Перевод: с английского на все языки

со всех языков на английский

mass+patents

  • 1 mass patents

    Большой англо-русский и русско-английский словарь > mass patents

  • 2 mass patents

    Универсальный англо-русский словарь > mass patents

  • 3 mass patents

    накапливать патенты, сосредоточивать патенты в одних руках

    Англо-русский словарь по экономике и финансам > mass patents

  • 4 накапливать патенты

    Большой англо-русский и русско-английский словарь > накапливать патенты

  • 5 patent

    Англо-русский словарь по экономике и финансам > patent

  • 6 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 7 Grant, George Barnard

    [br]
    b. 21 December 1849 Farmingdale, Gardiner, Maine, USA
    d. 16 August 1917 Pasadena, California, USA
    [br]
    American mechanical engineer and inventor of Grant's Difference Engine.
    [br]
    George B.Grant was descended from families who came from Britain in the seventeenth century and was educated at the Bridgton (Maine) Academy, the Chandler Scientific School of Dartmouth College and the Lawrence Scientific School of Harvard College, where he graduated with the degree of BS in 1873. As an undergraduate he became interested in calculating machines, and his paper "On a new difference engine" was published in the American Journal of Science in August 1871. He also took out his first patents relating to calculating machines in 1872 and 1873. A machine of his design known as "Grant's Difference Engine" was exhibited at the Centennial Exposition in Philadelphia in 1876. Similar machines were also manufactured for sale; being sturdy and reliable, they did much to break down the prejudice against the use of calculating machines in business. Grant's work on calculating machines led to a requirement for accurate gears, so he established a machine shop for gear cutting at Charlestown, Massachusetts. He later moved the business to Boston and incorporated it under the name of Grant's Gear Works Inc., and continued to control it until his death. He also established two other gear-cutting shops, the Philadelphia Gear Works Inc., which he disposed of in 1911, and the Cleveland Gear Works Inc., which he also disposed of after a few years. Grant's commercial success was in connection with gear cutting and in this field he obtained several patents and contributed articles to the American Machinist. However, he continued to take an interest in calculating machines and in his later years carried out experimental work on their development.
    [br]
    Bibliography
    1871, "On a new difference engine", American Journal of Science (August). 1885, Chart and Tables for Bevel Gears.
    1891, Odontics, or the Theory and Practice of the Teeth of Gears, Lexington, Mass.
    Further Reading
    R.S.Woodbury, 1958, History of the Gear-cutting Machine, Cambridge, Mass, (describes his gear-cutting machine).
    RTS

    Biographical history of technology > Grant, George Barnard

  • 8 Singer, Isaac Merritt

    [br]
    b. 27 October 1811 Pittstown, New York, USA
    d. 23 July 1875 Torquay, Devonshire, England
    [br]
    American inventor of a sewing machine, and pioneer of mass production.
    [br]
    The son of a millwright, Singer was employed as an unskilled labourer at the age of 12, but later gained wide experience as a travelling machinist. He also found employment as an actor. On 16 May 1839, while living at Lockport, Illinois, he obtained his first patent for a rock-drilling machine, but he soon squandered the money he made. Then in 1849, while at Pittsburgh, he secured a patent for a wood-and metal-carving machine that he had begun five years previously; however, a boiler explosion in the factory destroyed his machine and left him penniless.
    Near the end of 1850 Singer was engaged to redesign the Lerow \& Blodgett sewing machine at the Boston shop of Orson C.Phelps, where the machine was being repaired. He built an improved version in eleven days that was sufficiently different for him to patent on 12 August 1851. He formed a partnership with Phelps and G.B. Zieber and they began to market the invention. Singer soon purchased Phelps's interest, although Phelps continued to manufacture the machines. Then Edward Clark acquired a one-third interest and with Singer bought out Zieber. These two, with dark's flair for promotion and marketing, began to create a company which eventually would become the largest manufacturer of sewing machines exported worldwide, with subsidiary factories in England.
    However, first Singer had to defend his patent, which was challenged by an earlier Boston inventor, Elias Howe. Although after a long lawsuit Singer had to pay royalties, it was the Singer machine which eventually captured the market because it could do continuous stitching. In 1856 the Great Sewing Machine Combination, the first important pooling arrangement in American history, was formed to share the various patents so that machines could be built without infringements and manufacture could be expanded without fear of litigation. Singer contributed his monopoly on the needle-bar cam with his 1851 patent. He secured twenty additional patents, so that his original straight-needle vertical design for lock-stitching eventually included such refinements as a continuous wheel-feed, yielding presser-foot, and improved cam for moving the needle-bar. A new model, introduced in 1856, was the first to be intended solely for use in the home.
    Initially Phelps made all the machines for Singer. Then a works was established in New York where the parts were assembled by skilled workers through filing and fitting. Each machine was therefore a "one-off" but Singer machines were always advertised as the best on the market and sold at correspondingly high prices. Gradually, more specialized machine tools were acquired, but it was not until long after Singer had retired to Europe in 1863 that Clark made the change to mass production. Sales of machines numbered 810 in 1853 and 21,000 ten years later.
    [br]
    Bibliography
    12 August 1851, US patent no. 8,294 (sewing machine)
    Further Reading
    Biographies and obituaries have appeared in Appleton's Cyclopedia of America, Vol. V; Dictionary of American Biography, Vol XVII; New York Times 25 July 1875; Scientific American (1875) 33; and National Cyclopaedia of American Biography.
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (provides a thorough account of the development of the Singer sewing machine, the competition it faced from other manufacturers and production methods).
    RLH

    Biographical history of technology > Singer, Isaac Merritt

  • 9 Thomson, Elihu

    SUBJECT AREA: Electricity
    [br]
    b. 29 March 1853 Manchester, England
    d. 13 March 1937 Swampscott, Massachusetts, USA
    [br]
    English (naturalized) American electrical engineer and inventor.
    [br]
    Thomson accompanied his parents to Philadelphia in 1858; he received his education at the Central High School there, and afterwards remained as a teacher of chemistry. At this time he constructed several dynamos after studying their design, and was invited by the Franklin Institute to give lectures on the subject. After observing an arc-lighting system operating commercially in Paris in 1878, he collaborated with Edwin J. Houston, a senior colleague at the Central High School, in working out the details of such a system. An automatic regulating device was designed which, by altering the position of the brushes on the dynamo commutator, maintained a constant current irrespective of the number of lamps in use. To overcome the problem of commutation at the high voltages necessary to operate up to forty arc lamps in a series circuit, Thomson contrived a centrifugal blower which suppressed sparking. The resulting system was efficient and reliable with low operating costs. Thomson's invention of the motor meter in 1882 was the first of many such instruments for the measurement of electrical energy. In 1886 he invented electric resistance welding using low-voltage alternating current derived from a transformer of his own design. Thomson's work is recorded in his technical papers and in the 700plus patents granted for his inventions.
    The American Electric Company, founded to exploit the Thomson patents, later became the Thomson-Houston Company, which was destined to be a leader in the electrical manufacturing industry. They entered the field of electric power in 1887, supplying railway equipment and becoming a major innovator of electric railways. Thomson-Houston and Edison General Electric were consolidated to form General Electric in 1892. Thomson remained associated with this company throughout his career.
    [br]
    Principal Honours and Distinctions
    Chevalier and Officier de la Légion d'honneur 1889. American Academy of Arts and Sciences Rumford Medal 1901. American Institute of Electrical Engineers Edison Medal 1909. Royal Society Hughes Medal 1916. Institution of Electrical Engineers Kelvin Medal 1923, Faraday Medal 1927.
    Bibliography
    1934, "Some highlights of electrical history", Electrical Engineering 53:758–67 (autobiography).
    Further Reading
    D.O.Woodbury, 1944, Beloved Scientist, New York (a full biography). H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass, (describes Thomson's industrial contribution).
    K.T.Compton, 1940, Biographical Memoirs of Elihu Thomson, Washington, DCovides an abridged list of Thomson's papers and patents).
    GW

    Biographical history of technology > Thomson, Elihu

  • 10 Woodbury, Walter Bentley

    [br]
    b. 1834 Manchester, England
    d. 1885 Margate, Kent, England
    [br]
    English photographer, inventor of the Woodburytype process.
    [br]
    Having been apprenticed to be an engineer, Woodbury left England in 1851 to seek his fortune in the Australian gold-fields. Like many others, he failed, and after a series of transient jobs found a post as Draughtsman at the Melbourne Waterworks. He then went on to Java, where he practised wet-collodion photography before returning to England finally in 1863. Woodbury settled in Birmingham, where like most contemporary photographers he was concerned to find a solution to the troublesome problem of fading prints. He began working the carbon process, and in 1866 and 1867 took out a series of patents which were to lead to the development of the process that took his name. Woodburytypes were continuous-tone prints of high quality that could be mass produced more cheaply than the traditional silver print. This was an important innovation and Woodburytypes were extensively used for quality book illustrations until the introduction of more versatile photomechanical processes in the 1890s. In all, Woodbury took out twenty patents between 1864 and 1884, some relating to a wide range of photographic devices. He was still working to simplify the Woodburytype process when he died from an overdose of laudanum.
    [br]
    Bibliography
    Woodbury took out a series of patents on his process, the most significant being: 23 September 1864, British patent no. 2,338; 12 January 1866, British patent no. 105; 11 February 1866, British patent no. 505; 8 May 1866, British patent no. 1,315; 24 July 1866, British patent no. 1,918.
    Further Reading
    G.Tissandier, 1876, A History and Handbook of Photography, trans. J.Thomson.
    B.E.Jones (ed.), 1911, Cassell's Cyclopaedia of Photography, London (a brief biography).
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York.
    JW

    Biographical history of technology > Woodbury, Walter Bentley

  • 11 holding

    володіння (в т. ч. акціями, патентом тощо); орендована нерухомість; судове рішення; тримання, утримання; холдінг

    holding of mass demonstrations and rallies= holding of mass demonstrations and meetings проведення масових демонстрацій і мітингів

    holding of mass demonstrations and meetings= holding of mass demonstrations and rallies

    holding the office of president — обіймання посади президента, перебування на посаді президента

    - holding a person hostage
    - holding an office
    - holding center
    - holding centre
    - holding company
    - holding hostage
    - holding of court
    - holding of election
    - holding of elections
    - holding of more than one job
    - holding of patents
    - holding of prisoner
    - holding of thing
    - holding responsible

    English-Ukrainian law dictionary > holding

  • 12 Norton, Charles Hotchkiss

    [br]
    b. 23 November 1851 Plainville, Connecticut, USA
    d. 27 October 1942 Plainville, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool designer.
    [br]
    After an elementary education at the public schools of Plainville and Thomaston, Connecticut, Charles H.Norton started work in 1866 at the Seth Thomas Clock Company in Thomaston. He was soon promoted to machinist, and further progress led to his successive appointments as Foreman, Superintendent of Machinery and Manager of the department making tower clocks. He designed many public clocks.
    In 1886 he obtained a position as Assistant Engineer with the Brown \& Sharpe Manufacturing Company at Providence, Rhode Island, and was engaged in redesigning their universal grinding machine to give it more rigidity and make it more suitable for use as a production machine. In 1890 he left to become a partner in a newly established firm, Leland, Faulconer \& Norton Company at Detroit, Michigan, designing and building machine tools. He withdrew from this firm in 1895 and practised as a consulting mechanical engineer for a short time before returning to Brown \& Sharpe in 1896. There he designed a grinding machine incorporating larger and wider grinding wheels so that heavier cuts could be made to meet the needs of the mass-production industries, especially the automobile industry. This required a heavier and more rigid machine and greater power, but these ideas were not welcomed at Brown \& Sharpe and in 1900 Norton left to found the Norton Grinding Company in Worcester, Massachusetts. Here he was able to develop heavy-production grinding machines, including special machines for grinding crank-shafts and camshafts for the automobile industry.
    In setting up the Norton Grinding Company, Charles H.Norton received financial support from members of the Norton Emery Wheel Company (also of Worcester and known after 1906 as the Norton Company), but he was not related to the founder of that company. The two firms were completely independent until 1919 when they were merged. From that time Charles H.Norton served as Chief Engineer of the machinery division of the Norton Company, until 1934 when he became their Consulting Engineer.
    [br]
    Principal Honours and Distinctions
    City of Philadelphia, John Scott Medal 1925.
    Bibliography
    Further Reading
    Robert S.Woodbury, 1959, History of the Grinding Machine, Cambridge, Mass, (contains biographical information and details of the machines designed by Norton).
    RTS

    Biographical history of technology > Norton, Charles Hotchkiss

  • 13 Goodyear, Charles

    [br]
    b. 29 December 1800 New Haven, Connecticut, USA
    d. 1 July 1860 New York, USA
    [br]
    American inventor of the vulcanization of rubber.
    [br]
    Goodyear entered his father's country hardware business before setting up his own concern in Philadelphia. While visiting New York, he noticed in the window of the Roxburgh India Rubber Company a rubber life-preserver. Goodyear offered to improve its inflating valve, but the manager, impressed with Goodyear's inventiveness, persuaded him to tackle a more urgent problem, that of seeking a means of preventing rubber from becoming tacky and from melting or decomposing when heated. Goodyear tried treatments with one substance after another, without success. In 1838 he started using Nathaniel M.Hayward's process of spreading sulphur on rubber. He accidentally dropped a mass of rubber and sulphur on to a hot stove and noted that the mixture did not melt: Goodyear had discovered the vulcanization of rubber. More experiments were needed to establish the correct proportions for a uniform mix, and eventually he was granted his celebrated patent no. 3633 of 15 June 1844. Goodyear's researches had been conducted against a background of crippling financial difficulties and he was forced to dispose of licences to vulcanize rubber at less than their real value, in order to pay off his most pressing debts.
    Goodyear travelled to Europe in 1851 to extend his patents. To promote his process, he designed a spectacular exhibit for London, consisting of furniture, floor covering, jewellery and other items made of rubber. A similar exhibit in Paris in 1855 won him the Grande Médaille d'honneur and the Croix de la Légion d'honneur from Napoleon III. Patents were granted to him in all countries except England. The improved properties of vulcanized rubber and its stability over a much wider range of temperatures greatly increased its applications; output rose from a meagre 31.5 tonnes a year in 1827 to over 28,000 tonnes by 1900. Even so, Goodyear profited little from his invention, and he bequeathed to his family debts amounting to over $200,000.
    [br]
    Principal Honours and Distinctions
    Grande Médaille d'honneur 1855. Croix de la Légion d'honneur 1855.
    Bibliography
    15 June 1844, US patent no. 3633 (vulcanization of rubber).
    1853, Gum Elastic and Its Varieties (includes some biographical material).
    Further Reading
    B.K.Pierce, 1866, Trials of an Inventor: Life and Discoveries of Charles Goodyear.
    H.Allen, 1989, Charles Goodyear: An Intimate Biographical Sketch, Akron, Ohio: Goodyear Tire \& Rubber Company.
    LRD

    Biographical history of technology > Goodyear, Charles

  • 14 Kilby, Jack St Clair

    [br]
    b. 8 November 1923 Jefferson City, Missouri, USA
    [br]
    American engineer who filed the first patents for micro-electronic (integrated) circuits.
    [br]
    Kilby spent most of his childhood in Great Bend, Kansas, where he often accompanied his father, an electrical power engineer, on his maintenance rounds. Working in the blizzard of 1937, his father borrowed a "ham" radio, and this fired Jack to study for his amateur licence (W9GTY) and to construct his own equipment while still a student at Great Bend High School. In 1941 he entered the University of Illinois, but four months later, after the attack on Pearl Harbor, he was enlisted in the US Army and found himself working in a radio repair workshop in India. When the war ended he returned to his studies, obtaining his BSEE from Illinois in 1947 and his MSEE from the University of Wisconsin. He then joined Centralab, a small electronics firm in Milwaukee owned by Globe-Union. There he filed twelve patents, including some for reduced titanate capacitors and for Steatite-packing of transistors, and developed a transistorized hearing-aid. During this period he also attended a course on transistors at Bell Laboratories. In May 1958, concerned to gain experience in the field of number processing, he joined Texas Instruments in Dallas. Shortly afterwards, while working alone during the factory vacation, he conceived the idea of making monolithic, or integrated, circuits by diffusing impurities into a silicon substrate to create P-N junctions. Within less than a month he had produced a complete oscillator on a chip to prove that the technology was feasible, and the following year at the 1ERE Show he demonstrated a germanium integrated-circuit flip-flop. Initially he was granted a patent for the idea, but eventually, after protracted litigation, priority was awarded to Robert Noyce of Fairchild. In 1965 he was commissioned by Patrick Haggerty, the Chief Executive of Texas Instruments, to make a pocket calculator based on integrated circuits, and on 14 April 1971 the world's first such device, the Pocketronic, was launched onto the market. Costing $150 (and weighing some 2½ lb or 1.1 kg), it was an instant success and in 1972 some 5 million calculators were sold worldwide. He left Texas Instruments in November 1970 to become an independent consultant and inventor, working on, amongst other things, methods of deriving electricity from sunlight.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. Institute of Electrical and Electronics Engineers David Sarnoff Award 1966; Cledo Brunetti Award (jointly with Noyce) 1978; Medal of Honour 1986. National Academy of Engineering 1967. National Science Medal 1969. National Inventors Hall of Fame 1982. Honorary DEng Miami 1982, Rochester 1986. Honorary DSc Wisconsin 1988. Distinguished Professor, Texas A \& M University.
    Bibliography
    6 February 1959, US patent no. 3,138,743 (the first integrated circuit (IC); initially granted June 1964).
    US patent no. 3,819,921 (the Pocketronic calculator).
    Further Reading
    T.R.Reid, 1984, Microchip. The Story of a Revolution and the Men Who Made It, London: Pan Books (for the background to the development of the integrated circuit). H.Queisser, 1988, Conquest of the Microchip, Cambridge, Mass.: Harvard University Press.
    KF

    Biographical history of technology > Kilby, Jack St Clair

  • 15 Bilgram, Hugo

    [br]
    b. 13 January 1847 Memmingen, Bavaria, Germany
    d. 27 August 1932 Moylan, Pennsylvania, USA
    [br]
    German (naturalized American) mechanical engineer, inventor of bevel-gear generator and economist.
    [br]
    Hugo Bilgram studied mechanical engineering at the Augsburg Maschinenbau Schule and graduated in 1865. He worked as a machinist and draughtsman for several firms in Germany before going to the United States in 1869.
    In America he first worked for L.B.Flanders Company and Southwark Foundry \& Machine Company in Philadelphia, designing instruments and machines. In the 1870s he also assisted in an evening class in drawing at The Franklin Institute. He devised the Bilgram Valve Diagram for analysing the action of steam engine slide valves and he developed a method of drawing accurate outlines of gear teeth. This led him to design a machine for cutting the teeth of gear wheels, particularly bevel wheels, which he patented in 1884. He was in charge of the American branch of Brehmer Brothers Company from 1879 and in 1884 became the sole owner of the company, which was later incorporated as the Bilgram Machine Works. He was responsible for several other inventions and developments in gear manufacture.
    Bilgram was a member of the Franklin Institute, the American Academy of Political and Social Science, the Philadelphia Technische Verein and the Philadelphia Engineer's Club, and was elected a member of the American Society of Mechanical Engineers in 1885. He was also an amateur botanist, keenly interested in microscopic work.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Elliott Cresson Gold Medal. City of Philadelphia John Scott Medal.
    Bibliography
    Hugo Bilgram was granted several patents and was the author of: 1877, Slide Valve Gears.
    1889, Involuntary Idleness.
    1914, The Cause of Business Depression.
    1928, The Remedy for Overproduction and Unemployment.
    Further Reading
    Robert S.Woodbury, 1958, History of the Gear-cutting Machine, Cambridge, Mass, (describes Bilgram's bevel-gear generating machine).
    RTS

    Biographical history of technology > Bilgram, Hugo

  • 16 Hancock, Thomas

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 May 1786 Marlborough, Wiltshire, England
    d. 26 March 1865 Stoke Newington, London, England
    [br]
    English founder of the British rubber industry.
    [br]
    After education at a private school in Marlborough, Hancock spent some time in "mechanical pursuits". He went to London to better himself and c.1819 his interest was aroused in the uses of rubber, which until then had been limited. His first patent, dated 29 April 1820, was for the application of rubber in clothing where some elasticity was useful, such as braces or slip-on boots. He noticed that freshly cut pieces of rubber could be made to adhere by pressure to form larger pieces. To cut up his imported and waste rubber into small pieces, Hancock developed his "masticator". This device consisted of a spiked roller revolving in a hollow cylinder. However, when rubber was fed in to the machine, the product was not the expected shredded rubber, but a homogeneous cylindrical mass of solid rubber, formed by the heat generated by the process and pressure against the outer cylinder. This rubber could then be compacted into blocks or rolled into sheets at his factory in Goswell Road, London; the blocks and sheets could be used to make a variety of useful articles. Meanwhile Hancock entered into partnership with Charles Macintosh in Manchester to manufacture rubberized, waterproof fabrics. Despite these developments, rubber remained an unsatisfactory material, becoming sticky when warmed and losing its elasticity when cold. In 1842 Hancock encountered specimens of vulcanized rubber prepared by Charles Goodyear in America. Hancock worked out for himself that it was made by heating rubber and sulphur, and obtained a patent for the manufacture of the material on 21 November 1843. This patent also included details of a new form of rubber, hardened by heating to a higher temperature, that was later called vulcanite, or ebonite. In 1846 he began making solid rubber tyres for road vehicles. Overall Hancock took out sixteen patents, covering all aspects of the rubber industry; they were a leading factor in the development of the industry from 1820 until their expiry in 1858.
    [br]
    Bibliography
    1857, Personal Narrative of the Origin and Progress of the Caoutchouc or Indiarubber Manufacture in England, London.
    Further Reading
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87.
    LRD

    Biographical history of technology > Hancock, Thomas

  • 17 Howe, Frederick Webster

    [br]
    b. 28 August 1822 Danvers, Massachusetts, USA
    d. 25 April 1891 Providence, Rhode Island, USA
    [br]
    American mechanical engineer, machine-tool designer and inventor.
    [br]
    Frederick W.Howe attended local schools until the age of 16 and then entered the machine shop of Gay \& Silver at North Chelmsford, Massachusetts, as an apprentice and remained with that firm for nine years. He then joined Robbins, Kendall \& Lawrence of Windsor, Vermont, as Assistant to Richard S. Lawrence in designing machine tools. A year later (1848) he was made Plant Superintendent. During his time with this firm, Howe designed a profiling machine which was used in all gun shops in the United States: a barrel-drilling and rifling machine, and the first commercially successful milling machine. Robbins \& Lawrence took to the Great Exhibition of 1851 in London, England, a set of rifles built on the interchangeable system. The interest this created resulted in a visit of some members of the British Royal Small Arms Commission to America and subsequently in an order for 150 machine tools, jigs and fixtures from Robbins \& Lawrence, to be installed at the small-arms factory at Enfield. From 1853 to 1856 Howe was in charge of the design and building of these machines. In 1856 he established his own armoury at Newark, New Jersey, but transferred after two years to Middletown, Connecticut, where he continued the manufacture of small arms until the outbreak of the Civil War. He then became Superintendent of the armoury of the Providence Tool Company at Providence, Rhode Island, and served in that capacity until the end of the war. In 1865 he went to Bridgeport, Connecticut, to assist Elias Howe with the manufacture of his sewing machine. After the death of Elias Howe, Frederick Howe returned to Providence to join the Brown \& Sharpe Manufacturing Company. As Superintendent of that establishment he worked with Joseph R. Brown in the development of many of the firm's products, including machinery for the Wilcox \& Gibbs sewing machine then being made by Brown \& Sharpe. From 1876 Howe was in business on his own account as a consulting mechanical engineer and in his later years he was engaged in the development of shoe machinery and in designing a one-finger typewriter, which, however, was never completed. He was granted several patents, mainly in the fields of machine tools and firearms. As a designer, Howe was said to have been a perfectionist, making frequent improvements; when completed, his designs were always sound.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; repub. 1926, New York, and 1987, Bradley, 111. (provides biographical details).
    R.S.Woodbury, 1960, History of the Milling Machine, Cambridge, Mass, (describes Howe's contribution to the development of the milling machine).
    RTS

    Biographical history of technology > Howe, Frederick Webster

  • 18 Thimmonier, Barthélémy

    [br]
    b. 1793 Saint-Etienne, France d. 1857
    [br]
    French inventor of the first sewing machine.
    [br]
    The sewing machine is probably the most universal and the most important machine in clothing manufacture, being used both industrially and domestically. It was also the first domestic consumer durable and was the first mass-produced machine to appear in the home. The first practical sewing machine was built during 1828 and 1829 by Barthélémy Thimmonier, a working tailor of Saint-Etienne in France. He came from a modest family and had never received any training as a mechanic, so his invention is all the more remarkable. He took out a patent in 1830 in his own name and that of Ferrand, a tutor of the Saint-Etienne School of Mines who had helped him financially. It was a chain-stitch machine made largely of wood and operated by a foot pedal with a large flywheel. The needle moved up and down through the cloth, which was placed on a platform below it. A second, hooked needle under the platform made a loop in the thread, which was caught when the first needle descended again.
    In 1841, Thimmonier was appointed to a senior position in a large Paris clothing factory engaged in the production of French army uniforms. He soon had eighty machines in use, but a mob of hand-sewers broke in, smashed the machines and nearly killed Thimmonier. In 1845, he had developed his machine so that it could make 200 stitches per minute and formed a partnership with Jean-Marie Magnin to build them commercially. However, the abdication of Louis Philippe on 21 February 1848 ended his hopes, even though patents were taken out in the UK and the USA in that year. The English patent was in Magnin's name, and Thimmonier died impoverished in 1857. His machine was perfected by many later inventors.
    [br]
    Bibliography
    1830, with Ferrand, (chain-stitch machine).
    Further Reading
    A.Matagran, 1931, "Barthélémy Thimmonier (1793–1857), inventeur de la machine à coudre", Bull. Soc. Enc. Industr. nat. 130 (biography in French).
    J.Meyssin, 1914, Histoire de la machine à coudre: portrait et biographie de l'inventeur B.Thimmonier, 5th edn, Lyons (biography in French).
    M.Daumas, (ed.), 1968, Histoire générale des techniques, Vol. III: L'Expansion du machinisme, Paris (includes a description of Thimmonier's machine, with a picture).
    N.Salmon, 1863, History of the Sewing Machine from the Year 1750 (tells the history of the sewing machine).
    F.B.Jewell, 1975, Veteran Sewing Machines. A Collector's Guide, Newton Abbot (a more modern account).
    RLH

    Biographical history of technology > Thimmonier, Barthélémy

  • 19 Weston, Edward

    SUBJECT AREA: Electricity
    [br]
    b. 9 May 1850 Oswestry, England
    d. 20 August 1936 Montclair, New Jersey, USA
    [br]
    English (naturalized American) inventor noted for his contribution to the technology of electrical measurements.
    [br]
    Although he developed dynamos for electroplating and lighting, Weston's major contribution to technology was his invention of a moving-coil voltmeter and the standard cell which bears his name. After some years as a medical student, during which he gained a knowledge of chemistry, he abandoned his studies. Emigrating to New York in 1870, he was employed by a manufacturer of photographic chemicals. There followed a period with an electroplating company during which he built his first dynamo. In 1877 some business associates financed a company to build these machines and, later, arc-lighting equipment. By 1882 the Weston Company had been absorbed into the United States Electric Lighting Company, which had a counterpart in Britain, the Maxim Weston Company. By the time Weston resigned from the company, in 1886, he had been granted 186 patents. He then began the work in which he made his greatest contribution, the science of electrical measurement.
    The Weston meter, the first successful portable measuring instrument with a pivoted coil, was made in 1886. By careful arrangement of the magnet, coil and control springs, he achieved a design with a well-damped movement, which retained its calibration. These instruments were produced commercially on a large scale and the moving-coil principle was soon adopted by many manufacturers. In 1892 he invented manganin, an alloy with a small negative temperature coefficient, for use as resistances in his voltmeters.
    The Weston standard cell was invented in 1892. Using his chemical knowledge he produced a cell, based on mercury and cadmium, which replaced the Clark cell as a voltage reference source. The Weston cell became the recognized standard at the International Conference on Electrical Units and Standards held in London in 1908.
    [br]
    Principal Honours and Distinctions
    President, AIEE 1888–9. Franklin Institute Elliott Cresson Medal 1910, Franklin medal 1924.
    Bibliography
    29 April 1890, British patent no. 6,569 (the Weston moving-coil instrument). 6 February 1892, British patent no. 22,482 (the Weston standard cell).
    Further Reading
    D.O.Woodbury, 1949, A Measure of Greatness. A Short Biography of Edward Weston, New York (a detailed account).
    C.N.Brown, 1988, in Proceedings of the Meeting on the History of Electrical Engineering, IEE, 17–21 (describes Weston's meter).
    H.C.Passer, 1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass.
    GW

    Biographical history of technology > Weston, Edward

См. также в других словарях:

  • Mass spectrometry software — is software used for data acquisition, analysis, or representation in mass spectrometry. Contents 1 MS/MS peptide identification 1.1 Database search algorithms 1.1.1 SEQUEST 1.1.2 …   Wikipedia

  • Mass deacidification — is a term used in Library and Information Science for one possible measure against the degradation of paper in old books (the so called slow fires ). The goal of the process is to increase the pH of acidic paper on a large scale. Although acid… …   Wikipedia

  • List of Tesla patents — Below is a list of Tesla patents. Dr. Nikola Tesla was an inventor who obtained around 300 patents [Snezana Sarbo, [http://www.tesla symp06.org/papers/Tesla Symp06 Sarboh.pdfNikola Tesla s Patents] , Sixth International Symposium Nikola Tesla,… …   Wikipedia

  • Inductively coupled plasma mass spectrometry — ICP MS Instrument Acronym ICP MS Classification Mass spectrometry Analytes atomic and polyatomic species in plasma, with exceptions; usually inte …   Wikipedia

  • motion picture, history of the — Introduction       history of the medium from the 19th century to the present. Early years, 1830–1910 Origins       The illusion of motion pictures is based on the optical phenomena known as persistence of vision and the phi phenomenon. The first …   Universalium

  • Kite control systems — Kite types, kite mooring, and kite applications result in a wide variety of kite control systems; contemporary manufacturers, kite athletes, kite pilots, scientists, and engineers are expanding kite control systems. Single line kite control… …   Wikipedia

  • Science and invention in Birmingham — Birmingham is the second largest city in the United Kingdom. It is one of the country s principal industrial centres and has an impressive history of industrial and scientific innovation.16th century1547: Although no record is kept to indicate… …   Wikipedia

  • Invention of radio — Great Radio Controversy redirects here. For the album by the band Tesla, see The Great Radio Controversy. Contents 1 Physics of wireless signalling 2 Theory of electromagnetism …   Wikipedia

  • publishing, history of — Introduction       an account of the selection, preparation, and marketing of printed matter from its origins in ancient times to the present. The activity has grown from small beginnings into a vast and complex industry responsible for the… …   Universalium

  • Andrew J. Moyer — Andrew Jackson Moyer Born November 30, 1899 Van Buren Township, Indiana, USA Died February 17, 1959 St. Petersburg, Florida, USA Known for Optimizing the first process for the industrial manufacturing of Penicillin. Andrew Jackson Moyer… …   Wikipedia

  • Stem cell — Mouse embryonic st …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»