного запуска, наземный — ground air starting unit
          - двигателяengine accessory
          - демпфера крена, рулевой — roll damper actuator
          - демпфера рыскания, рулевой — yaw damper actuator
          - демпфера тангажа, рулевой — pitch damper actuator
          - дозировки топлива (адт) — tuel flow regulator /control uпit/
          - зажигания (двиг.) — ignition unit
          - заправки, унифицированный подвесной (упаз) — refueling pod
          - командно-топливный (кта)fuel control unit (fcu)
          - масляный (двигателя, включающий нагнетающий и откачивающий насосы) — oil pump block (incorporating pressure and scavenge pumps)
          -, моторный — engine accessory
          -, находящийся в эксплуатации бюллетени издаются для доработки агрегатов, находящихся в эксплуатации. — in-service unit bulletins shall be written for applicability to in-service units or equipment.
          - ограничения оборотовmaximum speed governor
          -, рулевой (ра в системе автопилота) — autopilot servo (unit)
          -, рулевой (в системах продольного, поперечного и путевого управления вертолетом и управления общим шагом) (рис.40). — (hydraulic) actuator /jack/ used in helicopter poweroperated longitudinal, lateral and directional, and collective pitch control systems.
          -, рулевой (ра, гидроусилитель) — hydraulic actuator
          -, рулевой (ра, привод поверхности управления) — (control surface) actuator
          -, рулевой (привода) стабилизатора (от ап) — stabilizer servo
          -, рулевой (привода) элеронов — aileron servo
          - с приводом от двигателяengine-driven accessory
          - с приводом от двигателя, самолетный — engine-driven aircraft accessory
          -, топливо-масляный — fuel-oil heat exchanger
          состоит из топливо-масляного радиатора и фильтра. — consists of fuel-oil cooler and filter
          - управления, комбинированный (кау, в системе управления вертолета) — combination control hydraulic actuator
          - управления продольного канала, рулевой — elevator actuator /servo/
          - управления реверсом — thrust reverser control unit, thrust reverser control /pilot/ valve
          - управления, рулевой (рау) управляет золотником гидроусилителя рв, рн или элерона (по сигналам сау) — servo (unit)
          - управления, рулевой, боксового канала (элеронов) — aileron servo
          - управления, рулевой, канала направления (руля направления) — rudder servo
          - управления, рулевой, продольного канала (руля высоты) — elevator servo
          -, установленный на двигателе — engine-mounted accessory
          -, холодильный (самолетный сха, буфета) — refrigerating unit
          работа а. — unit operation
          включать а. — engage /start/ the unit
          включать а. (подачей электроэнергии) — energize the unit
          включать питание а. — switch on power supply to some unit
          выключать питание а. (обесточивать) — de-energize the unit

          Русско-английский сборник авиационно-технических терминов > агрегат

        • 117 потребление электроэнергии

          1. Elektrizitätsverbrauch

           

          потребление электроэнергии
          Означает национальное производство электроэнергии, включая автопроизводство, плюс импорт, минус экспорт (валовое национальное потребление электроэнергии) (Директива 2001/77/ЕС).
          [Англо-русский глосcарий энергетических терминов ERRA]

          EN

          consumption of electricity
          Shall mean national electricity production, including autoproduction, plus imports, minus exports (gross national electricity consumption) (Directive 2001/77/EC).
          [Англо-русский глосcарий энергетических терминов ERRA]

          electricity consumption
          Amount of electricity consumed by an apparatus. (Source: PHC)
          [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

          Параллельные тексты EN-RU

          Specific applications can make high demands of a data centre solution.
          [Legrand]

          Специфика центров обработки данных заключается в высоком потреблении электроэнергии.
          [Перевод Интент]


          Недопустимые, нерекомендуемые

          Тематики

          EN

          DE

          FR

          Русско-немецкий словарь нормативно-технической терминологии > потребление электроэнергии

        • 118 модульный центр обработки данных (ЦОД)

          1. modular data center

           

          модульный центр обработки данных (ЦОД)
          -
          [Интент]

          Параллельные тексты EN-RU

          [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

          [ http://dcnt.ru/?p=9299#more-9299]

          Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

          В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

          At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

          В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

          Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

          Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

          Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

          Was there a key driver for the Generation 4 Data Center?

          Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
          Был ли ключевой стимул для разработки дата-центра четвертого поколения?


          If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

          Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

          One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

          The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

          Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

          Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

          The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

          А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

          This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
          So let’s take a high level look at our Generation 4 design

          Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
          Давайте рассмотрим наш проект дата-центра четвертого поколения

          Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

          It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

          From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


          Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

          Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

          С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

          Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


          Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

          For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

          Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

          Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

          Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

          Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

          Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
          Мы все подвергаем сомнению

          In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

          В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
          Серийное производство дата центров


          In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

          Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
          Невероятно энергоэффективный ЦОД


          And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

          А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
          Строительство дата центров без чиллеров

          We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

          Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

          By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

          Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

          Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

          Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
          Gen 4 – это стандартная платформа

          Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

          Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
          Главные характеристики дата-центров четвертого поколения Gen4

          To summarize, the key characteristics of our Generation 4 data centers are:

          Scalable
          Plug-and-play spine infrastructure
          Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
          Rapid deployment
          De-mountable
          Reduce TTM
          Reduced construction
          Sustainable measures

          Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

          Расширяемость;
          Готовая к использованию базовая инфраструктура;
          Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
          Быстрота развертывания;
          Возможность демонтажа;
          Снижение времени вывода на рынок (TTM);
          Сокращение сроков строительства;
          Экологичность;

          Map applications to DC Class

          We hope you join us on this incredible journey of change and innovation!

          Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


          Использование систем электропитания постоянного тока.

          Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

          На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

          So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

          Generations of Evolution – some background on our data center designs

          Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
          Поколения эволюции – история развития наших дата-центров

          We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

          Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

          It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

          Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

          We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

          Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

          No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

          Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

          As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

          Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

          This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

          Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


          Тематики

          Синонимы

          EN

          Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

        • 119 потребление электроэнергии

          1. consommation d'électricité

           

          потребление электроэнергии
          Означает национальное производство электроэнергии, включая автопроизводство, плюс импорт, минус экспорт (валовое национальное потребление электроэнергии) (Директива 2001/77/ЕС).
          [Англо-русский глосcарий энергетических терминов ERRA]

          EN

          consumption of electricity
          Shall mean national electricity production, including autoproduction, plus imports, minus exports (gross national electricity consumption) (Directive 2001/77/EC).
          [Англо-русский глосcарий энергетических терминов ERRA]

          electricity consumption
          Amount of electricity consumed by an apparatus. (Source: PHC)
          [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

          Параллельные тексты EN-RU

          Specific applications can make high demands of a data centre solution.
          [Legrand]

          Специфика центров обработки данных заключается в высоком потреблении электроэнергии.
          [Перевод Интент]


          Недопустимые, нерекомендуемые

          Тематики

          EN

          DE

          FR

          Русско-французский словарь нормативно-технической терминологии > потребление электроэнергии

        • 120 диэлектрическая постоянная

          Универсальный русско-английский словарь > диэлектрическая постоянная

        См. также в других словарях:

        • Specific power — In engineering, the term specific power can refer to power either per unit of mass, volume or area, although power per unit of volume is more formally known as power density, and power per unit area as surface power density. [… …   Wikipedia

        • specific power — noun The ratio of the power produced by an object to its mass. A female blue whale may produce a specific power of up to 16 kilowatts per tonne when sprinting …   Wiktionary

        • specific power — savitoji galia statusas T sritis Standartizacija ir metrologija apibrėžtis Įrenginio galios ir jo masės (tūrio ar kitokio parametro) dalmuo. atitikmenys: angl. specific power vok. spezifische Leistung, f rus. удельная мощность, f pranc. puissance …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

        • specific power — savitoji galia statusas T sritis fizika atitikmenys: angl. specific power vok. spezifische Leistung, f rus. удельная мощность, f pranc. puissance massique, f; puissance spécifique, f …   Fizikos terminų žodynas

        • specific power — Смотри удельная мощность …   Энциклопедический словарь по металлургии

        • Specific impulse — (usually abbreviated I sp) is a way to describe the efficiency of rocket and jet engines. It represents the impulse (change in momentum) per unit of propellant. The higher the specific impulse, the less propellant is needed to gain a given amount …   Wikipedia

        • Power-to-weight ratio — (specific power) is a calculation commonly applied to engines and other mobile power sources to enable the comparison of one unit or design to another. Power to weight ratio is a measurement of actual performance of any engine or power sources.… …   Wikipedia

        • Specific properties — ve properties] ) of that substance. For example, the density of steel (a specific and intrinsic property) can be derived from measurements of the mass of a steel bar (an extrinsic property) divided by the volume of the bar (another extrinsic… …   Wikipedia

        • Power of appointment — A power of appointment is a term most frequently used in the law of wills to describe the ability of the testator (the person writing the will) to select a person who will be given the authority to dispose of certain property under the will.… …   Wikipedia

        • Power line communication — or power line carrier (PLC), also known as power line digital subscriber line (PDSL), mains communication, power line telecom (PLT), power line networking (PLN), or broadband over power lines (BPL) are systems for carrying data on a conductor… …   Wikipedia

        • Power semiconductor device — Power semiconductor devices are semiconductor devices used as switches or rectifiers in power electronic circuits (switch mode power supplies for example). They are also called power devices or when used in integrated circuits, called power… …   Wikipedia

        Поделиться ссылкой на выделенное

        Прямая ссылка:
        Нажмите правой клавишей мыши и выберите «Копировать ссылку»