Перевод: с английского на все языки

со всех языков на английский

institute+an+award

  • 1 institute an award

    Универсальный англо-русский словарь > institute an award

  • 2 institute an award

    English-Russian military dictionary > institute an award

  • 3 institute an award

    English-Russian dictionary of terms that are used in computer games > institute an award

  • 4 institute

    1. n ассоциация, общество; кружок
    2. n вечерняя школа,
    3. n амер. краткосрочные курсы; серия лекций
    4. n институт, установление
    5. n юр. основы права; институции
    6. v устанавливать, вводить
    7. v учреждать, основывать
    8. v начинать, возбуждать
    9. v церк. назначать; облекать властью
    10. v юр. назначать наследником
    Синонимический ряд:
    1. academy (noun) academy; college; institution; organization; school; society
    2. law (noun) assize; canon; decree; decretum; edict; law; ordinance; precept; prescript; prescription; regulation; rule; statute
    3. bring (verb) bring; cite; prefer; serve; summon
    4. establish (verb) begin; constitute; create; enact; establish; found; generate; organise; organize; set up; start; undertake
    5. introduce (verb) inaugurate; initiate; introduce; launch; originate; set up; usher in
    Антонимический ряд:

    English-Russian base dictionary > institute

  • 5 institute

    English-Russian big polytechnic dictionary > institute

  • 6 institute

    institute ['ɪnstɪtju:t]
    (a) (establish → system, guidelines) instituer, établir; (→ change) introduire, apporter; (→ committee) créer, constituer; (→ award, organization) fonder, créer
    (b) (take up → proceedings) engager, entamer; (→ inquiry) ouvrir;
    he threatened to institute legal action against them il a menacé de leur intenter un procès
    (c) (induct) installer; Religion instituer
    2 noun
    institut m;
    institute for the blind institut m pour aveugles;
    research institute institut m de recherche
    ►► the Institute for Cancer Research = institut américain de recherche sur le cancer;
    British the Institute of Contemporary Arts = centre d'art moderne à Londres;
    British institute of education école f formant des enseignants

    Un panorama unique de l'anglais et du français > institute

  • 7 institute award

    English-Russian military dictionary > institute award

  • 8 international award

    English-Russian big medical dictionary > international award

  • 9 Franklin Institute

    Крупный национальный научный и научно-технологический центр. Находится в г. Филадельфии. Основан в 1824. В состав института входят Музей науки и планетарий [Franklin Institute Science Museum and Planetarium], Центр Манделла [Mandell Center], театр [Tuttleman Omniverse Theater]. Институт играл и продолжает играть важную роль в культурной и научной жизни Филадельфии. Здесь проходила первая в США международная выставка электричества [International Electrical Exhibition] (1884), впервые демонстрировались возможности трансконтинентальной телефонной связи (1916). В здании, где Институт расположен с 1933, также находится Национальный мемориал Бенджамина Франклина [Benjamin Franklin National Memorial] (с 1938), где расположен шестиметровый памятник Б. Франклину [ Franklin, Benjamin]. С 1826 издается "Джорнал ов Франклин инститьют" [Journal of the Franklin Institute], посвященный научным открытиям и их использованию в экономике. Ежегодно Институт присуждает премию Бауэра [Bower Award] за значительный вклад в развитие науки и технологии.

    English-Russian dictionary of regional studies > Franklin Institute

  • 10 Hunter, Matthew Albert

    SUBJECT AREA: Metallurgy
    [br]
    b. 9 November 1878 Auckland Province, New Zealand
    d. 24 March 1961 Troy, New York, USA
    [br]
    New Zealand/American technologist and academic who was a pioneer in the production of metallic titanium.
    [br]
    Hunter arrived in England in 1902, the seventh in the succession of New Zealand students nominated for the 1851 Exhibition science research scholarships (the third, in 1894, having been Ernest Rutherford). He intended to study the metallurgy of tellurides at the Royal School of Mines, but owing to the death of the professor concerned, he went instead to University College London, where his research over two years involved the molecular aggregation of liquified gases. In 1904–5 he spent a third year in Göttingen, Paris and Karlsruhe. Hunter then moved to the USA, beginning work in 1906 with the General Electric Company in Schenectady. His experience with titanium came as part of a programme to try to discover satisfactory lamp-filament materials. He and his colleagues achieved more success in producing moderately pure titanium than previous workers had done, but found the metal's melting temperature inadequate. However, his research formed the basis for the "Hunter sodium process", a modern method for producing commercial quantities of titanium. In 1908 he was appointed Assistant Professor of Electrochemistry and Physics at Rensselaer Polytechnic Institute in Troy, New York, where he was to remain until his retirement in 1949 as Dean Emeritus. In the 1930s he founded and headed the Institute's Department of Metallurgical Engineering. As a consultant, he was associated with the development of Invar, Managanin and Constantan alloys.
    [br]
    Principal Honours and Distinctions
    1851 Great Exhibition science research scholar 1902–5. DSc London University 1904. American Die Casting Institute Doehler Award 1959. American Society for Metals Gold Medal 1959.
    Bibliography
    1910, "Metallic titanium", Journal of the American Chemistry Society 32:330–6 (describes his work relating to titanium production).
    Further Reading
    1961, "Man of metals", Rensselaer Alumni News (December), 5–7:32.
    JKA

    Biographical history of technology > Hunter, Matthew Albert

  • 11 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 12 Forrester, Jay Wright

    [br]
    b. 14 July 1918 Anselmo, Nebraska, USA
    [br]
    American electrical engineer and management expert who invented the magnetic-core random access memory used in most early digital computers.
    [br]
    Born on a cattle ranch, Forrester obtained a BSc in electrical engineering at the University of Nebraska in 1939 and his MSc at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, where he remained to teach and carry out research. Becoming interested in computing, he established the Digital Computer Laboratory at MIT in 1945 and became involved in the construction of Whirlwind I, an early general-purpose computer completed in March 1951 and used for flight-simulation by the US Army Air Force. Finding the linear memories then available for storing data a major limiting factor in the speed at which computers were able to operate, he developed a three-dimensional store based on the binary switching of the state of small magnetic cores that could be addressed and switched by a matrix of wires carrying pulses of current. The machine used parallel synchronous fixed-point computing, with fifteen binary digits and a plus sign, i.e. 16 bits in all, and contained 5,000 vacuum tubes, eleven semiconductors and a 2 MHz clock for the arithmetic logic unit. It occupied a two-storey building and consumed 150kW of electricity. From his experience with the development and use of computers, he came to realize their great potential for the simulation and modelling of real situations and hence for the solution of a variety of management problems, using data communications and the technique now known as interactive graphics. His later career was therefore in this field, first at the MIT Lincoln Laboratory in Lexington, Massachusetts (1951) and subsequently (from 1956) as Professor at the Sloan School of Management at the Massachusetts Institute of Technology.
    [br]
    Principal Honours and Distinctions
    National Academy of Engineering 1967. George Washington University Inventor of the Year 1968. Danish Academy of Science Valdemar Poulsen Gold Medal 1969. Systems, Man and Cybernetics Society Award for Outstanding Accomplishments 1972. Computer Society Pioneer Award 1972. Institution of Electrical Engineers Medal of Honour 1972. National Inventors Hall of Fame 1979. Magnetics Society Information Storage Award 1988. Honorary DEng Nebraska 1954, Newark College of Engineering 1971, Notre Dame University 1974. Honorary DSc Boston 1969, Union College 1973. Honorary DPolSci Mannheim University, Germany. Honorary DHumLett, State University of New York 1988.
    Bibliography
    1951, "Data storage in three dimensions using magnetic cores", Journal of Applied Physics 20: 44 (his first description of the core store).
    Publications on management include: 1961, Industrial Dynamics, Cambridge, Mass.: MIT Press; 1968, Principles of Systems, 1971, Urban Dynamics, 1980, with A.A.Legasto \& J.M.Lyneis, System Dynamics, North Holland. 1975, Collected Papers, Cambridge, Mass.: MIT.
    Further Reading
    K.C.Redmond \& T.M.Smith, Project Whirlwind, the History of a Pioneer Computer (provides details of the Whirlwind computer).
    H.H.Goldstine, 1993, The Computer from Pascal to von Neumann, Princeton University Press (for more general background to the development of computers).
    Serrell et al., 1962, "Evolution of computing machines", Proceedings of the Institute of
    Radio Engineers 1,047.
    M.R.Williams, 1975, History of Computing Technology, London: Prentice-Hall.
    KF

    Biographical history of technology > Forrester, Jay Wright

  • 13 Goldmark, Peter Carl

    [br]
    b. 2 December 1906 Budapest, Hungary
    d. 7 December 1977 Westchester Co., New York, USA
    [br]
    Austro-Hungarian engineer who developed the first commercial colour television system and the long-playing record.
    [br]
    After education in Hungary and a period as an assistant at the Technische Hochschule, Berlin, Goldmark moved to England, where he joined Pye of Cambridge and worked on an experimental thirty-line television system using a cathode ray tube (CRT) for the display. In 1936 he moved to the USA to work at Columbia Broadcasting Laboratories. There, with monochrome television based on the CRT virtually a practical proposition, he devoted his efforts to finding a way of producing colour TV images: in 1940 he gave his first demonstration of a working system. There then followed a series of experimental field-sequential colour TV systems based on segmented red, green and blue colour wheels and drums, where the problem was to find an acceptable compromise between bandwidth, resolution, colour flicker and colour-image breakup. Eventually he arrived at a system using a colour wheel in combination with a CRT containing a panchromatic phosphor screen, with a scanned raster of 405 lines and a primary colour rate of 144 fields per second. Despite the fact that the receivers were bulky, gave relatively poor, dim pictures and used standards totally incompatible with the existing 525-line, sixty fields per second interlaced monochrome (black and white) system, in 1950 the Federal Communications Commission (FCC), anxious to encourage postwar revival of the industry, authorized the system for public broadcasting. Within eighteen months, however, bowing to pressure from the remainder of the industry, which had formed its own National Television Systems Committee (NTSC) to develop a much more satisfactory, fully compatible system based on the RCA three-gun shadowmask CRT, the FCC withdrew its approval.
    While all this was going on, Goldmark had also been working on ideas for overcoming the poor reproduction, noise quality, short playing-time (about four minutes) and limited robustness and life of the long-established 78 rpm 12 in. (30 cm) diameter shellac gramophone record. The recent availability of a new, more robust, plastic material, vinyl, which had a lower surface noise, enabled him in 1948 to reduce the groove width some three times to 0.003 in. (0.0762 mm), use a more lightly loaded synthetic sapphire stylus and crystal transducer with improved performance, and reduce the turntable speed to 33 1/3 rpm, to give thirty minutes of high-quality music per side. This successful development soon led to the availability of stereophonic recordings, based on the ideas of Alan Blumlein at EMI in the 1930s.
    In 1950 Goldmark became a vice-president of CBS, but he still found time to develop a scan conversion system for relaying television pictures to Earth from the Lunar Orbiter spacecraft. He also almost brought to the market a domestic electronic video recorder (EVR) system based on the thermal distortion of plastic film by separate luminance and coded colour signals, but this was overtaken by the video cassette recorder (VCR) system, which uses magnetic tape.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Award 1945. Institute of Electrical and Electronics Engineers Vladimir K. Zworykin Award 1961.
    Bibliography
    1951, with J.W.Christensen and J.J.Reeves, "Colour television. USA Standard", Proceedings of the Institute of Radio Engineers 39: 1,288 (describes the development and standards for the short-lived field-sequential colour TV standard).
    1949, with R.Snepvangers and W.S.Bachman, "The Columbia long-playing microgroove recording system", Proceedings of the Institute of Radio Engineers 37:923 (outlines the invention of the long-playing record).
    Further Reading
    E.W.Herold, 1976, "A history of colour television displays", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,331.
    KF

    Biographical history of technology > Goldmark, Peter Carl

  • 14 Kompfner, Rudolph

    [br]
    b. 16 May 1909 Vienna, Austria
    d. 3 December 1977 Stanford, California, USA
    [br]
    Austrian (naturalized English in 1949, American in 1957) electrical engineer primarily known for his invention of the travelling-wave tube.
    [br]
    Kompfner obtained a degree in engineering from the Vienna Technische Hochschule in 1931 and qualified as a Diplom-Ingenieur in Architecture two years later. The following year, with a worsening political situation in Austria, he moved to England and became an architectural apprentice. In 1936 he became Managing Director of a building firm owned by a relative, but at the same time he was avidly studying physics and electronics. His first patent, for a television pick-up device, was filed in 1935 and granted in 1937, but was not in fact taken up. In June 1940 he was interned on the Isle of Man, but as a result of a paper previously sent by him to the Editor of Wireless Engineer he was released the following December and sent to join the group at Birmingham University working on centimetric radar. There he worked on klystrons, with little success, but as a result of the experience gained he eventually invented the travelling-wave tube (TWT), which was based on a helical transmission line. After disbandment of the Birmingham team, in 1946 Kompfner moved to the Clarendon Laboratory at Oxford and in 1947 he became a British subject. At the Clarendon Laboratory he met J.R. Pierce of Bell Laboratories, who worked out the theory of operation of the TWT. After gaining his DPhil at Oxford in 1951, Kompfner accepted a post as Principal Scientific Officer at Signals Electronic Research Laboratories, Baldock, but very soon after that he was invited by Pierce to work at Bell on microwave tubes. There, in 1952, he invented the backward-wave oscillator (BWO). He was appointed Director of Electronics Research in 1955 and Director of Communications Research in 1962, having become a US citizen in 1957. In 1958, with Pierce, he designed Echo 1, the first (passive) satellite, which was launched in August 1960. He was also involved with the development of Telstar, the first active communications satellite, which was launched in 1962. Following his retirement from Bell in 1973, he continued to pursue research, alternately at Stanford, California, and Oxford, England.
    [br]
    Principal Honours and Distinctions
    Physical Society Duddell Medal 1955. Franklin Institute Stuart Ballantine Medal 1960. Institute of Electrical and Electronics Engineers David Sarnoff Award 1960. Member of the National Academy of Engineering 1966. Member of the National Academy of Science 1968. Institute of Electrical and Electronics Engineers Medal of Honour 1973. City of Philadelphia John Scott Award 1974. Roentgen Society Silvanus Thompson Medal 1974. President's National medal of Science 1974. Honorary doctorates Vienna 1965, Oxford 1969.
    Bibliography
    1944, "Velocity modulated beams", Wireless Engineer 17:262.
    1942, "Transit time phenomena in electronic tubes", Wireless Engineer 19:3. 1942, "Velocity modulating grids", Wireless Engineer 19:158.
    1946, "The travelling-wave tube", Wireless Engineer 42:369.
    1964, The Invention of the TWT, San Francisco: San Francisco Press.
    Further Reading
    J.R.Pierce, 1992, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers: 980.
    KF

    Biographical history of technology > Kompfner, Rudolph

  • 15 Armstrong, Edwin Howard

    [br]
    b. 18 December 1890 New York City, New York, USA
    d. 31 January 1954 New York City, New York, USA
    [br]
    American engineer who invented the regenerative and superheterodyne amplifiers and frequency modulation, all major contributions to radio communication and broadcasting.
    [br]
    Interested from childhood in anything mechanical, as a teenager Armstrong constructed a variety of wireless equipment in the attic of his parents' home, including spark-gap transmitters and receivers with iron-filing "coherer" detectors capable of producing weak Morse-code signals. In 1912, while still a student of engineering at Columbia University, he applied positive, i.e. regenerative, feedback to a Lee De Forest triode amplifier to just below the point of oscillation and obtained a gain of some 1,000 times, giving a receiver sensitivity very much greater than hitherto possible. Furthermore, by allowing the circuit to go into full oscillation he found he could generate stable continuous-waves, making possible the first reliable CW radio transmitter. Sadly, his claim to priority with this invention, for which he filed US patents in 1913, the year he graduated from Columbia, led to many years of litigation with De Forest, to whom the US Supreme Court finally, but unjustly, awarded the patent in 1934. The engineering world clearly did not agree with this decision, for the Institution of Radio Engineers did not revoke its previous award of a gold medal and he subsequently received the highest US scientific award, the Franklin Medal, for this discovery.
    During the First World War, after some time as an instructor at Columbia University, he joined the US Signal Corps laboratories in Paris, where in 1918 he invented the superheterodyne, a major contribution to radio-receiver design and for which he filed a patent in 1920. The principle of this circuit, which underlies virtually all modern radio, TV and radar reception, is that by using a local oscillator to convert, or "heterodyne", a wanted signal to a lower, fixed, "intermediate" frequency it is possible to obtain high amplification and selectivity without the need to "track" the tuning of numerous variable circuits.
    Returning to Columbia after the war and eventually becoming Professor of Electrical Engineering, he made a fortune from the sale of his patent rights and used part of his wealth to fund his own research into further problems in radio communication, particularly that of receiver noise. In 1933 he filed four patents covering the use of wide-band frequency modulation (FM) to achieve low-noise, high-fidelity sound broadcasting, but unable to interest RCA he eventually built a complete broadcast transmitter at his own expense in 1939 to prove the advantages of his system. Unfortunately, there followed another long battle to protect and exploit his patents, and exhausted and virtually ruined he took his own life in 1954, just as the use of FM became an established technique.
    [br]
    Principal Honours and Distinctions
    Institution of Radio Engineers Medal of Honour 1917. Franklin Medal 1937. IERE Edison Medal 1942. American Medal for Merit 1947.
    Bibliography
    1922, "Some recent developments in regenerative circuits", Proceedings of the Institute of Radio Engineers 10:244.
    1924, "The superheterodyne. Its origin, developments and some recent improvements", Proceedings of the Institute of Radio Engineers 12:549.
    1936, "A method of reducing disturbances in radio signalling by a system of frequency modulation", Proceedings of the Institute of Radio Engineers 24:689.
    Further Reading
    L.Lessing, 1956, Man of High-Fidelity: Edwin Howard Armstrong, pbk 1969 (the only definitive biography).
    W.R.Maclaurin and R.J.Harman, 1949, Invention \& Innovation in the Radio Industry.
    J.R.Whitehead, 1950, Super-regenerative Receivers.
    A.N.Goldsmith, 1948, Frequency Modulation (for the background to the development of frequency modulation, in the form of a large collection of papers and an extensive bibliog raphy).
    KF

    Biographical history of technology > Armstrong, Edwin Howard

  • 16 Boot, Henry Albert Howard

    [br]
    b. 29 July 1917 Birmingham, England
    d. 8 February 1983 Cambridge, England
    [br]
    English physicist who, with John Randall, invented the cavity magnetron used in radar systems.
    [br]
    After secondary education at King Edward School, Birmingham, Boot studied physics at Birmingham University, obtaining his BSc in 1938 and PhD in 1941. With the outbreak of the Second World War, he became involved with Randall and others in the development of a source of microwave power suitable for use in radar transmitters. Following unsuccessful attempts to use klystrons, they turned to investigation of the magnetron, and by adding cavity resonators they obtained useful power on 21 February 1940 at a wavelength of 9.8 cm. By May a cavity magnetron radar system had been constructed at TRE, Swanage, and in September submarine periscopes were detected at a range of 7 miles (11 km).
    In 1943 the physics department at Birmingham resumed its research in atomic physics and Boot moved to BTH at Rugby to continue development of magnetrons, but in 1945 he returned to Birmingham as Nuffield Research Fellow and helped construct the cyclotron there. Three years later he took up a post as a Principal Scientific Officer (PSO) at the Services Electronic Research Laboratories at Baldock, Hertfordshire, becoming a Senior PSO in 1954. He remained there until his retirement in 1977, variously carrying out research on microwaves, magnetrons, plasma physics and lasers.
    [br]
    Principal Honours and Distinctions
    Royal Society of Arts Thomas Gray Memorial Prize 1943. Royal Commission Inventors Award 1946. Franklin Institute John Price Wetherill Medal 1958. City of Pennsylvania John Scott Award 1959. (All jointly with Randall.)
    Bibliography
    1976, with J.T.Randall, "Historical notes on the cavity magnetron", Transactions of the Institute of Electrical and Electronics Engineers ED-23: 724 (provides an account of their development of the cavity magnetron).
    Further Reading
    E.H.Dix and W.H.Aldous, 1966, Microwave Valves.
    KF

    Biographical history of technology > Boot, Henry Albert Howard

  • 17 Haber, Fritz

    SUBJECT AREA: Chemical technology
    [br]
    b. 9 December 1868 Breslau, Germany (now Wroclaw, Poland)
    d. 29 January 1934 Basel, Switzerland
    [br]
    German chemist, inventor of the process for the synthesis of ammonia.
    [br]
    Haber's father was a manufacturer of dyestuffs, so he studied organic chemistry at Berlin and Heidelberg universities to equip him to enter his father's firm. But his interest turned to physical chemistry and remained there throughout his life. He became Assistant at the Technische Hochschule in Karlsruhe in 1894; his first work there was on pyrolysis and electrochemistry, and he published his Grundrisse der technischen Electrochemie in 1898. Haber became famous for thorough and illuminating theoretical studies in areas of growing practical importance. He rose through the academic ranks and was appointed a full professor in 1906. In 1912 he was also appointed Director of the Institute of Physical Chemistry and Electrochemistry at Dahlem, outside Berlin.
    Early in the twentieth century Haber invented a process for the synthesis of ammonia. The English chemist and physicist Sir William Crookes (1832–1919) had warned of the danger of mass hunger because the deposits of Chilean nitrate were becoming exhausted and nitrogenous fertilizers would not suffice for the world's growing population. A solution lay in the use of the nitrogen in the air, and the efforts of chemists centred on ways of converting it to usable nitrate. Haber was aware of contemporary work on the fixation of nitrogen by the cyanamide and arc processes, but in 1904 he turned to the study of ammonia formation from its elements, nitrogen and hydrogen. During 1907–9 Haber found that the yield of ammonia reached an industrially viable level if the reaction took place under a pressure of 150–200 atmospheres and a temperature of 600°C (1,112° F) in the presence of a suitable catalyst—first osmium, later uranium. He devised an apparatus in which a mixture of the gases was pumped through a converter, in which the ammonia formed was withdrawn while the unchanged gases were recirculated. By 1913, Haber's collaborator, Carl Bosch had succeeded in raising this laboratory process to the industrial scale. It was the first successful high-pressure industrial chemical process, and solved the nitrogen problem. The outbreak of the First World War directed the work of the institute in Dahlem to military purposes, and Haber was placed in charge of chemical warfare. In this capacity, he developed poisonous gases as well as the means of defence against them, such as gas masks. The synthetic-ammonia process was diverted to produce nitric acid for explosives. The great benefits and achievement of the Haber-Bosch process were recognized by the award in 1919 of the Nobel Prize in Chemistry, but on account of Haber's association with chemical warfare, British, French and American scientists denounced the award; this only added to the sense of bitterness he already felt at his country's defeat in the war. He concentrated on the theoretical studies for which he was renowned, in particular on pyrolysis and autoxidation, and both the Karlsruhe and the Dahlem laboratories became international centres for discussion and research in physical chemistry.
    With the Nazi takeover in 1933, Haber found that, as a Jew, he was relegated to second-class status. He did not see why he should appoint staff on account of their grandmothers instead of their ability, so he resigned his posts and went into exile. For some months he accepted hospitality in Cambridge, but he was on his way to a new post in what is now Israel when he died suddenly in Basel, Switzerland.
    [br]
    Bibliography
    1898, Grundrisse der technischen Electrochemie.
    1927, Aus Leben und Beruf.
    Further Reading
    J.E.Coates, 1939, "The Haber Memorial Lecture", Journal of the Chemical Society: 1,642–72.
    M.Goran, 1967, The Story of Fritz Haber, Norman, OK: University of Oklahoma Press (includes a complete list of Haber's works).
    LRD

    Biographical history of technology > Haber, Fritz

  • 18 Kilby, Jack St Clair

    [br]
    b. 8 November 1923 Jefferson City, Missouri, USA
    [br]
    American engineer who filed the first patents for micro-electronic (integrated) circuits.
    [br]
    Kilby spent most of his childhood in Great Bend, Kansas, where he often accompanied his father, an electrical power engineer, on his maintenance rounds. Working in the blizzard of 1937, his father borrowed a "ham" radio, and this fired Jack to study for his amateur licence (W9GTY) and to construct his own equipment while still a student at Great Bend High School. In 1941 he entered the University of Illinois, but four months later, after the attack on Pearl Harbor, he was enlisted in the US Army and found himself working in a radio repair workshop in India. When the war ended he returned to his studies, obtaining his BSEE from Illinois in 1947 and his MSEE from the University of Wisconsin. He then joined Centralab, a small electronics firm in Milwaukee owned by Globe-Union. There he filed twelve patents, including some for reduced titanate capacitors and for Steatite-packing of transistors, and developed a transistorized hearing-aid. During this period he also attended a course on transistors at Bell Laboratories. In May 1958, concerned to gain experience in the field of number processing, he joined Texas Instruments in Dallas. Shortly afterwards, while working alone during the factory vacation, he conceived the idea of making monolithic, or integrated, circuits by diffusing impurities into a silicon substrate to create P-N junctions. Within less than a month he had produced a complete oscillator on a chip to prove that the technology was feasible, and the following year at the 1ERE Show he demonstrated a germanium integrated-circuit flip-flop. Initially he was granted a patent for the idea, but eventually, after protracted litigation, priority was awarded to Robert Noyce of Fairchild. In 1965 he was commissioned by Patrick Haggerty, the Chief Executive of Texas Instruments, to make a pocket calculator based on integrated circuits, and on 14 April 1971 the world's first such device, the Pocketronic, was launched onto the market. Costing $150 (and weighing some 2½ lb or 1.1 kg), it was an instant success and in 1972 some 5 million calculators were sold worldwide. He left Texas Instruments in November 1970 to become an independent consultant and inventor, working on, amongst other things, methods of deriving electricity from sunlight.
    [br]
    Principal Honours and Distinctions
    Franklin Institute Stuart Ballantine Medal 1966. Institute of Electrical and Electronics Engineers David Sarnoff Award 1966; Cledo Brunetti Award (jointly with Noyce) 1978; Medal of Honour 1986. National Academy of Engineering 1967. National Science Medal 1969. National Inventors Hall of Fame 1982. Honorary DEng Miami 1982, Rochester 1986. Honorary DSc Wisconsin 1988. Distinguished Professor, Texas A \& M University.
    Bibliography
    6 February 1959, US patent no. 3,138,743 (the first integrated circuit (IC); initially granted June 1964).
    US patent no. 3,819,921 (the Pocketronic calculator).
    Further Reading
    T.R.Reid, 1984, Microchip. The Story of a Revolution and the Men Who Made It, London: Pan Books (for the background to the development of the integrated circuit). H.Queisser, 1988, Conquest of the Microchip, Cambridge, Mass.: Harvard University Press.
    KF

    Biographical history of technology > Kilby, Jack St Clair

  • 19 Jansky, Karl Guthe

    [br]
    b. 22 October 1905 Norman, Oklahoma, USA
    d. 14 February 1950 Red Bank, New Jersey, USA
    [br]
    American radio engineer who discovered stellar radio emission.
    [br]
    Following graduation from the University of Wisconsin in 1928 and a year of postgraduate study, Jansky joined Bell Telephone Laboratories in New Jersey with the task of establishing the source of interference to telephone communications by radio. To this end he constructed a linear-directional short-wave antenna and eventually, in 1931, he concluded that the interference actually came from the stars, the major source being the constellation Sagittarius in the direction of the centre of the Milky Way. Although he continued to study the propagation of short radio waves and the nature of observed echoes, it was left to others to develop the science of radioastronomy and to use the creation of echoes for radiolocation. Although he received no scientific award for his discovery, Jansky's name is primarily honoured by its use as the unit of stellar radio-emission strength.
    [br]
    Bibliography
    1935, "Directional studies of atmospherics at high frequencies", Proceedings of the Institute of Radio Engineers 23:1,158.
    1935, "A note on the sources of stellar interference", Proceedings of the Institute of Radio
    Engineers.
    1937, "Minimum noise levels obtained on short-wave radio receiving systems", Proceedings of the Institute of Radio Engineers 25:1,517.
    1941, "Measurements of the delay and direction of arrival of echoes from nearby short-wave transmitters", Proceedings of the Institute of Radio Engineers 29:322.
    Further Reading
    P.C.Mahon, 1975, BellLabs, Mission Communication. The Story of the Bell Labs.
    W.I.Sullivan (ed.), 1984, The Early Years of Radio-Astronomy: Reflections 50 Years after Jansky's Discovery, Cambridge: Cambridge University Press.
    KF

    Biographical history of technology > Jansky, Karl Guthe

  • 20 Taylor, Albert Hoyt

    [br]
    b. 1 January 1874 Chicago, Illinois, USA
    d. 11 December 1961 Claremont, California, USA
    [br]
    American radio engineer whose work on radio-detection helped lay the foundations for radar.
    [br]
    Taylor gained his degree in engineering from Northwest University, Evanston, Illinois, then spent a time at the University of Gottingen. On his return to the USA he taught successively at Michigan State University, at Lansing, and at the universities of Wisconsin at Madison and North Dakota at Grand Forks. From 1923 until 1945 he supervised the Radio Division at the US Naval Research Laboratories. There he carried out studies of short-wave radio propagation and confirmed Heaviside's 1925 theory of the reflection characteristics of the ionosphere. In the 1920s and 1930s he investigated radio echoes, and in 1933, with L.C.Young and L.A.Hyland, he filed a patent for a system of radio-detection that contributed to the subsequent development of radar.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1927. President, Institute of Radio Engineers 1929. Institute of Electrical and Electronics Engineers Medal of Honour 1942.
    Bibliography
    1926, with E.O.Hulbert, "The propagation of radio waves over the earth", Physical Review 27:189.
    1936, "The measurement of RF power", Proceedings of the Institute of Radio Engineers 24: 1,342.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, London: Peter Peregrinus.
    KF

    Biographical history of technology > Taylor, Albert Hoyt

См. также в других словарях:

  • Australian Film Institute International Award for Best Actress — The Australian Film Institute International Award for Best Actress is an award in the annual Australian Film Institute Awards It has been awarded annually since 2005.Previous winners and nominees* 2005: Emily Browning Lemony Snicket s A Series of …   Wikipedia

  • Australian Film Institute International Award for Best Actor — The Australian Film Institute International Award for Best Actor is an award in the annual Australian Film Institute Awards It has been awarded annually since 2005.Previous winners and nominees* 2005: Russell Crowe Cinderella Man * 2006: Heath… …   Wikipedia

  • Institute of technology — Institute of technology, and polytechnic, are designations employed in a wide range of learning institutions awarding different types of degrees and operating often at variable levels of the educational system. It may be any institution of higher …   Wikipedia

  • Institute for Creation Research — Established 1970 Type Young earth creationist Chairman Henry Morris III President John D. Morris Academic staff 4 full time …   Wikipedia

  • Institute for Policy Studies — (IPS) is a policy studies non profit think tank for progressive or liberal causes based in Washington, D.C. Its work is organized into over a dozen projects, all working collaboratively and strategically to pursue three overarching policy goals:… …   Wikipedia

  • Institute of Chemical Technology — Motto Nurturing Brains, Developing Minds towards a developed India Established October 1 …   Wikipedia

  • Institute of Physics — Abbreviation IOP Formation February 1874 Headquarters …   Wikipedia

  • Institute Of Electrical And Electronics Engineers — Logo de l’IEEE L’Institute of Electrical and Electronics Engineers ou IEEE (que l’on peut prononcer « i trois e ») est une organisation à but non lucratif. L’IEEE compte plus de 325.000 membres, et possède différentes branches dans… …   Wikipédia en Français

  • Institute of electrical and electronics engineers — Logo de l’IEEE L’Institute of Electrical and Electronics Engineers ou IEEE (que l’on peut prononcer « i trois e ») est une organisation à but non lucratif. L’IEEE compte plus de 325.000 membres, et possède différentes branches dans… …   Wikipédia en Français

  • Institute of Food Technologists — Infobox Company company name = Institute of Food Technologists company company type = non profit foundation = 1939 location = flagicon|USA Chicago, Illinois, USA homepage = [http://www.ift.org/cms Official website] The Institute of Food… …   Wikipedia

  • Institute of Electrical and Electronics Engineers — Infobox Non profit Non profit name = Institute of Electrical and Electronics Engineers Non profit Non profit type = Professional Organization founded date = January 1, 1963 founder = location = origins = Merger of the American Institute of… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»