Перевод: со всех языков на все языки

со всех языков на все языки

long-life+construction

  • 101 Davidson, Robert

    [br]
    b. 18 April 1804 Aberdeen, Scotland
    d. 16 November 1894 Aberdeen, Scotland
    [br]
    Scottish chemist, pioneer of electric power and builder of the first electric railway locomotives.
    [br]
    Davidson, son of an Aberdeen merchant, attended Marischal College, Aberdeen, between 1819 and 1822: his studies included mathematics, mechanics and chemistry. He subsequently joined his father's grocery business, which from time to time received enquiries for yeast: to meet these, Davidson began to manufacture yeast for sale and from that start built up a successful chemical manufacturing business with the emphasis on yeast and dyes. About 1837 he started to experiment first with electric batteries and then with motors. He invented a form of electromagnetic engine in which soft iron bars arranged on the periphery of a wooden cylinder, parallel to its axis, around which the cylinder could rotate, were attracted by fixed electromagnets. These were energized in turn by current controlled by a simple commutaring device. Electric current was produced by his batteries. His activities were brought to the attention of Michael Faraday and to the scientific world in general by a letter from Professor Forbes of King's College, Aberdeen. Davidson declined to patent his inventions, believing that all should be able freely to draw advantage from them, and in order to afford an opportunity for all interested parties to inspect them an exhibition was held at 36 Union Street, Aberdeen, in October 1840 to demonstrate his "apparatus actuated by electro-magnetic power". It included: a model locomotive carriage, large enough to carry two people, that ran on a railway; a turning lathe with tools for visitors to use; and a small printing machine. In the spring of 1842 he put on a similar exhibition in Edinburgh, this time including a sawmill. Davidson sought support from railway companies for further experiments and the construction of an electromagnetic locomotive; the Edinburgh exhibition successfully attracted the attention of the proprietors of the Edinburgh 585\& Glasgow Railway (E \& GR), whose line had been opened in February 1842. Davidson built a full-size locomotive incorporating his principle, apparently at the expense of the railway company. The locomotive weighed 7 tons: each of its two axles carried a cylinder upon which were fastened three iron bars, and four electromagnets were arranged in pairs on each side of the cylinders. The motors he used were reluctance motors, the power source being zinc-iron batteries. It was named Galvani and was demonstrated on the E \& GR that autumn, when it achieved a speed of 4 mph (6.4 km/h) while hauling a load of 6 tons over a distance of 1 1/2 miles (2.4 km); it was the first electric locomotive. Nevertheless, further support from the railway company was not forthcoming, although to some railway workers the locomotive seems to have appeared promising enough: they destroyed it in Luddite reaction. Davidson staged a further exhibition in London in 1843 without result and then, the cost of battery chemicals being high, ceased further experiments of this type. He survived long enough to see the electric railway become truly practicable in the 1880s.
    [br]
    Bibliography
    1840, letter, Mechanics Magazine, 33:53–5 (comparing his machine with that of William Hannis Taylor (2 November 1839, British patent no. 8,255)).
    Further Reading
    1891, Electrical World, 17:454.
    J.H.R.Body, 1935, "A note on electro-magnetic engines", Transactions of the Newcomen Society 14:104 (describes Davidson's locomotive).
    F.J.G.Haut, 1956, "The early history of the electric locomotive", Transactions of the Newcomen Society 27 (describes Davidson's locomotive).
    A.F.Anderson, 1974, "Unusual electric machines", Electronics \& Power 14 (November) (biographical information).
    —1975, "Robert Davidson. Father of the electric locomotive", Proceedings of the Meeting on the History of Electrical Engineering Institution of Electrical Engineers, 8/1–8/17 (the most comprehensive account of Davidson's work).
    A.C.Davidson, 1976, "Ingenious Aberdonian", Scots Magazine (January) (details of his life).
    PJGR / GW

    Biographical history of technology > Davidson, Robert

  • 102 Ferranti, Sebastian Ziani de

    [br]
    b. 9 April 1864 Liverpool, England
    d. 13 January 1930 Zurich, Switzerland
    [br]
    English manufacturing engineer and inventor, a pioneer and early advocate of high-voltage alternating-current electric-power systems.
    [br]
    Ferranti, who had taken an interest in electrical and mechanical devices from an early age, was educated at St Augustine's College in Ramsgate and for a short time attended evening classes at University College, London. Rather than pursue an academic career, Ferranti, who had intense practical interests, found employment in 1881 with the Siemens Company (see Werner von Siemens) in their experimental department. There he had the opportunity to superintend the installation of electric-lighting plants in various parts of the country. Becoming acquainted with Alfred Thomson, an engineer, Ferranti entered into a short-lived partnership with him to manufacture the Ferranti alternator. This generator, with a unique zig-zag armature, had an efficiency exceeding that of all its rivals. Finding that Sir William Thomson had invented a similar machine, Ferranti formed a company with him to combine the inventions and produce the Ferranti- Thomson machine. For this the Hammond Electric Light and Power Company obtained the sole selling rights.
    In 1885 the Grosvenor Gallery Electricity Supply Corporation was having serious problems with its Gaulard and Gibbs series distribution system. Ferranti, when consulted, reviewed the design and recommended transformers connected across constant-potential mains. In the following year, at the age of 22, he was appointed Engineer to the company and introduced the pattern of electricity supply that was eventually adopted universally. Ambitious plans by Ferranti for London envisaged the location of a generating station of unprecedented size at Deptford, about eight miles (13 km) from the city, a departure from the previous practice of placing stations within the area to be supplied. For this venture the London Electricity Supply Corporation was formed. Ferranti's bold decision to bring the supply from Deptford at the hitherto unheard-of pressure of 10,000 volts required him to design suitable cables, transformers and generators. Ferranti planned generators with 10,000 hp (7,460 kW)engines, but these were abandoned at an advanced stage of construction. Financial difficulties were caused in part when a Board of Trade enquiry in 1889 reduced the area that the company was able to supply. In spite of this adverse situation the enterprise continued on a reduced scale. Leaving the London Electricity Supply Corporation in 1892, Ferranti again started his own business, manufacturing electrical plant. He conceived the use of wax-impregnated paper-insulated cables for high voltages, which formed a landmark in the history of cable development. This method of flexible-cable manufacture was used almost exclusively until synthetic materials became available. In 1892 Ferranti obtained a patent which set out the advantages to be gained by adopting sector-shaped conductors in multi-core cables. This was to be fundamental to the future design and development of such cables.
    A total of 176 patents were taken out by S.Z. de Ferranti. His varied and numerous inventions included a successful mercury-motor energy meter and improvements to textile-yarn produc-tion. A transmission-line phenomenon where the open-circuit voltage at the receiving end of a long line is greater than the sending voltage was named the Ferranti Effect after him.
    [br]
    Principal Honours and Distinctions
    FRS 1927. President, Institution of Electrical Engineers 1910 and 1911. Institution of Electrical Engineers Faraday Medal 1924.
    Bibliography
    18 July 1882, British patent no. 3,419 (Ferranti's first alternator).
    13 December 1892, British patent no. 22,923 (shaped conductors of multi-core cables). 1929, "Electricity in the service of man", Journal of the Institution of Electrical Engineers 67: 125–30.
    Further Reading
    G.Z.de Ferranti and R. Ince, 1934, The Life and Letters of Sebastian Ziani de Ferranti, London.
    A.Ridding, 1964, S.Z.de Ferranti. Pioneer of Electric Power, London: Science Museum and HMSO (a concise biography).
    R.H.Parsons, 1939, Early Days of the Power Station Industry, Cambridge, pp. 21–41.
    GW

    Biographical history of technology > Ferranti, Sebastian Ziani de

  • 103 Perret, Auguste

    [br]
    b. 12 February 1874 Ixelles, near Brussels, Belgium
    d. 26 February 1954 Le Havre (?), France
    [br]
    French architect who pioneered and established building design in reinforced concrete in a style suited to the modern movement.
    [br]
    Auguste Perret belonged to the family contracting firm of A. \& G.Perret, which early specialized in the use of reinforced concrete. His eight-storey building at 25 bis Rue Franklin in Paris, built in 1902–3, was the first example of frame construction in this material and established its viability for structural design. Both ground plan and façade are uncompromisingly modern, the simplicity of the latter being relieved by unobtrusive faience decoration. The two upper floors, which are set back, and the open terrace roof garden set a pattern for future schemes. All of Perret's buildings had reinforced-concrete structures and this was clearly delineated on the façade designs. The concept was uncommon in Europe at the time, when eclecticism still largely ruled, but was derived from the late nineteenth-century skyscraper façades built by Louis Sullivan in America. In 1905–6 came Perret's Garage Ponthieu in Paris; a striking example of exposed concrete, it had a central façade window glazed in modern design in rich colours. By the 1920s ferroconcrete was in more common use, but Perret still led the field in France with his imaginative, bold use of the material. His most original structure is the Church of Notre Dame at Le Raincy on the outskirts of Paris (1922–3). The imposing exterior with its tall tower in diminishing stages is finely designed, but the interior has magnificence. It is a wide, light church, the segmented vaulted roof supported on slender columns. The whole structure is in concrete apart from the glass window panels, which extend the full height of the walls all around the church. They provide a symphony of colour culminating in deep blue behind the altar. Because of the slenderness of the columns and the richness of the glass, this church possesses a spiritual atmosphere and unimpeded sight and sound of and from the altar for everyone. It became the prototype for churches all over Europe for decades, from Moser in prewar Switzerland to Spence's postwar Coventry Cathedral.
    In a long working life Perret designed buildings for a wide range of purposes, adhering to his preference for ferroconcrete and adapting its use according to each building's needs. In the 1940s he was responsible for the railway station at Amiens, the Atomic Centre at Saclay and, one of his last important works, the redevelopment after wartime damage of the town centre of Le Havre. For the latter, he laid out large open squares enclosed by prefabricated units, which display a certain monotony, despite the imposing town hall and Church of St Joseph in the Place de L'Hôtel de Ville.
    [br]
    Principal Honours and Distinctions
    President des Réunions Internationales des Architectes. American Society of the French Legion of Honour Gold Medal 1950. Elected after the Second World War to the Institut de France. First President of the International Union of Architects on its creation in 1948. RIBA Royal Gold Medal 1948.
    Further Reading
    P.Blater, 1939, "Work of the architect A.Perret", Architektura SSSR (Moscow) 7:57 (illustrated article).
    1848 "Auguste Perret: a pioneer in reinforced concrete", Civil Engineers' Review, pp.
    296–300.
    Peter Collins, 1959, Concrete: The Vision of a New Architecture: A Study of Auguste Perret and his Precursors, Faber \& Faber.
    Marcel Zahar, 1959, D'Une Doctrine d'Architecture: Auguste Perret, Paris: Vincent Fréal.
    DY

    Biographical history of technology > Perret, Auguste

  • 104 Vitruvius Pollio

    [br]
    b. early first century BC
    d. c. 25 BC
    [br]
    Roman writer on architecture and engineering subjects.
    [br]
    Nothing is known of Vitruvius apart from what can be gleaned from his only known work, the treatise De architectura. He seems to have been employed in some capacity by Julius Caesar and continued to serve under his heir, Octavianus, later Emperor Augustus, to whom he dedicated his book. It was written towards the end of his life, after Octavianus became undisputed ruler of the Empire by his victory at Actium in 31 BC, and was based partly on his own experience and partly on earlier, Hellenistic, writers.
    The De architectura is divided into ten books. The first seven books expound the general principles of architecture and the planning, design and construction of various types of building, public and domestic, including a consideration of techniques and materials. Book 7 deals with interior decoration, including stucco work and painting, while Book 8 treats water supply, from the location of sources to the transport of water by aqueducts, tunnels and pipes. Book 9, after a long and somewhat confused account of the astronomical theories of the day, describes various forms of clock and sundial. Finally, Book 10 deals with mechanical devices for handling building materials and raising and pumping water, for which Vitruvius draws on the earlier Greek authors Ctesibius and Hero.
    Although this may seem a motley assembly of subjects, to the Roman architect and builder it was a logical compendium of the subjects he was expected to know about. At the time, Vitruvius' rigid rules for the design of buildings such as temples seem to have had little influence, but his accounts of more practical matters of building materials and techniques were widely used. His illustrations to the original work were lost in antiquity, for no later manuscript includes them. Through the Middle Ages, manuscript copies were made in monastic scriptoria, although the architectural style in vogue had little relevance to those in Vitruvius: these came into their own with the Italian Renaissance. Alberti, writing the first great Renaissance treatise on architecture from 1452 to 1467, drew heavily on De architectura; those who sought to revive the styles of antiquity were bound to regard the only surviving text on the subject as authoritative. The appearance of the first printed edition in 1486 only served to extend its influence.
    During the sixteenth and seventeenth centuries, Vitruvius was used as a handbook for constructing machines and instruments. For the modern historian of technology and architecture the work is a source of prime importance, although it must be remembered that the illustrations in the early printed editions are of contemporary reproductions of ancient devices using the techniques of the time, rather than authentic representations of ancient technology.
    [br]
    Bibliography
    Of the several critical editions of De architectura there are the Teubner edition, 1899. ed. V.Rose, Leipzig; the Loeb Classical Library edition, 1962, ed. F.Granger, London: Heinemann, (with English trans. and notes); and the Collection Guillaume Budé with French trans. and full commentary, 10 vols, Paris (in progress).
    Further Reading
    Apart from the notes to the printed editions, see also: H.Plommer, 1973, Vitruvius and Later Roman Building Manuals, London. A.G.Drachmann, 1963, The Mechanical Technology of Greek and Roman Antiquity Copenhagen and London.
    S.L.Gibbs, 1976, Greek and Roman Sundials, New Haven and London.
    LRD

    Biographical history of technology > Vitruvius Pollio

  • 105 Wyatt, John

    SUBJECT AREA: Metallurgy, Textiles
    [br]
    b. April 1700 Thickbroom, Weeford, near Lichfield, England
    d. 29 November 1766 Birmingham, England
    [br]
    English inventor of machines for making files and rolling lead, and co-constructor of a cotton-spinning machine.
    [br]
    John Wyatt was the eldest son of John and Jane Wyatt, who lived in the small village of Thickbroom in the parish of Weeford, near Lichfield. John the younger was educated at Lichfield school and then worked as a carpenter at Thickbroom till 1730. In 1732 he was in Birmingham, engaged by a man named Heely, a gunbarrel forger, who became bankrupt in 1734. Wyatt had invented a machine for making files and sought the help of Lewis Paul to manufacture this commercially.
    The surviving papers of Paul and Wyatt in Birmingham are mostly undated and show a variety of machines with which they were involved. There was a machine for "making lead hard" which had rollers, and "a Gymcrak of some consequence" probably refers to a machine for boring barrels or the file-making machine. Wyatt is said to have been one of the unsuccessful competitors for the erection of London Bridge in 1736. He invented and perfected the compound-lever weighing machine. He had more success with this: after 1744, machines for weighing up to five tons were set up at Birmingham, Chester, Gloucester, Hereford, Lichfield and Liverpool. Road construction, bridge building, hydrostatics, canals, water-powered engines and many other schemes received his attention and it is said that he was employed for a time after 1744 by Matthew Boulton.
    It is certain that in April 1735 Paul and Wyatt were working on their spinning machine and Wyatt was making a model of it in London in 1736, giving up his work in Birmingham. The first patent, in 1738, was taken out in the name of Lewis Paul. It is impossible to know which of these two invented what. This first patent covers a wide variety of descriptions of the vital roller drafting to draw out the fibres, and it is unknown which system was actually used. Paul's carding patent of 1748 and his second spinning patent of 1758 show that he moved away from the system and principles upon which Arkwright built his success. Wyatt and Paul's spinning machines were sufficiently promising for a mill to be set up in 1741 at the Upper Priory, Birmingham, that was powered by two asses. Wyatt was the person responsible for constructing the machinery. Edward Cave established another at Northampton powered by water while later Daniel Bourn built yet another at Leominster. Many others were interested too. The Birmingham mill did not work for long and seems to have been given up in 1743. Wyatt was imprisoned for debt in The Fleet in 1742, and when released in 1743 he tried for a time to run the Birmingham mill and possibly the Northampton one. The one at Leominster burned down in 1754, while the Northampton mill was advertised for sale in 1756. This last mill may have been used again in conjunction with the 1758 patent. It was Wyatt whom Daniel Bourn contacted about a grant for spindles for his Leominster mill in 1748, but this seems to have been Wyatt's last association with the spinning venture.
    [br]
    Further Reading
    G.J.French, 1859, The Life and Times of Samuel Crompton, London (French collected many of the Paul and Wyatt papers; these should be read in conjunction with Hills 1970).
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (Hills shows that the rollerdrafting system on this spinning machine worked on the wrong principles). A.P.Wadsworth and J.de L.Mann, 1931, The Cotton Trade and Industrial Lancashire, 1600–1780, Manchester (provides good coverage of the partnership of Paul and Wyatt and of the early mills).
    E.Baines, 1835, History of the Cotton Manufacture in Great Britain, London (this publication must be mentioned, although it is now out of date).
    W.English, 1969, The Textile Industry, London (a more recent account).
    W.A.Benton, "John Wyatt and the weighing of heavy loads", Transactions of the Newcomen Society 9 (for a description of Wyatt's weighing machine).
    RLH

    Biographical history of technology > Wyatt, John

См. также в других словарях:

  • Life Sciences — ▪ 2009 Introduction Zoology       In 2008 several zoological studies provided new insights into how species life history traits (such as the timing of reproduction or the length of life of adult individuals) are derived in part as responses to… …   Universalium

  • Construction of One World Trade Center — was deferred until 2006 because of disputes between port authority and the developer. Tishman Realty Construction,[1] is the selected builder. The building reached ground level on May 17, 2008 and is scheduled to be completed by the end of 2012… …   Wikipedia

  • Long-term memory — (LTM) is memory that can last as little as a few days or as long as decades. It differs structurally and functionally from working memory or short term memory, which ostensibly stores items for only around 20 seconds. Biologically, short term… …   Wikipedia

  • Life L190 — La Life L190, lors du festival de Goodwood, en 2009. Présentation Équipe Life Racing Engines Constructeur …   Wikipédia en Français

  • Long Wharf (New Haven) — Long Wharf is a waterfront district and neighborhood of the city of New Haven, Connecticut, United States.LocationIts location can be defined as the area stretching inland from the west side of New Haven Harbor northwest to Union Avenue, west to… …   Wikipedia

  • Construction Time Again — Studio album by Depeche Mode Released August 22 …   Wikipedia

  • Long Beach Convention and Entertainment Center — Address 300 East Ocean Blvd. Location Long Beach, California …   Wikipedia

  • Construction of the World Trade Center — For the post 9/11 rebuilding and ongoing construction at the World Trade Center site, see World Trade Center site. The completed World Trade Center in March 2001 The construction of the World Trade Center was conceived as an urban renewal project …   Wikipedia

  • Construction of the Trans-Alaska Pipeline System — The construction of the Trans Alaska Pipeline System was a massive undertaking involving tens of thousands of people often in extreme temperatures and conditions. Specialized construction techniques were pioneered to build the pipeline, most of… …   Wikipedia

  • Long Beach City College — Infobox University name = Long Beach City College native name = image size = 250px caption = The Liberal Arts Campus Administration Building established = 1927 type = Community college head label = Sup t President head = Eloy Oakley faculty =… …   Wikipedia

  • Life Racing Engines — Pour les articles homonymes, voir Life (homonymie) …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»