Перевод: с русского на все языки

со всех языков на русский

mean+time+to+failure

  • 61 наблюдаемое среднее время работы до отказа

    Универсальный русско-английский словарь > наблюдаемое среднее время работы до отказа

  • 62 опытное среднее время до отказа

    Универсальный русско-английский словарь > опытное среднее время до отказа

  • 63 прогноз среднего времени до отказа

    Универсальный русско-английский словарь > прогноз среднего времени до отказа

  • 64 расчётная средняя наработка до отказа

    Универсальный русско-английский словарь > расчётная средняя наработка до отказа

  • 65 расчётное среднее время безотказной работы

    Универсальный русско-английский словарь > расчётное среднее время безотказной работы

  • 66 среднее время бессбойной работы

    Универсальный русско-английский словарь > среднее время бессбойной работы

  • 67 среднее время между повреждениями

    Универсальный русско-английский словарь > среднее время между повреждениями

  • 68 среднее время отказа

    Универсальный русско-английский словарь > среднее время отказа

  • 69 среднее время работы до отказа

    Quality control: mean time to failure

    Универсальный русско-английский словарь > среднее время работы до отказа

  • 70 среднее граничное время до отказа

    Универсальный русско-английский словарь > среднее граничное время до отказа

  • 71 среднее граничное время до отказа АТС

    Универсальный русско-английский словарь > среднее граничное время до отказа АТС

  • 72 средняя наработка без отказов

    Chemical weapons: mean time between failure

    Универсальный русско-английский словарь > средняя наработка без отказов

  • 73 эквивалентная средняя наработка до отказа

    Универсальный русско-английский словарь > эквивалентная средняя наработка до отказа

  • 74 эквивалентное среднее время наработки до отказа

    Универсальный русско-английский словарь > эквивалентное среднее время наработки до отказа

  • 75 Отказа среднее время

    Русско-английский словарь по прикладной математике и механике > Отказа среднее время

  • 76 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 77 время

    * * *
    вре́мя с.
    time
    в дневно́е вре́мя — during daylight hours, in the daytime, by day
    в и́стинном масшта́бе вре́мени — on a real time basis
    в ночно́е вре́мя — during the hours of darkness, at night
    в реа́льном масшта́бе вре́мени — on a real time basis
    до после́днего вре́мени — until recently
    зави́сящий от вре́мени — time-dependent (e. g., of current)
    испо́льзуемый в настоя́щее вре́мя — be now in use
    не зави́сящий от вре́мени — time-independent
    обращё́нный во вре́мени — time-reversed
    отнима́ть мно́го вре́мени — be time-consuming (e. g., of experiment)
    отсчи́тывать вре́мя ( о часах) — keep time
    отсчи́тывать вре́мя в обра́тном поря́дке — count down (time)
    отсчи́тывать вре́мя от нуля́ вверх — count up (time)
    постоя́нный во вре́мени — time-constant, stationary
    со вре́менем — in due course, in the course of time, in time
    сре́дний по вре́мени — time-average
    с тече́нием вре́мени — in the course of time
    абсолю́тное вре́мя — absolute time
    астрономи́ческое вре́мя — astronomical time
    а́томное вре́мя — atomic time
    вре́мя безде́йствия ( линии связи) — unoccupied [idle] time
    вре́мя безотка́зной рабо́ты — time between failures, TBF
    вре́мя безызлуча́тельной релакса́ции — non-radiative relaxation time
    вре́мя бла́нка тлв., рлк.blanking time
    вре́мя блокиро́вки приё́мника — receiver blocking time
    вре́мя блокиро́вки э́хо-загради́теля — hangover time of an echo suppressor
    вре́мя взаимоде́йствия — interaction time
    вре́мя включе́ния
    2. (контактов реле, автомата и т. п.) make-time
    вре́мя возвра́та ( в исходное состояние) — reset time
    вре́мя восстановле́ния — recovery time
    вре́мя восстановле́ния управле́ния тиратро́ном по се́тке — grid-recovery time
    всеми́рное вре́мя — universal time
    вспомога́тельное вре́мя ( на вспомогательные операции) — auxiliary [handling] time
    вре́мя втя́гивания ( реле) — pull-in time
    вре́мя вхожде́ния в синхрони́зм ( генератора колебаний) — locking time
    вре́мя вы́борки ( из памяти) — access time
    вре́мя вы́дачи информа́ции — information access time
    вре́мя выде́рживания ( радиоактивных продуктов) — decay [“cooling”] time
    вре́мя вы́держки
    1. (напр. бетона) curing time
    вре́мя выключе́ния ( полупроводниковых приборов) — turn-off time
    вре́мя вы́лета ( самолёта) — departure time
    вре́мя высве́чивания — de-excitation [luminescence] time, fluorescent lifetime
    вре́мя вычисле́ния — computing time
    вре́мя гаше́ния обра́тного хо́да ( развёртки) — blanking period
    вре́мя го́да — season
    вре́мя горе́ния дуги́ — arc-duration, arcing time
    гражда́нское вре́мя — civil time
    гри́нвичское вре́мя — Greenwich time
    вре́мя де́йствия защи́ты — time of operation (of protective gear, e. g., relays)
    декре́тное вре́мя — legal time
    дискре́тное вре́мя — discrete time
    вре́мя диффу́зии — diffusion time (in semiconductors)
    вре́мя диффузио́нного перено́са — diffusion transit time (in semiconductors)
    вре́мя диэлектри́ческой релакса́ции — dielectric relaxation time (in semiconductors)
    вре́мя до разруше́ния — time to failure
    вре́мя до разры́ва — time to rupture
    вре́мя дре́йфа ( носителей заряда в полупроводниках) — drift time
    едини́чное вре́мя — unit time
    вре́мя жи́зни ( носителей зарядов) — life(time), survival time
    вре́мя жи́зни, излуча́тельное — radiative lifetime
    за́данное вре́мя — preset time
    вре́мя, за́данное по гра́фику — scheduled time
    вре́мя заде́ржки — delay time
    вре́мя заде́ржки и́мпульса — pulse-delay time
    вре́мя замедле́ния — slowing-down time
    вре́мя заня́тия свз.holding time
    вре́мя запа́здывания — time lag, lag time
    вре́мя запа́здывания и́мпульса — pulse delay time (Примечание. Русский термин вре́мя запа́здывания и́мпульса обозначает интервал времени между передними фронтами входного и выходного импульсов на уровне 50% от максимального значения, английский термин pulse delay time — на уровне 10% от максимального значения; пример: pulse delay time is … at 50% peak.)
    вре́мя за́писи — recording [writing] time
    вре́мя заря́дки ( батареи) — charging time
    вре́мя заступле́ния (напр. на дежурство) — check-in time
    вре́мя затуха́ния ( импульса) — fall time
    вре́мя захва́та ( носителей зарядов в полупроводниках) — capture time
    звё́здное вре́мя — sidereal time
    вре́мя зво́на радиоringing time
    зона́льное вре́мя — zone time
    вре́мя изготовле́ния — production time
    вре́мя излуча́тельной релакса́ции — radiative relaxation time
    вре́мя изодро́ма — integral action time
    вре́мя интегра́ции ( сигналов) — integration time
    вре́мя иска́ния тлф.selection time
    вре́мя испо́льзования це́пи ( в проводной связи) — circuit time
    исте́кшее вре́мя — the time elapsed after
    и́стинное вре́мя
    1. ав. true time
    2. астр. apparent time
    вре́мя когере́нтности (лазера, мазера) — coherence time
    маши́нное вре́мя — machine time
    вре́мя междоли́нного рассе́яния — intervalley scattering time (in semiconductors)
    вре́мя ме́жду се́риями и́мпульсов набо́ра но́мера тлф.interdigit hunting time
    ме́стное вре́мя — local time
    вре́мя на перемеще́ние ( слитка) — ingot manipulation time
    вре́мя на перемеще́ние нажимны́х винто́в ( прокатного стана) — screwdown time
    вре́мя нараста́ния и́мпульса — pulse rise time
    вре́мя нараста́ния колеба́ний — build-up time
    вре́мя нараста́ния то́ка — current-rise time
    вре́мя на установле́ние и разъедине́ние соедине́ния тлф.operating time
    вре́мя нача́ла разгово́ра тлф. — “time on”, starting time of a call
    непреры́вное вре́мя вчт.continuous time
    нерабо́чее вре́мя — down [idle] time
    вре́мя облуче́ния — exposure [irradiation] time
    вре́мя обрабо́тки — processing time
    вре́мя обра́тного хо́да ( строчной и кадровой развёрток) — retrace [return] time
    вре́мя обраще́ния
    1. вчт. access time
    2. эл. time of circulation
    вре́мя обслу́живания мат.holding time
    вре́мя ожида́ния ( в теории массового обслуживания) — waiting time
    вре́мя ожида́ния отве́та ста́нции тлф.answering interval
    вре́мя ожида́ния установле́ния междунаро́дного соедине́ния — service interval of an international call
    вре́мя оконча́ния разгово́ра — “time off”, finish time of a call
    операцио́нное вре́мя — operation time
    вре́мя опроки́дывания ( спусковой схемы) — flip-over time
    вре́мя опро́са ( в телеметрической системе) — sampling time
    вре́мя опустоше́ния лову́шки — trap release time
    вре́мя осажде́ния ( покрытия) — deposition time
    вре́мя отка́чки вак.pump-down time
    вре́мя отключе́ния (повреждения, короткого замыкания и т. п.) — clearing time (of a circuit-breaker, fuse, etc.)
    вре́мя откры́тия кла́пана — valve-opening time, valve-opening period
    вре́мя отла́дки — debug time
    вре́мя отла́дки програ́ммы — program(me) testing time
    вре́мя отпуска́ния ( реле) — release [drop-out] time
    вре́мя отсу́тствия колеба́ний рлк.resting time
    вре́мя переключе́ния — switching time
    вре́мя переключе́ния в закры́тое состоя́ние — turn-off time (in semiconductors)
    вре́мя переключе́ния в откры́тое состоя́ние — turn-on time (in semiconductors)
    вре́мя перено́са носи́телей заря́дов — transit [transport] time
    вре́мя перехо́да ( из одного состояния в другое) — transition time
    вре́мя перехо́да из норма́льного в сверхпроводя́щее состоя́ние — normal-superconducting transition [n-s transition] time
    вре́мя перехо́да из сверхпроводя́щего в норма́льное состоя́ние — superconducting-normal transition [s-n transition] time
    вре́мя перехо́дного проце́сса — response time, transient response
    перехо́дное вре́мя ( движущего контакта) — transit time
    вре́мя поворо́та анте́нны — slew time
    вре́мя повто́рного включе́ния — reclosing time
    подготови́тельное вре́мя — preparation time
    подготови́тельно-заключи́тельное вре́мя — setting-up time
    вре́мя по́иска ( информации) — retrieval time
    полё́тное вре́мя — flight time
    вре́мя полувыра́внивания — rise time at 50% (of self-regulation)
    вре́мя по расписа́нию — schedule time
    вре́мя последе́йствия э́хо-загради́теля — hangover time of an echo suppressor
    вре́мя послесвече́ния экра́на — after-glow time, persistence
    вре́мя посы́лки вы́зова тлф.ringing time
    поясно́е вре́мя — standard [zone] time
    вре́мя пребыва́ния (напр. материала в аппарате) — dwell time, stay period, duration of stay
    вре́мя преобразова́ния — conversion time
    вре́мя прибы́тия — arrival time
    вре́мя приё́ма зака́за на разгово́р тлф. — booking [filing] time
    вре́мя приё́мистости ( двигателя) — acceleration period, acceleration time
    вре́мя прилипа́ния носи́телей заря́да — trapping time (in semiconductors)
    вре́мя прирабо́тки дви́гателя — running-in [breaking-in] period
    вре́мя прогре́ва ( двигателя) — warm-up time
    производи́тельное вре́мя — production time
    вре́мя прока́тки — rolling time, time in rolls
    вре́мя пролё́та (напр. электронов) — transit time
    вре́мя пролё́та доме́на (в устройствах, использующих эффект Ганна) — domain transit time
    вре́мя просмо́тра ( потенциалоскопа) — viewing time
    вре́мя просто́я — down [idle] time
    вре́мя просто́я кана́ла цепи́ свя́зи — circuit outage [lost circuit] time
    вре́мя просто́я радиоста́нции — off-air time
    вре́мя прохожде́ния сигна́ла — propagation [transmission] time
    вре́мя прохожде́ния сигна́ла до це́ли и обра́тно рлк. — round-trip travel [round-trip propagation] time
    вре́мя прохожде́ния че́рез афе́лий — the time of aphelion passage
    вре́мя прохожде́ния шкалы́ ( в измерительных приборах) — periodic time
    вре́мя прямо́го восстановле́ния — forward recovery time (in semiconductors)
    пусково́е вре́мя ( двигателя) — starting time
    рабо́чее вре́мя — operating time
    вре́мя развё́ртывания (напр. радиостанции) — installation [set-up] time
    вре́мя разго́на ( двигателя) — acceleration period, acceleration time
    вре́мя разогре́ва — warm-up time
    разреша́ющее вре́мя — resolving [resolution] time
    вре́мя разря́да — discharge time
    вре́мя раска́чки ( контура) — build-up time
    вре́мя распа́да — decay time
    вре́мя распознава́ния ( образа) — (pattern) recognition time
    вре́мя распростране́ния ( сигнала) — propagation time
    расчё́тное вре́мя — estimated time
    вре́мя реа́кции — reaction time, time lag
    вре́мя ревербера́ции — reverberation time
    вре́мя релакса́ции — relaxation time
    ручно́е вре́мя — manual time
    вре́мя самовыра́внивания — rise time (of a self-regulating system)
    вре́мя свобо́дного иска́ния тлф.hunting time
    вре́мя свобо́дного пробе́га ( электрона) — mean free time
    со́лнечное вре́мя — solar time
    со́лнечное, сре́днее вре́мя — mean solar time
    вре́мя спа́да и́мпульса — pulse decay [fall] time
    вре́мя сплавле́ния — alloying time (in semiconductors)
    вре́мя сраба́тывания ( реле) — operate [actuation] time
    вре́мя сраба́тывания счё́тчика части́ц — resolving time of a radiation counter
    вре́мя счё́та ( импульсов) — count(ing) time
    вре́мя счи́тывания — read-out time
    тарифици́руемое вре́мя тлф. — paid [toll, chargeable] time
    вре́мя теплово́й релакса́ции — thermal relaxation [thermal recovery] time (in semiconductors)
    вре́мя техни́ческого обслу́живания — servicing time
    вре́мя тро́гания ( реле) — time for motion to start
    вре́мя удержа́ния абоне́нта тлф.period of number reservation in long-distance service
    вре́мя успокое́ния ( приборов) — damping time
    вре́мя установле́ния
    вре́мя установле́ния равнове́сия — equilibration [equilibrium] time
    вре́мя установле́ния соедине́ния тлф. — connection [setting-up] time
    вре́мя ухо́да (напр. с дежурства, смены) — check-out time
    вре́мя формова́ния — moulding time
    характеристи́ческое вре́мя — characteristic time
    вре́мя холосто́го хо́да — idle time
    вре́мя хране́ния — storage time
    вре́мя ци́кла — cycle time
    вре́мя ци́кла па́мяти — memory cycle time
    вре́мя части́чного перехо́да в положе́ние поко́я — partial restoring time
    вре́мя чувстви́тельности — sensitive period, sensitive time
    шту́чное вре́мя — time per piece, floor-to-floor time
    вре́мя экспони́рования — time of exposure, exposure
    эфемери́дное вре́мя астр.ephemeris time
    я́дерное вре́мя — nuclear traversal time
    * * *

    Русско-английский политехнический словарь > время

  • 78 MTBSF

    Англо-русский словарь промышленной и научной лексики > MTBSF

  • 79 наработка между отказами

    Русско-английский научный словарь > наработка между отказами

  • 80 наработка между отказами

    Русско-английский новый политехнический словарь > наработка между отказами

См. также в других словарях:

  • Mean Time To Failure — MTTF ist die Abkürzung für die mittlere Betriebsdauer bis zum Ausfall (engl. Mean Time To Failure) und wird auch als mittlere Lebensdauer bezeichnet oder MTTFd hier Die mittlere Zeit bis zum gefahrbringenden Ausfall.[1] Vor allem durch die… …   Deutsch Wikipedia

  • Mean time to failure — No artical exists on Wiki, please create one. In short Mean Time to Failure (MTTF) is the time taken for a part or system to fail for the first time. A very brief formula for the Mean Time To Failure of an event which occurs with probability P is …   Wikipedia

  • mean time to failure — vidutinė trukmė iki gedimo statusas T sritis automatika atitikmenys: angl. mean time to failure; MTTF vok. mittlere Zeit bis zum ersten Ausfall, f; MTTF rus. наработка до отказа, f pranc. temps moyen avant défaillance, m; T.M.A.D …   Automatikos terminų žodynas

  • operation mean time to failure — vidutinė veikimo trukmė iki gedimo statusas T sritis radioelektronika atitikmenys: angl. operation mean time to failure vok. mittlere Funktionsdauer, f; mittlere Zeit bis zum ersten Ausfall, f rus. среднее время действия до первого отказа, n… …   Radioelektronikos terminų žodynas

  • Mean Time To Failure — MTTF; mittlere Lebensdauer; mittlere Betriebsdauer bis zum Ausfall …   Universal-Lexikon

  • Mean time between failures — (MTBF) is the predicted elapsed time between inherent failures of a system during operation.[1] MTBF can be calculated as the arithmetic mean (average) time between failures of a system. The MTBF is typically part of a model that assumes the… …   Wikipedia

  • Mean time to first failure — Mean time (to) first failure (MTFF, sometimes MTTFF) is a concept in reliability engineering. It describes time to failure for non repairable components like an integrated circuit soldered on a circuit board. .[1] For repairable components like a …   Wikipedia

  • Mean Time Between Failures — MTBF ist die Abkürzung für das englische Mean Time Between Failures, zu deutsch die mittlere Betriebsdauer zwischen Ausfällen. Sie gilt für Einheiten, die instand gesetzt werden; Betriebsdauer meint die Betriebszeit zwischen zwei… …   Deutsch Wikipedia

  • Mean time to repair — For other uses, see MTTR (disambiguation). Mean time to repair (MTTR) is a basic measure of the maintainability of repairable items. It represents the average time required to repair a failed component or device.[1] Expressed mathematically, it… …   Wikipedia

  • Mean time to recovery — For other uses, see MTTR (disambiguation). Mean time to recovery (MTTR)[1][2] is the average time that a device will take to recover from any failure. Examples of such devices range from self resetting fuses (where the MTTR would be very short,… …   Wikipedia

  • Failure rate — is the frequency with which an engineered system or component fails, expressed for example in failures per hour. It is often denoted by the Greek letter λ (lambda) and is important in reliability engineering. The failure rate of a system usually… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»