Перевод: со всех языков на все языки

со всех языков на все языки

short+subject

  • 121 Faraday, Michael

    SUBJECT AREA: Electricity
    [br]
    b. 22 September 1791 Newington, Surrey, England
    d. 25 August 1867 London, England
    [br]
    English physicist, discoverer of the principles of the electric motor and dynamo.
    [br]
    Faraday's father was a blacksmith recently moved south from Westmorland. The young Faraday's formal education was limited to attendance at "a Common Day School", and then he worked as an errand boy for George Riebau, a bookseller and bookbinder in London's West End. Riebau subsequently took him as an apprentice bookbinder, and Faraday seized every opportunity to read the books that came his way, especially scientific works.
    A customer in the shop gave Faraday tickets to hear Sir Humphry Davy lecturing at the Royal Institution. He made notes of the lectures, bound them and sent them to Davy, asking for scientific employment. When a vacancy arose for a laboratory assistant at the Royal Institution, Davy remembered Faraday, who he took as his assistant on an 18- month tour of France, Italy and Switzerland (despite the fact that Britain and France were at war!). The tour, and especially Davy's constant company and readiness to explain matters, was a scientific education for Faraday, who returned to the Royal Institution as a competent chemist in his own right. Faraday was interested in electricity, which was then viewed as a branch of chemistry. After Oersted's announcement in 1820 that an electric current could affect a magnet, Faraday devised an arrangement in 1821 for producing continuous motion from an electric current and a magnet. This was the basis of the electric motor. Ten years later, after much thought and experiment, he achieved the converse of Oersted's effect, the production of an electric current from a magnet. This was magneto-electric induction, the basis of the electric generator.
    Electrical engineers usually regard Faraday as the "father" of their profession, but Faraday himself was not primarily interested in the practical applications of his discoveries. His driving motivation was to understand the forces of nature, such as electricity and magnetism, and the relationship between them. Faraday delighted in telling others about science, and studied what made a good scientific lecturer. At the Royal Institution he introduced the Friday Evening Discourses and also the Christmas Lectures for Young People, now televised in the UK every Christmas.
    [br]
    Bibliography
    1991, Curiosity Perfectly Satisfyed. Faraday's Travels in Europe 1813–1815, ed. B.Bowers and L.Symons, Peter Peregrinus (Faraday's diary of his travels with Humphry Davy).
    Further Reading
    L.Pearce Williams, 1965, Michael Faraday. A Biography, London: Chapman \& Hall; 1987, New York: Da Capo Press (the most comprehensive of the many biographies of Faraday and accounts of his work).
    For recent short accounts of his life see: B.Bowers, 1991, Michael Faraday and the Modern World, EPA Press. G.Cantor, D.Gooding and F.James, 1991, Faraday, Macmillan.
    J.Meurig Thomas, 1991, Michael Faraday and the Royal Institution, Adam Hilger.
    BB

    Biographical history of technology > Faraday, Michael

  • 122 Farman, Henri

    SUBJECT AREA: Aerospace
    [br]
    b. 26 May 1874 Paris, France
    d. 17 July 1958 Paris, France
    [br]
    French aeroplane designer who modified Voisin biplanes and later, with his brother Maurice (b. 21 March 1877 Paris, France; d. 26 February 1964 Paris, France), created a major aircraft-manufacturing company.
    [br]
    The parents of Henri and Maurice Farman were British subjects living in Paris, but their sons lived all their lives in France and became French citizens. As young men, both became involved in cycle and automobile racing. Henri (or Henry—he used both versions) turned his attention to aviation in 1907 when he bought a biplane from Gabriel Voisin. Within a short time he had established himself as one of the leading pilots in Europe, with many record-breaking flights to his credit. Farman modified the Voisin with his own improvements, including ailerons, and then in 1909 he designed the first Farman biplane. This became the most popular biplane in Europe from the autumn of 1909 until well into 1911 and is one of the classic aeroplanes of history. Meanwhile, Maurice Farman had also begun to design and build biplanes; his first design of 1909 was not a great success but from it evolved two robust biplanes nicknamed the "Longhorn" and the "Shorthorn", so called because of their undercarriage skids. In 1912 the brothers joined forces and set up a very large factory at Billancourt. The "Longhorn" and "Shorthorn" became the standard training aircraft in France and Britain during the early years of the First World War. The Farman brothers went on to produce a number of other wartime designs, including a large bomber. After the war the Farmans produced a series of large airliners which played a key role in establishing France as a major airline operator. Most famous of these was the Goliath, a twin-engined biplane capable of carrying up to twelve passengers. This was produced from 1918 to 1929 and was used by many airlines, including the Farman Line. The brothers retired when their company was nationalized in 1937.
    [br]
    Bibliography
    1910, The Aviator's Companion, London (with his brother Dick Farman).
    Further Reading
    M.Farman, 1901, 3,000 kilomètres en ballon, Paris (an account of several balloon flights from 1894 to 1900).
    J.Liron, 1984, Les Avions Farman, Paris (provides comprehensive descriptions of all Farman aircraft).
    Jane's Fighting Aircraft of World War I, 1990, London (reprint) (gives details of all early Farman aircraft).
    J.Stroud, 1966, European Aircraft since 1910, London (provides details about Farman air-liners).
    JDS

    Biographical history of technology > Farman, Henri

  • 123 Fokker, Anthony Herman Gerard

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1890 Kediri, Java, Dutch East Indies (now Indonesia)
    d. 23 December 1939 New York, USA
    [br]
    Dutch designer of German fighter aircraft during the First World War and of many successful airliners during the 1920s and 1930s.
    [br]
    Anthony Fokker was born in Java, where his Dutch father had a coffee plantation. The family returned to the Netherlands and, after schooling, young Anthony went to Germany to study aeronautics. With the aid of a friend he built his first aeroplane, the Spin, in 1910: this was a monoplane capable of short hops. By 1911 Fokker had improved the Spin and gained a pilot's licence. In 1912 he set up a company called Fokker Aeroplanbau at Johannistal, outside Berlin, and a series of monoplanes followed.
    When war broke out in 1914 Fokker offered his designs to both sides, and the Germans accepted them. His E I monoplane of 1915 caused a sensation with its manoeuvrability and forward-firing machine gun. Fokker and his collaborators improved on the French deflector system introduced by Raymond Saulnier by fitting an interrupter gear which synchronized the machine gun to fire between the blades of the rotating propeller. The Fokker Dr I triplane and D VII biplane were also outstanding German fighters of the First World War. Fokker's designs were often the work of an employee who received little credit: nevertheless, Fokker was a gifted pilot and a great organizer. After the war, Fokker moved back to the Netherlands and set up the Fokker Aircraft Works in Amsterdam. In 1922, however, he emigrated to the USA and established the Atlantic Aircraft Corporation in New Jersey. His first significant success there came the following year when one of his T-2 monoplanes became the first aircraft to fly non-stop across the USA, from New York to San Diego. He developed a series of civil aircraft using the well-proven method of construction he used for his fighters: fuselages made from steel tubes and thick, robust wooden wings. Of these, probably the most famous was the F VII/3m, a high-wing monoplane with three engines and capable of carrying about ten passengers. From 1925 the F VII/3m airliner was used worldwide and made many record-breaking flights, such as Lieutenant-Commander Richard Byrd's first flight over the North Pole in 1926 and Charles Kingsford-Smith's first transpacific flight in 1928. By this time Fokker had lost interest in military aircraft and had begun to see flight as a means of speeding up global communications and bringing people together. His last years were spent in realizing this dream, and this was reflected in his concentration on the design and production of passenger aircraft.
    [br]
    Principal Honours and Distinctions
    Royal Netherlands Aeronautical Society Gold Medal 1932.
    Bibliography
    1931, The Flying Dutchman: The Life of Anthony Fokker, London: Routledge \& Sons (an interesting, if rather biased, autobiography).
    Further Reading
    A.R.Weyl, 1965, Fokker: The Creative Years, London; reprinted 1988 (a very detailed account of Fokker's early work).
    Thijs Postma, 1979, Fokker: Aircraft Builders to the World, Holland; 1980, English edn, London (a well-illustrated history of Fokker and the company).
    Henri Hegener, 1961, Fokker: The Man and His Aircraft, Letchworth, Herts.
    JDS / CM

    Biographical history of technology > Fokker, Anthony Herman Gerard

  • 124 Gesner, Abraham

    SUBJECT AREA: Chemical technology
    [br]
    b. 1797 England
    d. 1864
    [br]
    English pioneer in the extraction of paraffin.
    [br]
    Gesner qualified as a physician in London in 1827 and developed an interest in geology. Possibly through his friendship with Admiral Thomas Cochrane, later tenth Earl of Dundonald, he began experimenting with asphalt rock from Trinidad; he obtained several patents for the processes he employed to extract an oil from the rock. In 1853 the Asphalt Mining and Kerosene Company was founded to work his patents, which described how to purify the liquid produced by the dry distillation of asphalt, by mixing the liquid first with 5–10 per cent by volume of sulphuric acid to remove tars, and then with freshly calcined lime to remove water. It was then redistilled to produce an inflammable oil. Gesner called it kerosene, from the Greek keros, meaning "wax"; in Britain it came to be known as paraffin. The new oil sold well, especially when accompanied by a cheap lamp with a flat wick and glass chimney. By 1856 Gesner considered his product could replace whale oil as a fuel for lamps; success was short-lived, however, for the oil was overtaken three years later by the drilling of the first American petroleum wells.
    LRD

    Biographical history of technology > Gesner, Abraham

  • 125 Gestetner, David

    SUBJECT AREA: Paper and printing
    [br]
    b. March 1854 Csorna, Hungary
    d. 8 March 1939 Nice, France
    [br]
    Hungarian/British pioneer of stencil duplicating.
    [br]
    For the first twenty-five years of his life, Gestetner was a rolling stone and accordingly gathered no moss. Leaving school in 1867, he began working for an uncle in Sopron, making sausages. Four years later he apprenticed himself to another uncle, a stockbroker, in Vienna. The financial crisis of 1873 prompted a move to a restaurant, also in the family, but tiring of a menial existence, he emigrated to the USA, travelling steerage. He began to earn a living by selling Japanese kites: these were made of strong Japanese paper coated with lacquer, and he noted their long fibres and great strength, an observation that was later to prove useful when he was searching for a suitable medium for stencil duplicating. However, he did not prosper in the USA and he returned to Europe, first to Vienna and finally to London in 1879. He took a job with Fairholme \& Co., stationers in Shoe Lane, off Holborn; at last Gestetner found an outlet for his inventive genius and he began his life's work in developing stencil duplicating. His first patent was in 1879 for an application of the hectograph, an early method of duplicating documents. In 1881, he patented the toothed-wheel pen, or Cyclostyle, which made good ink-passing perforations in the stencil paper, with which he was able to pioneer the first practicable form of stencil duplicating. He then adopted a better stencil tissue of Japanese paper coated with wax, and later an improved form of pen. This assured the success of Gestetner's form of stencil duplicating and it became established practice in offices in the late 1880s. Gestetner began to manufacture the apparatus in premises in Sun Street, at first under the name of Fairholme, since they had defrayed the patent expenses and otherwise supported him financially, in return for which Gestetner assigned them his patent rights. In 1882 he patented the wheel pen in the USA and appointed an agent to sell the equipment there. In 1884 he moved to larger premises, and three years later to still larger premises. The introduction of the typewriter prompted modifications that enabled stencil duplicating to become both the standard means of printing short runs of copy and an essential piece of equipment in offices. Before the First World War, Gestetner's products were being sold around the world; in fact he created one of the first truly international distribution networks. He finally moved to a large factory to the north-east of London: when his company went public in 1929, it had a share capital of nearly £750,000. It was only with the development of electrostatic photocopying and small office offset litho machines that stencil duplicating began to decline in the 1960s. The firm David Gestetner had founded adapted to the new conditions and prospers still, under the direction of his grandson and namesake.
    [br]
    Further Reading
    W.B.Proudfoot, 1972, The Origin of Stencil Duplicating London: Hutchinson (gives a good account of the method and the development of the Gestetner process, together with some details of his life).
    H.V.Culpan, 1951, "The House of Gestetner", in Gestetner 70th Anniversary Celebration Brochure, London: Gestetner.
    LRD

    Biographical history of technology > Gestetner, David

  • 126 Giles, Francis

    [br]
    b. 1787 England
    d. 4 March 1847 England
    [br]
    English civil engineer engaged in canal, harbour and railway construction.
    [br]
    Trained as a surveyor in John Rennie's organization, Giles carried out surveys on behalf of Rennie before setting up in practice on his own. His earliest survey seems to have been on the line of the proposed Weald of Kent Canal in 1809. Then in 1811 he surveyed the proposed London \& Cambridge Canal linking Bishops Stortford on the Stort with Cambridge and with a branch to Shefford on the Ivel. In the same year he surveyed the line of the Wey \& Arun Junction Canal, and in 1816, in the same area, the Portsmouth \& Arundel Canal. In 1819 he carried out what is regarded as his first independent commission—the extension of the River Ivel Navigation from Biggleswade to Shefford. At this time he was helping John Rennie on the Aire \& Calder Navigation and continued there after Rennie's death in 1821. In 1825 he was engaged on plans for a London to Portsmouth Ship Canal and also on a suggested link between the Basingstoke and Kennet \& Avon Canals. Later, on behalf of Sir George Duckett, he was Engineer to the Hertford Union Canal, which was completed in 1830, and linked the Regent's Canal to the Lee Navigation. In 1833 he completed the extension of the Sankey Brook Navigation from Fiddler's Ferry to the Mersey at Widnes. One of his last canal works was a survey of the River Lee in 1844. Apart from his canal work, he was appointed Engineer to the Newcastle \& Carlisle Railway in 1829 and designed, among other works, the fine viaducts at Wetheral and Cor by. He was also, for a very short time, Engineer to the London \& Southampton Railway. Among other commissions, he was involved in harbour surveys and works at Dover, Rye, Holyhead, Dundee, Bridport and Dun Laoghaire (Kingstown). He was elected a member of the Institution of Civil Engineers in 1842 and succeeded Telford on the Exchequer Bill Loans Board.
    [br]
    Further Reading
    1848, Memoir 17, London: Institution of Civil Engineers, 9.
    JHB

    Biographical history of technology > Giles, Francis

  • 127 Gillette, King Camp

    [br]
    b. 5 January 1855 Fond du Lac, Wisconsin, USA
    d. 9 July 1932 Los Angeles, California, USA
    [br]
    American inventor and manufacturer, inventor of the safety razor.
    [br]
    Gillette's formal education in Chicago was brought to an end when a disastrous fire destroyed all his father's possessions. Forced to fend for himself, he worked first in the hardware trade in Chicago and New York, then as a travelling salesman. Gillette inherited the family talent for invention, but found that his successful inventions barely paid for those that failed. He was advised by a previous employer, William Painter (inventor of the Crown Cork), to look around for something that could be used widely and then thrown away. In 1895 he succeeded in following that advice of inventing something which people could use and then throw away, so that they would keep coming back for more. An idea came to him while he was honing an old-fashioned razor one morning; he was struck by the fact that only a short piece of the whole length of a cutthroat razor is actually used for shaving, as well as by the potentially dangerous nature of the implement. He "rushed out to purchase some pieces of brass, some steel ribbon used for clock springs, a small hand vise and some files". He thought of using a thin steel blade sharpened on each side, placed between two plates and held firmly together by a handle. Though coming from a family of inventors, Gillette had no formal technical education and was entirely ignorant of metallurgy. For six years he sought a way of making a cheap blade from sheet steel that could be hardened, tempered and sharpened to a keen edge.
    Gillette eventually found financial supporters: Henry Sachs, a Boston lamp manufacturer; his brother-in-law Jacob Heilbron; and William Nickerson, who had a considerable talent for invention. By skilled trial and error rather than expert metallurgical knowledge, Nickerson devised ways of forming and sharpening the blades, and it was these that brought commercial success. In 1901, the American Safety Razor Company, later to be renamed the Gillette Safety Razor Company, was set up. When it started production in 1903 the company was badly in debt, and managed to sell only fifty-one razors and 168 blades; but by the end of the following year, 90,000 razors and 12.4 million blades had been sold. A sound invention coupled with shrewd promotion ensured further success, and eight plants manufacturing safety razors were established in various parts of the world. Gillette's business experiences led him into the realms of social theory about the way society should be organized. He formulated his views in a series of books published over the years 1894 to 1910. He believed that competition led to a waste of up to 90 per cent of human effort and that want and crime would be eliminated by substituting a giant trust to plan production centrally. Unfortunately, the public in America, or anywhere else for that matter, were not ready for this form of Utopia; no omniscient planners were available, and human wants and needs were too various to be supplied by a single agency. Even so, some of his ideas have found favour: air conditioning and government provision of work for the unemployed. Gillette made a fortune from his invention and retired from active participation in the business in 1913, although he remained President until 1931 and Director until his death.
    [br]
    Bibliography
    "Origin of the Gillette razor", Gillette Blade (February/March).
    Further Reading
    Obituary, 1932, New York Times (11 July).
    J.Jewkes, D.Sawers and R.Stillerman, 1958, The Sources of Invention, London: Macmillan.
    LRD / IMcN

    Biographical history of technology > Gillette, King Camp

  • 128 Girard, Philippe de

    SUBJECT AREA: Textiles
    [br]
    b. 1775 France
    d. 1845
    [br]
    French developer of a successful flax-heckling machine for the preparation of fibres for power-spinning.
    [br]
    Early drawing and spinning processes failed to give linen yarn the requisite fineness and homogeneity. In 1810 Napoleon offered a prize of a million francs for a successful flax-spinning machine as part of his policy of stimulating the French textile industries. Spurred on by this offer, Girard suggested three improvements. He was too late to win the prize, but his ideas were patented in England in 1814, although not under his own name. He proposed that the fibres should be soaked in a very hot alkaline solution both before drawing and immediately before they went to the spindles. The actual drawing was to be done by passing the dried material through combs or gills that moved alternately; gill drawing was taken up in England in 1816. His method of wet spinning was never a commercial success, but his processes were adopted in part and developed in Britain and spread to Austria, Poland and France, for his ideas were essentially good and produced a superior product. The successful power-spinning of linen thread from flax depended primarily upon the initial processes of heckling and drawing. The heckling of the bundles or stricks of flax, so as to separate the long fibres of "line" from the shorter ones of "tow", was extremely difficult to mechanize, for each strick had to be combed on both sides in turn and then in the reverse direction. It was to this problem that Girard next turned his attention, inventing a successful machine in 1832 that subsequently was improved in England. The strick was placed between two vertical sheets of combs that moved opposite to each other, depositing the tow upon a revolving cylinder covered with a brush at the bottom of the machine, while the holder from which the strick was suspended moved up and down so as to help the teeth to penetrate deeper into the flax. The tow was removed from the cylinder at the bottom of the machine and taken away to be spun like cotton. The long line fibres were removed from the top of the machine and required further processing if the yarn was to be uniform.
    When N.L.Sadi Carnot's book Réflexions sur la puissance motrice du feu, was published in 1824, Girard made a favourable report on it.
    [br]
    Further Reading
    M.Daumas (ed.), 1968, Histoire générale des techniques, Vol. III: L'Expansion du
    Machinisme, Paris.
    C.Singer (ed.), 1958, A History of'Technology, Vol. IV, Oxford: Clarendon Press. T.K.Derry and T.I.Williams, 1960, A Short History of Technology from the Earliest
    Times to AD 1900, Oxford.
    W.A.McCutcheon, 1966–7, "Water power in the North of Ireland", Transactions of the Newcomen Society 39 (discusses the spinning of flax and mentions Girard).
    RLH

    Biographical history of technology > Girard, Philippe de

См. также в других словарях:

  • Short subject — is a format description originally coined in the North American film industry in the early period of cinema. The description is now used almost interchangeably with short film. Either term is often abbreviated to short (as a noun, e.g. a short… …   Wikipedia

  • short subject — or short film n. a film short, as that shown with a film feature …   English World dictionary

  • short subject — (shorts or short films)   a film that is shorter than around 30 or 45 minutes; in the silent film era, most films were shorts, such as those shown in nickelodeons; then, during the early film era, the price of a movie ticket included not only the …   Glossary of cinematic terms

  • short subject — short′ sub ject n. sbz a short film, as a documentary or travelogue, shown as part of a program with a feature length film • Etymology: 1940–45 …   From formal English to slang

  • short subject — Motion Pictures. a short film, as a documentary or travelogue, shown as part of a program with a feature length film. Also called short. [1940 45] * * * …   Universalium

  • short subject — noun chiefly US a short film, typically one shown before the screening of a feature film …   English new terms dictionary

  • short subject — noun Date: 1944 a brief often documentary or educational film …   New Collegiate Dictionary

  • short subject — noun a brief film; often shown prior to showing the feature • Hypernyms: ↑movie, ↑film, ↑picture, ↑moving picture, ↑moving picture show, ↑motion picture, ↑motion picture show, ↑picture show, ↑ …   Useful english dictionary

  • Academy Award for Documentary Short Subject — This is a list of films by year that have received an Oscar together with the other nominations for best documentary short subject. Following the Academy s practice, the year listed for each film is the year of release: the awards are announced… …   Wikipedia

  • Short — may refer to: * Short (surname) * Holly Short, a fictional character from the Artemis Fowl series * Short circuit, an accidental connection between two nodes of an electrical circuit * Short (finance), stock trading status * Short film, a cinema… …   Wikipedia

  • short — s.m.inv. ES ingl. {{wmetafile0}} TS cinem., telev. cortometraggio spec. pubblicitario {{line}} {{/line}} DATA: 1932. ETIMO: tratto dalla loc. short subject soggetto breve …   Dizionario italiano

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»