Перевод: со всех языков на все языки

со всех языков на все языки

since+3+october

  • 61 be on the air

    1) работать, вести передачу ( о радиостанции)

    This station is on the air from 8 a. m. till 2 p. m. — Эта радиостанция ведет передачи с 8 до 14 часов.

    2) выступать по радио (тж. go on the air)

    By the time the war broke out in 1939, Mercer was on the air three times a week, and had built up for himself a wide listening audience, over a network of five northern stations. (D. Carter ‘Fatherless Sons’, part I, ch. 2) — В тридцать девятом году, когда вспыхнула война, Мерсер выступал со своими комментариями уже три раза в неделю, и у него появилось множество слушателей - его передачи транслировали пять станций северных провинций.

    Already the news was on the air, it would be in the evening papers... (Gr. Greene, ‘A Gun for Sale’, ch. II) — Эти новости уже переданы в эфир. Они появятся в вечерних газетах...

    ‘You Bet Your Life’ was broadcast for the first time in October of 1947, and it's been on the air ever since. (A. Marx, ‘Life with Groucho’, ch. XV) — "Даю голову на отсечение" впервые передали по радио в октябре 1947 года и с тех пор передают регулярно.

    Large English-Russian phrasebook > be on the air

  • 62 Armed forces

       Although armed force has been a major factor in the development of the Portuguese nation-state, a standing army did not exist until after the War of Restoration (1641-48). During the 18th century, Portugal's small army was drawn into many European wars. In 1811, a combined Anglo-Portuguese army drove the French army of Napoleon out of the country. After Germany declared war on Portugal in March 1916, two Portuguese divisions were conscripted and sent to France, where they sustained heavy casualties at the Battle of Lys in April 1918. As Portugal and Spain were neutral in World War II, the Portuguese Army cooperated with the Spanish army to defend Iberian neutrality. In 1949, Portugal became a founding member of the North Atlantic Treaty Organization (NATO). When the nationalist quest for independence began in Portugal's colonies in Africa ( Angola, Mozambique, and Guinea- Bissau) in the 1960s, the military effort (1961-74) to suppress the nationalists resulted in an expansion of the Portuguese armed forces to about 250,000.
       Since the Revolution of 25 April 1974, the number of personnel on active duty in the army, navy, and air force has been greatly reduced (43,200 in 2007) and given a more direct role in NATO. New NATO commitments led to the organization of the Brigada Mista Independente (Independent Composite Brigade), later converted into the Brigada Aero-Transportada. (Air-Transported Brigade) to be used in the defense of Europe's southern flank. The Portuguese air force and navy are responsible for the defense of the Azores-Madeira-Portugal strategic triangle.
       Chronic military intervention in Portuguese political life began in the 19th century. These interventions usually began with revolts of the military ( pronunciamentos) in order to get rid of what were considered by the armed forces corrupt or incompetent civilian governments. The army overthrew the monarchy on the 5 October 1910 and established Portugal's First Republic. It overthrew the First Republic on 28 May 1926 and established a military dictatorship. The army returned to the barracks during the Estado Novo of Antônio de Oliveira Salazar. The armed forces once again returned to politics when the Armed Forces Movement (MFA) overthrew the Estado Novo on 25 April 1974. After the Revolution of 25 April 1974, the armed forces again played a major role in Portuguese politics through the Council of the Revolution, which was composed of the president of the Republic, Chiefs of the general staff, three service chiefs, and 14 MFA officers. The Council of the Revolution advised the president on the selection of the prime minister and could veto legislation.
       The subordination of the Portuguese armed forces to civilian authority began in 1982, when revisions to the Constitution abolished the Council of the Revolution and redefined the mission of the armed forces to that of safeguarding and defending the national territory. By the early 1990s, the political influence of Portugal armed force had waned and civilian control was reinforced with the National Defense Laws of 1991, which made the chief of the general staff of the armed forces directly responsible to the minister of defense, not the president of the republic, as had been the case previously. As the end of the Cold War had eliminated the threat of a Soviet invasion of western Europe, Portuguese armed forces continues to be scaled back and reorganized. Currently, the focus is on modernization to achieve high operational efficiency in certain areas such as air defense, naval patrols, and rapid-response capability in case of terrorist attack. Compulsory military service was ended in 2004. The Portuguese armed forces have been employed as United Nations peacekeepers in East Timor, Bosnia, Kosovo, Afghanistan, Iraq, and Lebanon.

    Historical dictionary of Portugal > Armed forces

  • 63 Commemorations, Portuguese historic

       As in so many other activities of Portugal and its people, in historic commemorative work, the past always seems present. For more than a century, Portugal has planned and sponsored a variety of historic commemorations related to the glorious Age of Discoveries era of historic Portugal. The Columban centenary commemorations, involving Spain and Italy in particular, have gained greater world attention, Portugal, nevertheless, has a history of her own commemorations.
       Whatever the political ideology of the governmental system involved, Portugal's historic commemorations have been continuous and well-planned, and have sought to stir national pride as well as regime loyalty. Portugal's official efforts in public commemoration date at least back to 1880, when the Portuguese celebrated the 300th anniversary of the death of the national epic poet, Luís de Camões. Others followed that sought to arouse national remembrance and encourage notions of national revival, by focusing either on biographical or national discovery dates. The next major commemoration was in 1894, when Portugal commemorated the 500th anniversary of the birth in 1394 of Prince Henry of Aviz (Prince Henry the Navigator) and, in 1897-99, the 400th anniversary of Vasco da Gama's discovery of the sea route to India.
       The 20th century has seen the most elaborate and publicized historic commemorations for Portugal. Besides its extensive propaganda program beginning in the 1930s, the Estado Novo put considerable effort into extensive historic commemorations, with the purpose of encouraging national pride and international respect, as well as regime loyalty. At least three national commemorations are worthy of note here, although scores of other events were held on a smaller scale. From June to December 1940, Portugal held the grand Double Centenary celebrations, which celebrated Portugal's emergence as an independent monarchy and state in 1140 (800 years) and the restoration of independence from Spain in 1640 (300 years). More than five months of activities included expensive publications of books and tourist materials, exhibits, academic conferences, and an outstanding Lisbon "world's fair" known as the "Exposition of the Portuguese World," staged at Belém, in front of the Monastery of Jerónimos, and involving the unveiling for the first time of the new Monument of the Discoveries.
       Two other commemorations of the Estado Novo deserve mention: the 1947 celebration of the 800th anniversary of the Portuguese taking of Lisbon (1147) from Moorish forces and the 1960 commemoration activities marking the 500th anniversary of the death of the central figure of the Portuguese Discoveries, Prince Henry the Navigator. The latter set of events took place during a time of political sensitivity, when the government's African policy was under strong international pressures.
       Since the Revolution of 25 April 1974, democratic Portugal has put substantial resources into commemorating various persons and events of the Age of Discoveries. In 1980, Portugal's scholars celebrated the 400th anniversary of the death of the national poet Camões in many books, articles, exhibits, and conferences. But this would all be overshadowed by the celebration of the 500th anniversary of the Portuguese Discoveries, which would run from 1988 to 2000. This elaborate effort involved the establishment of a government agency, the National Committee for the Commemoration of the Portuguese Discoveries, headed by one of Portugal's most eminent scholars on the subject, Dr. Vasco Graça Moura. Commemoration began in 1988 with the celebration and reenactment of the 1488 voyage of navigator Bartolomeu Dias from Lisbon to beyond the Cape of Good Hope, in South Africa. The 12-year cycle, the longest Discoveries commemorations of any century and of any Western country, put the 1992 Columban Quincentenary events somewhat in the shade.
       Between May and October 1998, Portugal held Expo '98 in Lisbon, a world's fair that was keyed to the celebration of the 500th anniversary of Vasco da Gama's discovery of an all-water route to India in 1498. This cycle ended in 2000, marking the 500th anniversary of the year that Portugal's Pedro Álvares Cabral discovered Brazil.

    Historical dictionary of Portugal > Commemorations, Portuguese historic

  • 64 EXPO '98

       Portugal's world's fair, held from May to October 1998, set in Lisbon. Designed to commemorate and celebrate the 500th anniversary of Vasco da Gama's 1498 discovery of an all-water route to India, this was an ambitious undertaking for a small country with a developing economy. The setting of the exposition was remote eastern Lisbon, along the banks of the Tagus estuary. To facilitate logistics, Portugal opened a new Metro station (Oriente) for the Expo and the new Vasco da Gama Bridge, just northeast of the site. More than 10 million visitors, many of them from abroad but a large proportion from Spain and Portugal, arrived at the site by Metro, bus, taxi, or car and were guided by signs in three languages: Portuguese, Spanish, and English. To the dismay of Francophones, the choice of English and Spanish reflected both the nature of the globalization process and Portugal's growing connections with Europe and the wider world.
       The theme of Expo '98 was "The Oceans, Heritage for the Future," and the official mascot-symbol was "Gil," a cartoon characterization of a drop of ocean water, based on the suggestion of schoolchildren from the small town of Barrancos. Somewhat in the spirit of Disney's Mickey Mouse, "Gil" reflected cheeriness, but his message was serious, alerting the public to the fact that the oceans were endangered and fresh drinking water increasingly in short supply for a burgeoning world population. Among the outstanding structures at Expo '98 was the Pavilion of Portugal, designed by Portuguese architect Álvaro Siza Vieira, and the Pavilion of the Oceans or the Oceanarium (which remained open to the public after the exposition closed), which was designed by an American architect.
       Despite the general success of the fair, critics gave mixed reviews to the historic commemoration of the Discoveries facets of the effort. No vessel from Vasco da Gama's 1497-99 famous voyage was reproduced at the fair's dockside exhibit—although there was a 19th-century sailing vessel and a reproduction of one of the vessels from Christopher Columbus's first voyage, constructed by Portuguese in Madeira—nor was there much else on Vasco da Gama in the Pavilion of Portugal. Instead, visitors were impressed with a multimedia show based on knowledge of a Portuguese shipwreck, a 17th-century nau, found by archaeologists in recent years. The sound and light show in this lovely space was magnificent. The most popular exhibits were the Oceanarium and the Utopia Pavilion, where lines could be hours long. Despite the fact that Expo '98 made only a weak effort to attract visitors from outside Europe, the general consensus was that it was a successful enterprise, unique in Portugal's record of historic and contemporary expositions since 1940.

    Historical dictionary of Portugal > EXPO '98

  • 65 Necessidades, Palace of

       Necessidades Palace is a sprawling, massive 18th-century palace in western Lisbon. As in the cases of Mafra and Belém Palaces, The Palace of the Necessities was ordered built by King João V, on the site of an old chapel dedicated to Our Lady of Necessities. The original 18th-century building consists of a chapel, palace, and convent, and contains a considerable amount of historic artifacts and art. As the current headquarters of Portugal's Foreign Service and Ministry of Foreign Affairs, Necessidades is a working museum-palace with many different sections. Various mon-archs resided in the rose-colored building. During the course of the 5 October 1910 republican revolution in Lisbon, the last reigning king, Manuel II, spent his last night as sovereign in Necessidades Palace before escaping to Mafra Palace en route to exile in Great Britain. Damage to the palace from republican naval shelling has since been repaired. One section of the palace houses the Ministry of Foreign Affair's official library and archives, where several centuries of records of external relations are deposited.

    Historical dictionary of Portugal > Necessidades, Palace of

  • 66 World War II

    (1939-1945)
       In the European phase of the war, neutral Portugal contributed more to the Allied victory than historians have acknowledged. Portugal experienced severe pressures to compromise her neutrality from both the Axis and Allied powers and, on several occasions, there were efforts to force Portugal to enter the war as a belligerent. Several factors lent Portugal importance as a neutral. This was especially the case during the period from the fall of France in June 1940 to the Allied invasion and reconquest of France from June to August 1944.
       In four respects, Portugal became briefly a modest strategic asset for the Allies and a war materiel supplier for both sides: the country's location in the southwesternmost corner of the largely German-occupied European continent; being a transport and communication terminus, observation post for spies, and crossroads between Europe, the Atlantic, the Americas, and Africa; Portugal's strategically located Atlantic islands, the Azores, Madeira, and Cape Verde archipelagos; and having important mines of wolfram or tungsten ore, crucial for the war industry for hardening steel.
       To maintain strict neutrality, the Estado Novo regime dominated by Antônio de Oliveira Salazar performed a delicate balancing act. Lisbon attempted to please and cater to the interests of both sets of belligerents, but only to the extent that the concessions granted would not threaten Portugal's security or its status as a neutral. On at least two occasions, Portugal's neutrality status was threatened. First, Germany briefly considered invading Portugal and Spain during 1940-41. A second occasion came in 1943 and 1944 as Great Britain, backed by the United States, pressured Portugal to grant war-related concessions that threatened Portugal's status of strict neutrality and would possibly bring Portugal into the war on the Allied side. Nazi Germany's plan ("Operation Felix") to invade the Iberian Peninsula from late 1940 into 1941 was never executed, but the Allies occupied and used several air and naval bases in Portugal's Azores Islands.
       The second major crisis for Portugal's neutrality came with increasing Allied pressures for concessions from the summer of 1943 to the summer of 1944. Led by Britain, Portugal's oldest ally, Portugal was pressured to grant access to air and naval bases in the Azores Islands. Such bases were necessary to assist the Allies in winning the Battle of the Atlantic, the naval war in which German U-boats continued to destroy Allied shipping. In October 1943, following tedious negotiations, British forces began to operate such bases and, in November 1944, American forces were allowed to enter the islands. Germany protested and made threats, but there was no German attack.
       Tensions rose again in the spring of 1944, when the Allies demanded that Lisbon cease exporting wolfram to Germany. Salazar grew agitated, considered resigning, and argued that Portugal had made a solemn promise to Germany that wolfram exports would be continued and that Portugal could not break its pledge. The Portuguese ambassador in London concluded that the shipping of wolfram to Germany was "the price of neutrality." Fearing that a still-dangerous Germany could still attack Portugal, Salazar ordered the banning of the mining, sale, and exports of wolfram not only to Germany but to the Allies as of 6 June 1944.
       Portugal did not enter the war as a belligerent, and its forces did not engage in combat, but some Portuguese experienced directly or indirectly the impact of fighting. Off Portugal or near her Atlantic islands, Portuguese naval personnel or commercial fishermen rescued at sea hundreds of victims of U-boat sinkings of Allied shipping in the Atlantic. German U-boats sank four or five Portuguese merchant vessels as well and, in 1944, a U-boat stopped, boarded, searched, and forced the evacuation of a Portuguese ocean liner, the Serpa Pinto, in mid-Atlantic. Filled with refugees, the liner was not sunk but several passengers lost their lives and the U-boat kidnapped two of the ship's passengers, Portuguese Americans of military age, and interned them in a prison camp. As for involvement in a theater of war, hundreds of inhabitants were killed and wounded in remote East Timor, a Portuguese colony near Indonesia, which was invaded, annexed, and ruled by Japanese forces between February 1942 and August 1945. In other incidents, scores of Allied military planes, out of fuel or damaged in air combat, crashed or were forced to land in neutral Portugal. Air personnel who did not survive such crashes were buried in Portuguese cemeteries or in the English Cemetery, Lisbon.
       Portugal's peripheral involvement in largely nonbelligerent aspects of the war accelerated social, economic, and political change in Portugal's urban society. It strengthened political opposition to the dictatorship among intellectual and working classes, and it obliged the regime to bolster political repression. The general economic and financial status of Portugal, too, underwent improvements since creditor Britain, in order to purchase wolfram, foods, and other materials needed during the war, became indebted to Portugal. When Britain repaid this debt after the war, Portugal was able to restore and expand its merchant fleet. Unlike most of Europe, ravaged by the worst war in human history, Portugal did not suffer heavy losses of human life, infrastructure, and property. Unlike even her neighbor Spain, badly shaken by its terrible Civil War (1936-39), Portugal's immediate postwar condition was more favorable, especially in urban areas, although deep-seated poverty remained.
       Portugal experienced other effects, especially during 1939-42, as there was an influx of about a million war refugees, an infestation of foreign spies and other secret agents from 60 secret intelligence services, and the residence of scores of international journalists who came to report the war from Lisbon. There was also the growth of war-related mining (especially wolfram and tin). Portugal's media eagerly reported the war and, by and large, despite government censorship, the Portuguese print media favored the Allied cause. Portugal's standard of living underwent some improvement, although price increases were unpopular.
       The silent invasion of several thousand foreign spies, in addition to the hiring of many Portuguese as informants and spies, had fascinating outcomes. "Spyland" Portugal, especially when Portugal was a key point for communicating with occupied Europe (1940-44), witnessed some unusual events, and spying for foreigners at least briefly became a national industry. Until mid-1944, when Allied forces invaded France, Portugal was the only secure entry point from across the Atlantic to Europe or to the British Isles, as well as the escape hatch for refugees, spies, defectors, and others fleeing occupied Europe or Vichy-controlled Morocco, Tunisia, and Algeria. Through Portugal by car, ship, train, or scheduled civil airliner one could travel to and from Spain or to Britain, or one could leave through Portugal, the westernmost continental country of Europe, to seek refuge across the Atlantic in the Americas.
       The wartime Portuguese scene was a colorful melange of illegal activities, including espionage, the black market, war propaganda, gambling, speculation, currency counterfeiting, diamond and wolfram smuggling, prostitution, and the drug and arms trade, and they were conducted by an unusual cast of characters. These included refugees, some of whom were spies, smugglers, diplomats, and business people, many from foreign countries seeking things they could find only in Portugal: information, affordable food, shelter, and security. German agents who contacted Allied sailors in the port of Lisbon sought to corrupt and neutralize these men and, if possible, recruit them as spies, and British intelligence countered this effort. Britain's MI-6 established a new kind of "safe house" to protect such Allied crews from German espionage and venereal disease infection, an approved and controlled house of prostitution in Lisbon's bairro alto district.
       Foreign observers and writers were impressed with the exotic, spy-ridden scene in Lisbon, as well as in Estoril on the Sun Coast (Costa do Sol), west of Lisbon harbor. What they observed appeared in noted autobiographical works and novels, some written during and some after the war. Among notable writers and journalists who visited or resided in wartime Portugal were Hungarian writer and former communist Arthur Koestler, on the run from the Nazi's Gestapo; American radio broadcaster-journalist Eric Sevareid; novelist and Hollywood script-writer Frederick Prokosch; American diplomat George Kennan; Rumanian cultural attache and later scholar of mythology Mircea Eliade; and British naval intelligence officer and novelist-to-be Ian Fleming. Other notable visiting British intelligence officers included novelist Graham Greene; secret Soviet agent in MI-6 and future defector to the Soviet Union Harold "Kim" Philby; and writer Malcolm Muggeridge. French letters were represented by French writer and airman, Antoine Saint-Exupery and French playwright, Jean Giroudoux. Finally, Aquilino Ribeiro, one of Portugal's premier contemporary novelists, wrote about wartime Portugal, including one sensational novel, Volframio, which portrayed the profound impact of the exploitation of the mineral wolfram on Portugal's poor, still backward society.
       In Estoril, Portugal, the idea for the world's most celebrated fictitious spy, James Bond, was probably first conceived by Ian Fleming. Fleming visited Portugal several times after 1939 on Naval Intelligence missions, and later he dreamed up the James Bond character and stories. Background for the early novels in the James Bond series was based in part on people and places Fleming observed in Portugal. A key location in Fleming's first James Bond novel, Casino Royale (1953) is the gambling Casino of Estoril. In addition, one aspect of the main plot, the notion that a spy could invent "secret" intelligence for personal profit, was observed as well by the British novelist and former MI-6 officer, while engaged in operations in wartime Portugal. Greene later used this information in his 1958 spy novel, Our Man in Havana, as he observed enemy agents who fabricated "secrets" for money.
       Thus, Portugal's World War II experiences introduced the country and her people to a host of new peoples, ideas, products, and influences that altered attitudes and quickened the pace of change in this quiet, largely tradition-bound, isolated country. The 1943-45 connections established during the Allied use of air and naval bases in Portugal's Azores Islands were a prelude to Portugal's postwar membership in the North Atlantic Treaty Organization (NATO).

    Historical dictionary of Portugal > World War II

  • 67 вступать в сипу


    be effective
    (o документе) — the document is effective since october i, 1973.

    Русско-английский сборник авиационно-технических терминов > вступать в сипу

  • 68 Bakewell, Robert

    [br]
    b. 23 May 1725 Loughborough, England
    d. 1 October 1795 Loughborough, England
    [br]
    English livestock breeder who pioneered the practice of progeny testing for selecting breeding stock; he is particularly associated with the development of the Improved Leicester breed of sheep.
    [br]
    Robert Bakewell was the son of the tenant farming the 500-acre (200 hectare) Dishley Grange Farm, near Loughborough, where he was born. The family was sufficiently wealthy to allow Robert to travel, which he began to do at an early age, exploring the farming methods of the West Country, Norfolk, Ireland and Holland. On taking over the farm he continued the development of the irrigation scheme begun by his father. Arthur Young visited the farm during his tour of east England in 1771. At that time it consisted of 440 acres (178 hectares), 110 acres (45 hectares) of which were arable, and carried a stock of 60 horses, 400 sheep and 150 other assorted beasts. Of the arable land, 30 acres (12 hectares) were under root crops, mainly turnips.
    Bakewell was not the first to pioneer selective breeding, but he was the first successfully to apply selection to both the efficiency with which an animal utilized its food, and its physical appearance. He always had a clear idea of the animal he wanted, travelled extensively to collect a range of animals possessing the characteristics he sought, and then bred from these towards his goal. He was aware of the dangers of inbreeding, but would often use it to gain the qualities he wanted. His early experiments were with Longhorn cattle, which he developed as a meat rather than a draught animal, but his most famous achievement was the development of the Improved Leicester breed of sheep. He set out to produce an animal that would put on the most meat in the least time and with the least feeding. As his base he chose the Old Leicester, but there is still doubt as to which other breeds he may have introduced to produce the desired results. The Improved Leicester was smaller than its ancestor, with poorer wool quality but with greatly improved meat-production capacity.
    Bakewell let out his sires to other farms and was therefore able to study their development under differing conditions. However, he made stringent rules for those who hired these animals, requiring the exclusive use of his rams on the farms concerned and requiring particular dietary conditions to be met. To achieve this control he established the Dishley Society in 1783. Although his policies led to accusations of closed access to his stock, they enabled him to keep a close control of all offspring. He thereby pioneered the process now recognized as "progeny testing".
    Bakewell's fame and that of his farm spread throughout the country and overseas. He engaged in an extensive correspondence and acted as host to all of influence in British and overseas agriculture, but it would appear that he was an over-generous host, since he is known to have been in financial difficulties in about 1789. He was saved from bankruptcy by a public subscription raised to allow him to continue with his breeding experiments; this experience may well have been the reason why he was such a staunch advocate of State funding of agricultural research.
    [br]
    Further Reading
    William Houseman, 1894, biography, Journal of the Royal Agricultural Society. 1–31. H.C.Parsons, 1957, Robert Bakewell (contains a more detailed account).
    R.Trow Smith, 1957, A History of British Livestock Husbandry to 1700, London: Routledge \& Kegan Paul.
    —A History of British Livestock Husbandry 1700 to 1900 (places Bakewell within the context of overall developments).
    M.L.Ryder, 1983, Sheep and Man, Duckworth (a scientifically detailed account which deals with Bakewell within the context of its particular subject).
    AP

    Biographical history of technology > Bakewell, Robert

  • 69 Buddle, John

    [br]
    b. 15 November 1773 Kyloe, Northumberland, England
    d. 10 October 1843 Wallsend, Northumberland, England
    [br]
    English colliery inspector, manager and agent.
    [br]
    Buddle was educated by his father, a former schoolteacher who was from 1781 the first inspector and manager of the new Wallsend colliery. When his father died in 1806, John Buddle assumed full responsibility at the Wallsend colliery, and he remained as inspector and manager there until 1819, when he was appointed as colliery agent to the third Marquis of Londonderry. In this position, besides managing colliery business, he acted as an entrepreneur, gaining political influence and organizing colliery owners into fixing prices; Buddle and Londonderry were also responsible for the building of Seaham harbour. Buddle became known as the "King of the Coal Trade", gaining influence throughout the important Northumberland and Durham coalfield.
    Buddle's principal contribution to mining technology was with regard to the improvement of both safety standards and productivity. In 1807 he introduced a steam-driven air pump which extracted air from the top of the upcast shaft. Two years later, he drew up plans which divided the coalface into compartments; this enabled nearly the whole seam to be exploited. The system of compound ventilation greatly reduced the danger of explosions: the incoming air was divided into two currents, and since each current passed through only half the underground area, the air was less heavily contaminated with gas.
    In 1813 Buddle presented an important paper on his method for mine ventilation to the Sunderland Society for Preventing Accidents in Coal-mines, which had been established in that year following a major colliery explosion. He emphasized the need for satisfactory underground lighting, which influenced the development of safety-lamps, and assisted actively in the experiments with Humphrey Davy's lamp which he was one of the first mine managers to introduce. Another mine accident, a sudden flood, prompted him to maintain a systematic record of mine-workings which ultimately resulted in the establishment of the Mining Record Office.
    [br]
    Bibliography
    1838, Transactions of the Natural History Society of Northumberland 11, pp. 309–36 (Buddle's paper on keeping records of underground workings).
    Further Reading
    R.L.Galloway, 1882, A History of Coalmining in Great Britain, London (deals extensively with Buddle's underground devices).
    R.W.Sturgess, 1975, Aristocrat in Business: The Third Marquis of Londonderry as
    Coalowner and Portbuilder, Durham: Durham County Local History Society (concentrates on Buddle's work after 1819).
    C.E.Hiskey, 1978, John Buddle 1773–1843, Agent and Entrepreneur in the Northeast
    Coal Trade, unpublished MLitt thesis, Durham University (a very detailed study).
    WK

    Biographical history of technology > Buddle, John

  • 70 Cobham, Sir Alan John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 May 1894 London, England
    d. 21 October 1973 British Virgin Islands
    [br]
    English pilot who pioneered worldwide air routes and developed an in-flight refuelling system which is in use today.
    [br]
    Alan Cobham was a man of many parts. He started as a veterinary assistant in France during the First World War, but transferred to the Royal Flying Corps in 1917. After the war he continued flying, by giving joy-rides and doing aerial photography work. In 1921 he joined the De Havilland Aircraft Company (see de Havilland, Geoffrey) as a test and charter pilot; he was also successful in a number of air races. During the 1920s Cobham made many notable flights to distant parts of the British Empire, pioneering possible routes for airline operations. During the early 1930s Sir Alan (he was knighted in 1926) devoted his attention to generating a public interest in aviation and to campaigning for more airfields. Cobham's Flying Circus toured the country giving flying displays and joy-rides, which for thousands of people was their first experience of flying.
    In 1933 Cobham planned a non-stop flight to India by refuelling his aircraft while flying: this was not a new idea but the process was still experimental. The flight was unsuccessful due to a fault in his aircraft, unrelated to the in-flight refuelling system. The following year Flight Refuelling Ltd was founded, and by 1939 two Short flying boats were operating the first inflight-refuelled service across the Atlantic. Inflight refuelling was not required during the early years of the Second World War, so Cobham turned to other projects such as thermal de-icing of wings, and a scheme which was not carried out, for delivering fighters to the Middle East by towing them behind Wellington bombers.
    After the Second World War the fortunes of Flight Refuelling Ltd were at a low ebb, especially when British South American Airways abandoned the idea of using in-flight refuelling. Then an American contract and the use of their tanker aircraft to ferry oil during the Berlin Airlift saved the day. In 1949 Cobham's chief designer, Peter Macgregor, came up with an idea for refuelling fighters using a probe and drogue system. A large tanker aircraft trailed a hose with a conical drogue at the free end. The fighter pilot manoeuvred the probe, fitted to his aircraft, so that it locked into the drogue, enabling fuel to be transferred. Since the 1950s this system has become the effective world standard.
    [br]
    Principal Honours and Distinctions
    Knighted 1926. Air Force Cross 1926.
    Bibliography
    1978, A Time to Fly, ed. C.Derrick, London; pub. in paperback 1986 (Cobham's memoirs).
    Flight to the Cape and Back, 1926, London; Australia and Back, 1926, London;
    Twenty Thousand Miles in a Flying Boat, 1930, London.
    Further Reading
    Peter G.Proctor, 1975, "The life and work of Sir Alan Cobham", Aerospace (RAeS) (March).
    JDS

    Biographical history of technology > Cobham, Sir Alan John

  • 71 Cookworthy, William

    [br]
    b. 1705 Kings bridge, Devon, England
    d. 16 October 1780 Plymouth, England
    [br]
    English pioneer of porcelain manufacture in England.
    [br]
    The family fortunes having been extinguished by the South Sea Bubble of 1720, Cookworthy and his brother had to fend for themselves. They set up, and succeeded, in the pharmacy trade. At the age of 31, however, William left the business, and after a period of probation he became a minister in the Society of Friends. In a letter of 5 May 1745, Cookworthy mentions some samples of kaolin and china or growan stone that had been brought to him from Virginia. He found similar materials at Treginning Hill in Cornwall, and between 1755 and 1758 he found sufficiently pure china clay and china stone to make a pure white porcelain. Cookworthy took out a patent for his discovery in 1768 which covered the manufacture of porcelain from moonstone or growan and growan clay, with a glaze made from china stone to which lime and fern ash or magnesia alba (basic carbonate of magnesium) were added. Cookworthy's experiments had been carried out on the property of Lord Camelford, who later assisted him, in the company of other Quakers, in setting up a works at Coxside, Plymouth, to manufacture the ware; the works employed between fifty and sixty people. In the absence of coal, Cookworthy resorted to wood as fuel, but this was scarce, so in 1770 he transferred his operation to Castle Green, Bristol. However, he had no greater success there, and in 1773 he sold the entire interest in porcelain manufacture to Richard Champion (1743–91), although Cookworthy and his heirs were to receive royalties for ninety-nine years. Champion, who had been working with Cookworthy since 1764 and was active in Bristol city affairs, continued the firm as Richard Champion \& Co., but when in 1775 Champion tried to renew Cookworthy's patent, Wedgwood and other Staffordshire potters challenged him. After litigation, the use of kaolin and china stone was thrown open to general use. The Staffordshire potters made good use of this new-found freedom and Champion was forced to sell the patent to them and dispose of his factory the following year. The potters of Staffordshire said of Cookworthy, "the greatest service ever conferred by one person on the pottery manufacturers is that of making them acquainted with china clay".
    [br]
    Further Reading
    W.Harrison, 1854, Memoir of William Cookworthy by His Grandson, London. F.S.Mackenna, 1946, Cookworthy's Plymouth and Bristol Porcelain, Leigh on Sea: Lewis.
    A.D.Selleck, 1978, Cookworthy 1705–80 and his Circle, privately published.
    LRD

    Biographical history of technology > Cookworthy, William

  • 72 Koenig, Friedrich

    SUBJECT AREA: Paper and printing
    [br]
    b. 17 April 1774 Eisleben, Thuringia, Germany
    d. 17 January 1833 Oberzell, near Würzburg, Germany
    [br]
    German inventor of the machine printing press.
    [br]
    Koenig became a printer and bookseller. Around 1800 he was among those who conceived the idea of mechanizing the hand printing press, which apart from minor details had survived virtually unchanged through the first three and a half centuries of printing. In 1803, in Sühl, Saxony, he designed a press in which the flat forme, carrying the type, was mechanically inked and passed to and from the platen. Whether this ma-chine was ever constructed is not known, but Koenig found little support for his ideas because of lack of technical and financial resources. So, in 1806, he went to England and was introduced to Thomas Bensley, a book printer off Fleet Street in London. Bensley agreed to support Koenig and brought in two other printers to help finance Koenig's experiments. Another German, Andreas Bauer, an engineer, assisted Koenig and became largely responsible for the practical execution of Koenig's plans.
    In 1810 they patented a press which was steam-driven but still used a platen. It was set to work in Bensley's office the following year but did not prove to be satisfactory. Koenig redesigned it, and in October 1811 he obtained a patent for a steam-driven press on an entirely new principle. In place of the platen, the paper was fixed around a hollow rotating cylinder, which impressed the paper on to the inked forme. In Bensley's office it was used for book printing, but its increased speed over the hand press appealed to newspaper proprietors and John Walter II of The Times asked Koenig to make a double-cylinder machine, so that the return stroke of the forme would be productive. A further patent was taken out in 1813 and the new machine was made ready to print the 29 November 1814 issue—in secrecy, behind closed doors, to forestall opposition from the pressmen working the hand presses. An important feature of the machine was that the inking rollers were not of the traditional leather or skin but a composite material made from glue, molasses and some soda. The inking could not have been achieved satisfactorily with the old materials. The editorial of that historic issue proclaimed, 'Our Journal of this day presents to the public the practical result of the greatest improvement connected with printing, since the discovery of the art itself Koenig's machine press could make 1,200 impressions an hour compared to 200 with the hand press; further improvements raised this figure to 1,500–2,000. Koenig's last English patent was in 1814 for an improved cylinder machine and a perfecting machine, which printed both sides of the paper. The steam-driven perfecting press was printing books in Bensley's office in February 1816. Koenig and Bauer wanted by that time to manufacture machine presses for other customers, but Bensley, now the principal shareholder, insisted that they should make machines for his benefit only. Finding this restriction intolerable, Koenig and Bauer returned to Germany: they became partners in a factory at Oberzell, near Würzburg, in 1817 and the firm of Koenig and Bauer flourishes there to this day.
    [br]
    Further Reading
    J.Moran, 1973, Printing Presses, London: Faber \& Faber.
    LRD

    Biographical history of technology > Koenig, Friedrich

  • 73 Marey, Etienne-Jules

    [br]
    b. 5 March 1830 Beaune, France
    d. 15 May 1904 Paris, France
    [br]
    French physiologist and pioneer of chronophotography.
    [br]
    At the age of 19 Marey went to Paris to study medicine, becoming particularly interested in the problems of the circulation of the blood. In an early communication to the Académie des Sciences he described a much improved device for recording the pulse, the sphygmograph, in which the beats were recorded on a smoked plate. Most of his subsequent work was concerned with methods of recording movement: to study the movement of the horse, he used pneumatic sensors on each hoof to record traces on a smoked drum; this device became known as the Marey recording tambour. His attempts to study the wing movements of a bird in flight in the same way met with limited success since the recording system interfered with free movement. Reading in 1878 of Muybridge's work in America using sequence photography to study animal movement, Marey considered the use of photography himself. In 1882 he developed an idea first used by the astronomer Janssen: a camera in which a series of exposures could be made on a circular photographic plate. Marey's "photographic gun" was rifle shaped and could expose twelve pictures in approximately one second on a circular plate. With this device he was able to study wing movements of birds in free flight. The camera was limited in that it could record only a small number of images, and in the summer of 1882 he developed a new camera, when the French government gave him a grant to set up a physiological research station on land provided by the Parisian authorities near the Porte d'Auteuil. The new design used a fixed plate, on which a series of images were recorded through a rotating shutter. Looking rather like the results provided by a modern stroboscope flash device, the images were partially superimposed if the subject was slow moving, or separated if it was fast. His human subjects were dressed all in white and moved against a black background. An alternative was to dress the subject in black, with highly reflective strips and points along limbs and at joints, to produce a graphic record of the relationships of the parts of the body during action. A one-second-sweep timing clock was included in the scene to enable the precise interval between exposures to be assessed. The fixed-plate cameras were used with considerable success, but the number of individual records on each plate was still limited. With the appearance of Eastman's Kodak roll-film camera in France in September 1888, Marey designed a new camera to use the long rolls of paper film. He described the new apparatus to the Académie des Sciences on 8 October 1888, and three weeks later showed a band of images taken with it at the rate of 20 per second. This camera and its subsequent improvements were the first true cinematographic cameras. The arrival of Eastman's celluloid film late in 1889 made Marey's camera even more practical, and for over a decade the Physiological Research Station made hundreds of sequence studies of animals and humans in motion, at rates of up to 100 pictures per second. Marey pioneered the scientific study of movement using film cameras, introducing techniques of time-lapse, frame-by-frame and slow-motion analysis, macro-and micro-cinematography, superimposed timing clocks, studies of airflow using smoke streams, and other methods still in use in the 1990s. Appointed Professor of Natural History at the Collège de France in 1870, he headed the Institut Marey founded in 1898 to continue these studies. After Marey's death in 1904, the research continued under the direction of his associate Lucien Bull, who developed many new techniques, notably ultra-high-speed cinematography.
    [br]
    Principal Honours and Distinctions
    Foreign member of the Royal Society 1898. President, Académie des Sciences 1895.
    Bibliography
    1860–1904, Comptes rendus de l'Académie des Sciences de Paris.
    1873, La Machine animale, Paris 1874, Animal Mechanism, London.
    1893, Die Chronophotographie, Berlin. 1894, Le Mouvement, Paris.
    1895, Movement, London.
    1899, La Chronophotographie, Paris.
    Further Reading
    ——1992, Muybridge and the Chronophotographers, London. Jacques Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris.
    BC / MG

    Biographical history of technology > Marey, Etienne-Jules

  • 74 Muller, Paul Hermann

    [br]
    b. 12 January 1899 Olten, Solothurn, Switzerland
    d. 13 October 1965 Basle, Switzerland
    [br]
    Swiss chemist, inventor of the insecticide DDT.
    [br]
    Muller was educated in Basle and his interest in chemistry was stimulated when he started work as a laboratory assistant in the chemical factory of Dreyfus \& Co. After further laboratory work, he entered the University of Basle in 1919, achieving his doctorate in 1925. The same year, he entered the dye works of J.R.Geigy AG as a research chemist. He spent the rest of his career there, rising to the position of Deputy Head of Pest Control Research. From 1935 he began the search for an insecticide that was fast acting and persistent, but harmless to plants and warmblooded animals. In 1940 he patented the use of a compound known since 1873, dichlorodiphenyltrichloroethane, or DDT. It could be easily and cheaply manufactured and was highly effective. Muller obtained a Swiss patent for DDT in 1940 and it went into commercial production two years later. One useful application of DDT at the end of the Second World War was in killing lice to prevent typhus epidemics. It was widely used and an important factor in farmers' postwar success in raising food production, but after twenty years or so, some species of insects were found to have developed resistance to its action, thus limiting its effectiveness. Worse, it was found to be harmful to other animals, which gave rise to anxieties about its persistence in the food chain. By the 1970s its use was banned or strictly limited in developed countries. Nevertheless, in its earlier career it had conferred undoubted benefits and was highly valued, as reflected by the award of a Nobel Prize in Medicine or Physiology in 1948.
    [br]
    Principal Honours and Distinctions
    Nobel Prize in Medicine or Physiology 1948.
    Bibliography
    Further Reading
    Obituary, 1965, Nature 208:1,043–4.
    LRD

    Biographical history of technology > Muller, Paul Hermann

  • 75 Parker, George Safford

    SUBJECT AREA: Paper and printing
    [br]
    b. 1 November 1863 Shullsberg, Wisconsin, USA
    d. 19 July 1937 USA
    [br]
    American perfector of the fountain pen and founder of the Parker Pen Company.
    [br]
    Parker was born of English immigrant stock and grew up on his parents' farm in Iowa. He matriculated at Upper Iowa University and then joined the Valentine School of Telegraphy at Jamesville, Wisconsin: within a year he was on the staff. He supplemented his meagre school-master's pay by selling fountain pens to his students. He found that the pens needed constant attention, and his students were continually bringing them back to him for repair. The more he sold, the more he repaired. The work furnished him, first, with a detailed knowledge of the design and construction of the fountain pen and then with the thought that he could make a better pen himself. He gave up his teaching career and in 1888 began experimenting. He established his own company and in the following year he registered his first patent. The Parker Pen Company was formally incorporated on 8 March 1892.
    In the following years he patented many improvements, including the Lucky Curve pen and ink-feed system, patented in 1894. That was the real breakthrough for Parker and the pen was an immediate success. It solved the problem that had bedevilled the fountain pen before and since, by incorporating an ink-feed system that ensured a free and uniform flow of ink to where it was wanted, the nib, and not to other undesirable places.
    Parker established a reputation for manufacturing high-quality pens that looked good and worked well and reliably. The pens were in demand worldwide and the company grew.
    During the First World War, Parker introduced the Trench Pen for use on the Western Front. A tablet of pigment was inserted in a blind cap at the end of the pen. When this tablet was placed in the barrel and the barrel was filled with water, the pen was ready for use.
    Later developments included the Duofold pen, designed and launched in 1920. It had an enlarged ink capacity, a red barrel and a twentyfive-year guarantee on the nib. It became immensely popular with the public and was the flagship product throughout the 1920s and early 1930s, until the Vacumatic was launched in 1933.
    Parker handed over control of the company to this two sons, Kenneth and Russell, during the 1920s, remaining President until his retirement in 1933.
    [br]
    Further Reading
    Obituary, 1937, Jamesville Gazette 19 July (an appreciation by the architect Frank Lloyd Wright was published simultaneously). No biography has appeared, but Parker gave details of his career in an article in Systems
    Review, October 1926.
    LRD

    Biographical history of technology > Parker, George Safford

  • 76 Paul, Robert William

    [br]
    b. 3 October 1869 Highbury, London, England
    d. 28 March 1943 London, England
    [br]
    English scientific instrument maker, inventor of the Unipivot electrical measuring instrument, and pioneer of cinematography.
    [br]
    Paul was educated at the City of London School and Finsbury Technical College. He worked first for a short time in the Bell Telephone Works in Antwerp, Belgium, and then in the electrical instrument shop of Elliott Brothers in the Strand until 1891, when he opened an instrument-making business at 44 Hatton Garden, London. He specialized in the design and manufacture of electrical instruments, including the Ayrton Mather galvanometer. In 1902, with a purpose-built factory, he began large batch production of his instruments. He also opened a factory in New York, where uncalibrated instruments from England were calibrated for American customers. In 1903 Paul introduced the Unipivot galvanometer, in which the coil was supported at the centre of gravity of the moving system on a single pivot. The pivotal friction was less than in a conventional instrument and could be used without accurate levelling, the sensitivity being far beyond that of any pivoted galvanometer then in existence.
    In 1894 Paul was asked by two entrepreneurs to make copies of Edison's kinetoscope, the pioneering peep-show moving-picture viewer, which had just arrived in London. Discovering that Edison had omitted to patent the machine in England, and observing that there was considerable demand for the machine from show-people, he began production, making six before the end of the year. Altogether, he made about sixty-six units, some of which were exported. Although Edison's machine was not patented, his films were certainly copyrighted, so Paul now needed a cinematographic camera to make new subjects for his customers. Early in 1895 he came into contact with Birt Acres, who was also working on the design of a movie camera. Acres's design was somewhat impractical, but Paul constructed a working model with which Acres filmed the Oxford and Cambridge Boat Race on 30 March, and the Derby at Epsom on 29 May. Paul was unhappy with the inefficient design, and developed a new intermittent mechanism based on the principle of the Maltese cross. Despite having signed a ten-year agreement with Paul, Acres split with him on 12 July 1895, after having unilaterally patented their original camera design on 27 May. By the early weeks of 1896, Paul had developed a projector mechanism that also used the Maltese cross and which he demonstrated at the Finsbury Technical College on 20 February 1896. His Theatrograph was intended for sale, and was shown in a number of venues in London during March, notably at the Alhambra Theatre in Leicester Square. There the renamed Animatographe was used to show, among other subjects, the Derby of 1896, which was won by the Prince of Wales's horse "Persimmon" and the film of which was shown the next day to enthusiastic crowds. The production of films turned out to be quite profitable: in the first year of the business, from March 1896, Paul made a net profit of £12,838 on a capital outlay of about £1,000. By the end of the year there were at least five shows running in London that were using Paul's projectors and screening films made by him or his staff.
    Paul played a major part in establishing the film business in England through his readiness to sell apparatus at a time when most of his rivals reserved their equipment for sole exploitation. He went on to become a leading producer of films, specializing in trick effects, many of which he pioneered. He was affectionately known in the trade as "Daddy Paul", truly considered to be the "father" of the British film industry. He continued to appreciate fully the possibilities of cinematography for scientific work, and in collaboration with Professor Silvanus P.Thompson films were made to illustrate various phenomena to students.
    Paul ended his involvement with film making in 1910 to concentrate on his instrument business; on his retirement in 1920, this was amalgamated with the Cambridge Instrument Company. In his will he left shares valued at over £100,000 to form the R.W.Paul Instrument Fund, to be administered by the Institution of Electrical Engineers, of which he had been a member since 1887. The fund was to provide instruments of an unusual nature to assist physical research.
    [br]
    Principal Honours and Distinctions
    Fellow of the Physical Society 1920. Institution of Electrical Engineers Duddell Medal 1938.
    Bibliography
    17 March 1903, British patent no. 6,113 (the Unipivot instrument).
    1931, "Some electrical instruments at the Faraday Centenary Exhibition 1931", Journal of Scientific Instruments 8:337–48.
    Further Reading
    Obituary, 1943, Journal of the Institution of Electrical Engineers 90(1):540–1. P.Dunsheath, 1962, A History of Electrical Engineering, London: Faber \& Faber, pp.
    308–9 (for a brief account of the Unipivot instrument).
    John Barnes, 1976, The Beginnings of Cinema in Britain, London. Brian Coe, 1981, The History of Movie Photography, London.
    BC / GW

    Biographical history of technology > Paul, Robert William

  • 77 Paxton, Sir Joseph

    [br]
    b. 3 August 1801 Milton Bryant, Bedfordshire, England
    d. 8 June 1865 Sydenham, London, England
    [br]
    English designer of the Crystal Palace, the first large-scale prefabricated ferrovitreous structure.
    [br]
    The son of a farmer, he had worked in gardens since boyhood and at the age of 21 was employed as Undergardener at the Horticultural Society Gardens in Chiswick, from where he went on to become Head Gardener for the Duke of Devonshire at Chatsworth. It was there that he developed his methods of glasshouse construction, culminating in the Great Conservatory of 1836–40, an immense structure some 277 ft (84.4 m) long, 123 ft (37.5 m) wide and 67 ft (20.4 m) high. Its framework was of iron and its roof of glass, with wood to contain the glass panels; it is now demolished. Paxton went on to landscape garden design, fountain and waterway engineering, the laying out of the model village of Edensor, and to play a part in railway and country house projects.
    The structure that made Paxton a household name was erected in Hyde Park, London, to house the Great Exhibition of 1851 and was aptly dubbed, by Punch, the Crystal Palace. The idea of holding an international exhibition for industry had been mooted in 1849 and was backed by Prince Albert and Henry Cole. The money for this was to be raised by public subscription and 245 designs were entered into a competition held in 1850; however, most of the concepts, received from many notable architects and engineers, were very costly and unsuitable, and none were accepted. That same year, Paxton published his scheme in the Illustrated London News and it was approved after it received over-whelming public support.
    Paxton's Crystal Palace, designed and erected in association with the engineers Fox and Henderson, was a prefabricated glasshouse of vast dimensions: it was 1,848 ft (563.3 m) long, 408 ft (124.4 m) wide and over 100 ft (30.5 m) high. It contained 3,300 iron columns, 2,150 girders. 24 miles (39 km) of guttering, 600,000 ft3 (17,000 m3) of timber and 900,000 ft2 (84,000 m) of sheet glass made by Chance Bros, of Birmingham. One of the chief reasons why it was accepted by the Royal Commission Committee was that it fulfilled the competition proviso that it should be capable of being erected quickly and subsequently dismantled and re-erected elsewhere. The Crystal Palace was to be erected at a cost of £79,800, much less than the other designs. Building began on 30 July 1850, with a labour force of some 2,000, and was completed on 31 March 1851. It was a landmark in construction at the time, for its size, speed of construction and its non-eclectic design, and, most of all, as the first great prefabricated building: parts were standardized and made in quantity, and were assembled on site. The exhibition was opened by Queen Victoria on 1 May 1851 and had received six million visitors when it closed on 11 October. The building was dismantled in 1852 and reassembled, with variations in design, at Sydenham in south London, where it remained until its spectacular conflagration in 1936.
    [br]
    Principal Honours and Distinctions
    Knighted 1851. MP for Coventry 1854–65. Fellow Linnaean Society 1853; Horticultural Society 1826. Order of St Vladimir, Russia, 1844.
    Further Reading
    P.Beaver, 1986, The Crystal Palace: A Portrait of Victorian Enterprise, Phillimore. George F.Chadwick, 1961, Works of Sir Joseph Paxton 1803–1865, Architectural Press.
    DY

    Biographical history of technology > Paxton, Sir Joseph

  • 78 Peter the Great (Pyotr Alekseyevich Romanov)

    SUBJECT AREA: Ports and shipping
    [br]
    b. 10 June 1672 (30 May 1672 Old Style) Moscow, Russia
    d. 8 February 1725 (28 January 1725 Old Style) St Petersburg, Russia
    [br]
    Russian Tsar (1682–1725), Emperor of all the Russias (1722–5), founder of the Russian Navy, shipbuilder and scientist; as a shipbuilder he was known by the pseudonym Petr Mikhailov.
    [br]
    Peter the Great was a man with a single-minded approach to problems and with passionate and lifelong interests in matters scientific, military and above all maritime. The unusual and dominating rule of his vast lands brought about the age of Russian enlightenment, and ensured that his country became one of the most powerful states in Europe.
    Peter's interest in ships and shipbuilding started in his childhood; c. 1687 he had an old English-built day sailing boat repaired and launched, and on it he learned the rudiments of sailing and navigation. This craft (still preserved in St Petersburg) became known as the "Grandfather of the Russian Navy". In the years 1688 to 1693 he established a shipyard on Lake Plestsheev and then began his lifelong study of shipbuilding by visiting and giving encouragement to the industry at Archangelsk on the White Sea and Voronezh in the Sea of Azov. In October 1696, Peter took Azov from the Turks, and the Russian Fleet ever since has regarded that date as their birthday. Setting an example to the young aristocracy, Peter travelled to Western Europe to widen his experience and contacts and also to learn the trade of shipbuilding. He worked in the shipyards of Amsterdam and then at the Naval Base of Deptford on the Thames.
    The war with Sweden concentrated his attention on the Baltic and, to establish a base for trading and for the Navy, the City of St Petersburg was constructed on marshland. The Admiralty was built in the city and many new shipyards in the surrounding countryside, one being the Olonez yard which in 1703 built the frigate Standart, the first for the Baltic Fleet, which Peter himself commanded on its first voyage. The military defence of St Petersburg was effected by the construction of Kronstadt, seawards of the city.
    Throughout his life Peter was involved in ship design and it is estimated that one thousand ships were built during his reign. He introduced the building of standard ship types and also, centuries ahead of its time, the concept of prefabrication, unit assembly and the building of part hulls in different places. Officially he was the designer of the ninety-gun ship Lesnoe of 1718, and this may have influenced him in instituting Rules for Shipbuilders and for Seamen. In 1716 he commanded the joint fleets of the four naval powers: Denmark, Britain, Holland and Russia.
    He established the Marine Academy, organized and encouraged exploration and scientific research, and on his edict the St Petersburg Academy of Science was opened. He was not averse to the recruitment of foreigners to key posts in the nation's service. Peter the Great was a remarkable man, with the unusual quality of being a theorist and an innovator, in addition to the endowments of practicality and common sense.
    [br]
    Further Reading
    Robert K.Massie, 1981, Peter the Great: His Life and Work, London: Gollancz.
    Henri Troyat, 1979, Pierre le Grand; pub. in English 1988 as Peter the Great, London: Hamish Hamilton (a good all-round biography).
    AK / FMW

    Biographical history of technology > Peter the Great (Pyotr Alekseyevich Romanov)

  • 79 Porta, Giovanni Battista (Giambattista) della

    [br]
    b. between 3 October and 15 November 1535 Vico Equense, near Naples, Italy
    d. 4 February 1615 Naples, Italy
    [br]
    Italian natural philosopher who published many scientific books, one of which covered ideas for the use of steam.
    [br]
    Giambattista della Porta spent most of his life in Naples, where some time before 1580 he established the Accademia dei Segreti, which met at his house. In 1611 he was enrolled among the Oziosi in Naples, then the most renowned literary academy. He was examined by the Inquisition, which, although he had become a lay brother of the Jesuits by 1585, banned all further publication of his books between 1592 and 1598.
    His first book, the Magiae Naturalis, which covered the secrets of nature, was published in 1558. He had been collecting material for it since the age of 15 and he saw that science should not merely represent theory and contemplation but must arrive at practical and experimental expression. In this work he described the hardening of files and pieces of armour on quite a large scale, and it included the best sixteenth-century description of heat treatment for hardening steel. In the 1589 edition of this work he covered ways of improving vision at a distance with concave and convex lenses; although he may have constructed a compound microscope, the history of this instrument effectively begins with Galileo. His theoretical and practical work on lenses paved the way for the telescope and he also explored the properties of parabolic mirrors.
    In 1563 he published a treatise on cryptography, De Furtivis Liter arum Notis, which he followed in 1566 with another on memory and mnemonic devices, Arte del Ricordare. In 1584 and 1585 he published treatises on horticulture and agriculture based on careful study and practice; in 1586 he published De Humana Physiognomonia, on human physiognomy, and in 1588 a treatise on the physiognomy of plants. In 1593 he published his De Refractione but, probably because of the ban by the Inquisition, no more were produced until the Spiritali in 1601 and his translation of Ptolemy's Almagest in 1605. In 1608 two new works appeared: a short treatise on military fortifications; and the De Distillatione. There was an important work on meteorology in 1610. In 1601 he described a device similar to Hero's mechanisms which opened temple doors, only Porta used steam pressure instead of air to force the water out of its box or container, up a pipe to where it emptied out into a higher container. Under the lower box there was a small steam boiler heated by a fire. He may also have been the first person to realize that condensed steam would form a vacuum, for there is a description of another piece of apparatus where water is drawn up into a container at the top of a long pipe. The container was first filled with steam so that, when cooled, a vacuum would be formed and water drawn up into it. These are the principles on which Thomas Savery's later steam-engine worked.
    [br]
    Further Reading
    Dictionary of Scientific Biography, 1975, Vol. XI, New York: C.Scribner's Sons (contains a full biography).
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press (contains an account of his contributions to the early development of the steam-engine).
    C.Singer (ed.), 1957, A History of Technology, Vol. III, Oxford University Press (contains accounts of some of his other discoveries).
    I.Asimov (ed.), 1982, Biographical Encyclopaedia of Science and Technology, 2nd edn., New York: Doubleday.
    G.Sarton, 1957, Six wings: Men of Science in the Renaissance, London: Bodley Head, pp. 85–8.
    RLH / IMcN

    Biographical history of technology > Porta, Giovanni Battista (Giambattista) della

  • 80 Riefler, Sigmund

    SUBJECT AREA: Horology
    [br]
    b. 9 August 1847 Maria Rain, Germany
    d. 21 October 1912 Munich, Germany
    [br]
    German engineer who invented the precision clock that bears his name.
    [br]
    Riefler's father was a scientific-instrument maker and clockmaker who in 1841 had founded the firm of Clemens Riefler to make mathematical instruments. After graduating in engineering from the University of Munich Sigmund worked as a surveyor, but when his father died in 1876 he and his brothers ran the family firm. Sigmund was responsible for technical development and in this capacity he designed a new system of drawing-instruments which established the reputation of the firm. He also worked to improve the performance of the precision clock, and in 1889 he was granted a patent for a new form of escapement. This escapement succeeded in reducing the interference of the clock mechanism with the free swinging of the pendulum by impulsing the pendulum through its suspension strip. It proved to be the greatest advance in precision timekeeping since the introduction of the dead-beat escapement about two hundred years earlier. When the firm of Clemens Riefler began to produce clocks with this escapement in 1890, they replaced clocks with Graham's dead-beat escapement as the standard regulator for use in observatories and other applications where the highest precision was required. In 1901 a movement was fitted with electrical rewind and was encapsulated in an airtight case, at low pressure, so that the timekeeping was not affected by changes in barometric pressure. This became the standard practice for precision clocks. Although the accuracy of the Riefler clock was later surpassed by the Shortt free-pendulum clock and the quartz clock, it remained in production until 1965, by which time over six hundred instruments had been made.
    [br]
    Principal Honours and Distinctions
    Franklin Institute John Scott Medal 1894. Honorary doctorate, University of Munich 1897. Vereins zur Förderung des Gewerbefleisses in Preussen Gold Medal 1900.
    Bibliography
    1907, Präzisionspendeluhren und Zeitdienstanlagen fürSternwarten, Munich (for a complete bibliography see D.Riefler below).
    Further Reading
    D.Riefler, 1981, Riefler-Präzisionspendeluhren, Munich (the definitive work on Riefler and his clock).
    A.L.Rawlings, 1948, The Science of Clocks and Watches, 2nd edn; repub. 1974 (a technical assessment of the Riefler escapement in its historical context).
    DV

    Biographical history of technology > Riefler, Sigmund

См. также в других словарях:

  • October 1910 — January – February – March – April – May – June – July August – September – October – November – December The following events occurred in October 1910: October 1, 1910: Terrorist bombing of the Los Angeles Times kills 21 people …   Wikipedia

  • October */*/*/ — UK [ɒkˈtəʊbə(r)] / US [ɑkˈtoʊbər] noun [countable/uncountable] Word forms October : singular October plural Octobers the tenth month of the year, between September and November We re going to Boston in October. The next meeting will be on October …   English dictionary

  • October — [[t]ɒkto͟ʊbə(r)[/t]] ♦ Octobers N VAR October is the tenth month of the year in the Western calendar. Most seasonal hiring is done in early October... The first plane is due to leave on October 2... My grandson has been away since last October …   English dictionary

  • October — Oc|to|ber [ ak toubər ] noun count or uncount *** the tenth month of the year, between September and November: We re going to Boston in October. The next meeting will be on October 9th. I haven t seen Fay since last October …   Usage of the words and phrases in modern English

  • October 2010 — was the tenth month of that year. It began on a Friday and concluded after 31 days on a Sunday. Portal:Current events This is an archived version of Wikipedia s Current events Portal from October 2010 …   Wikipedia

  • October 2011 — is the tenth month of the current year. It began on a Saturday and ended after 31 days on a Monday. International holidays (See Holidays and observances, on sidebar at right, below) Portal:Current events This is an archived version of Wikipedia s …   Wikipedia

  • October 2004 — October 2004: January – February – March – April – May – June – July – August – September – October – November – December See also: October 2004 in sports Events << …   Wikipedia

  • October 1998 Central Texas floods — Estimated rainfall totals from the United States Geological Survey. Formed October 17, 1998 …   Wikipedia

  • Since I Left You — Studio album by The Avalanches Released 27 November 2000  …   Wikipedia

  • October 2006 — was a month that began on a Sunday. The month was marked by a nuclear test by North Korea that prompted that passing of Resolution 1718 by the United Nations Security Council. Also at the United Nations, Ban Ki moon was elected to succeed Kofi… …   Wikipedia

  • October 2009 — was the 10th month of that year. It began on a Thursday and ended after 31 days on a Saturday. International holidays (See Holidays and observances, on sidebar at right, below) Portal:Current events This is an archived version of Wikipedia s… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»