Перевод: со всех языков на все языки

со всех языков на все языки

in+the+year+1869

  • 21 Kapp, Gisbert Johann Eduard Karl

    SUBJECT AREA: Electricity
    [br]
    b. 2 September 1852 Mauer, Vienna, Austria
    d. 10 August 1922 Birmingham, England
    [br]
    Austrian (naturalized British in 1881) engineer and a pioneer of dynamo design, being particularly associated with the concept of the magnetic circuit.
    [br]
    Kapp entered the Polytechnic School in Zurich in 1869 and gained a mechanical engineering diploma. He became a member of the engineering staff at the Vienna International Exhibition of 1873, and then spent some time in the Austrian navy before entering the service of Gwynne \& Co. of London, where he designed centrifugal pumps and gas exhausters. Kapp resolved to become an electrical engineer after a visit to the Paris Electrical Exhibition of 1881 and in the following year was appointed Manager of the Crompton Co. works at Chelmsford. There he developed and patented the dynamo with compound field winding. Also at that time, with Crompton, he patented electrical measuring instruments with over-saturated electromagnets. He became a naturalized British subject in 1881.
    In 1886 Kapp's most influential paper was published. This described his concept of the magnetic circuit, providing for the first time a sound theoretical basis for dynamo design. The theory was also developed independently by J. Hopkinson. After commencing practice as a consulting engineer in 1884 he carried out design work on dynamos and also electricity-supply and -traction schemes in Germany, Italy, Norway, Russia and Switzerland. From 1891 to 1894 much of his time was spent designing a new generating station in Bristol, officially as Assistant to W.H. Preece. There followed an appointment in Germany as General Secretary of the Verband Deutscher Electrotechniker. For some years he edited the Electrotechnische Zeitschrift and was also a part-time lecturer at the Charlottenberg Technical High School in Berlin. In 1904 Kapp was invited to accept the new Chair of Electrical Engineering at the University of Birmingham, which he occupied until 1919. He was the author of several books on electrical machine and transformer design.
    [br]
    Principal Honours and Distinctions
    Institution of Civil Engineers Telford Medal 1886 and 1888. President, Institution of Electrical Engineers 1909.
    Bibliography
    10 October 1882, with R.E.B.Crompton, British patent no. 4,810; (the compound wound dynamo).
    1886, "Modern continuous current dynamo electric machines and their engines", Proceedings of the Institution of Civil Engineers 83: 123–54.
    Further Reading
    D.G.Tucker, 1989, "A new archive of Gisbert Kapp papers", Proceedings of the Meeting on History of Electrical Engineering, IEE 4/1–4/11 (a transcript of an autobiography for his family).
    D.G.Tucker, 1973, Gisbert Kapp 1852–1922, Birmingham: Birmingham University (includes a bibliography of his most important publications).
    GW

    Biographical history of technology > Kapp, Gisbert Johann Eduard Karl

  • 22 Lister, Joseph, Baron Lister

    SUBJECT AREA: Medical technology
    [br]
    b. 5 April 1827 Upton, Essex, England
    d. 10 February 1912 Walmer, Kent, England
    [br]
    English surgeon, founder of the antiseptic and aseptic principles of surgical practice.
    [br]
    Of Quaker stock, his father also being a Fellow of the Royal Society, he studied medicine at University College, London. He qualified, and became a Fellow of the Royal College of Surgeons, in 1852. Wishing to pursue a surgical career, he moved to Edinburgh to study surgery under William Syme, whose daughter he married in 1852, the same year he was appointed Assistant Surgeon to the Edinburgh Royal Infirmary.
    Until his appointment as Regius Professor of Surgery at Glasgow University and Glasgow Royal Infirmary in 1861, he was engaged in a wide variety of investigations into the nature of inflammation and the effects of irritants on wounds. Following his move to Glasgow, he became particularly involved in the major problems arising out of the vast increase in the number of surgical procedures brought about by the recent introduction of general anaesthesia. By 1865 his continuing study of wound inflammation and the microbial studies of Pasteur had led him to institute in the operating theatre a regime of surgical antisepsis involving the use of a carbolic acid spray coupled with the sterilization of instruments, the site of operation and the hands of the operator. Increasingly it was appreciated that the air was the least important origin of infection, and by 1887 the antiseptic approach had been superseded by the aseptic.
    In 1869 he succeeded Syme in the Chair at Edinburgh and his methods were widely accepted abroad. In 1877 he moved to the Chair of Surgery at King's College Hospital, London, in the hope of encouraging acceptance of his work in the metropolis. As well as developing a variety of new surgical procedures, he was engaged for many years in the development of surgical ligatures, which had always been a potent stimulant of infection. His choice of catgut as a sterilizable, absorbable material paved the way for major developments in this field. The Lister Institute of Preventive Medicine was named in his honour in 1903.
    [br]
    Principal Honours and Distinctions
    Created Baronet 1883. Baron 1897. Order of Merit 1902. President, Royal Society 1895– 1900.
    Bibliography
    1870, "On the effects of the antiseptic system of treatment upon the salubrity of a surgical hospital", Lancet.
    1859, Philosophical Transactions of the Royal Society.
    1863, Croonian Lecture.
    1881, 1900, Transactions of the International Medical Congress.
    Further Reading
    R.J.Godlee, 1924, Lord Lister.
    1927, Lister Centenary Handbook, London: Wellcome Historical Medical Museum. H.C.Cameron, 1948, Joseph Lister, the Friend of Man.
    MG

    Biographical history of technology > Lister, Joseph, Baron Lister

  • 23 Napier, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 June 1791 Dumbarton, Scotland
    d. 23 June 1876 Shandon, Dunbartonshire, Scotland
    [br]
    Scottish shipbuilder one of the greatest shipbuilders of all time, known as the "father" of Clyde shipbuilding.
    [br]
    Educated at Dumbarton Grammar School, Robert Napier had been destined for the Church but persuaded his father to let him serve an apprenticeship as a blacksmith under him. For a while he worked in Edinburgh, but then in 1815 he commenced business in Glasgow, the city that he served for the rest of his life. Initially his workshop was in Camlachie, but it was moved in 1836 to a riverside factory site at Lancefield in the heart of the City and again in 1841 to the Old Shipyard in the Burgh of Govan (then independent of the City of Glasgow). The business expanded through his preparedness to build steam machinery, beginning in 1823 with the engines for the paddle steamer Leven, still to be seen a few hundred metres from Napier's grave in Dumbarton. His name assured owners of quality, and business expanded after two key orders: one in 1836 for the Honourable East India Company; and the second two years later for the Royal Navy, hitherto the preserve of the Royal Dockyards and of the shipbuilders of south-east England. Napier's shipyard and engine shops, then known as Robert Napier and Sons, were to be awarded sixty Admiralty contracts in his lifetime, with a profound influence on ship and engine procurement for the Navy and on foreign governments, which for the first time placed substantial work in the United Kingdom.
    Having had problems with hull subcontractors and also with the installation of machinery in wooden hulls, in 1843 Napier ventured into shipbuilding with the paddle steamer Vanguard, which was built of iron. The following year the Royal Navy took delivery of the iron-hulled Jackall, enabling Napier to secure the contract for the Black Prince, Britain's second ironclad and sister ship to HMS Warrior now preserved at Portsmouth. With so much work in iron Napier instigated studies into metallurgy, and the published work of David Kirkaldy bears witness to his open-handedness in assisting the industry. This service to industry was even more apparent in 1866 when the company laid out the Skelmorlie Measured Mile on the Firth of Clyde for ship testing, a mile still in use by ships of all nations.
    The greatest legacy of Robert Napier was his training of young engineers, shipbuilders and naval architects. Almost every major Scottish shipyard, and some English too, was influenced by him and many of his early foremen left to set up rival establishments along the banks of the River Clyde. His close association with Samuel Cunard led to the setting up of the company now known as the Cunard Line. Napier designed and engined the first four ships, subcontracting the hulls of this historic quartet to other shipbuilders on the river. While he contributed only 2 per cent to the equity of the shipping line, they came back to him for many more vessels, including the magnificent paddle ship Persia, of 1855.
    It is an old tradition on the Clyde that the smokestacks of ships are made by the enginebuilders. The Cunard Line still uses red funnels with black bands, Napier's trademark, in honour of the engineer who set them going.
    [br]
    Principal Honours and Distinctions
    Knight Commander of the Dannebrog (Denmark). President, Institution of Mechanical Engineers 1864. Honorary Member of the Glasgow Society of Engineers 1869.
    Further Reading
    James Napier, 1904, The Life of Robert Napier, Edinburgh, Blackwood.
    J.M.Halliday, 1980–1, "Robert Napier. The father of Clyde shipbuilding", Transactions of the Institution of Engineers and Shipbuilders in Scotland 124.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Napier, Robert

  • 24 Poitevin, Alphonse Louise

    [br]
    b. 1819 Conflans, France
    d. 1882 Conflans, France
    [br]
    French chemical engineer who established the essential principles of photolithography, carbon printing and collotype printing.
    [br]
    Poitevin graduated as a chemical engineer from the Ecole Centrale in Paris in 1843. He was appointed as a chemist with the Salines National de l'Est, a post which allowed him time for research, and he soon became interested in the recent invention of photography. He conducted a series of electrolytic experiments on daguerreotype plates in 1847 and 1848 which led him to propose a method of photochemical engraving on plates coated with silver or gold. In 1850 he joined the firm of Periere in Lyons, and the same year travelled to Paris. During the 1850s, Poitevin conducted a series of far-reaching experiments on the reactions of chromates with light, and in 1855 he took out two important patents which exploited the light sensitivity of bichromated gelatine. Poitevin's work during this period is generally recognized as having established the essential principles of photolithography, carbon printing and collotype printing, key steps in the development of modern photomechanical printing. His contribution to the advancement of photography was widely recognized and honours were showered upon him. Particularly welcome was the greater part of the 10,000 franc prize awarded by the Duke of Lynes, a wealthy art lover, for the discovery of permanent photographic printing processes. This sum was not sufficient to allow Poitevin to stop working, however, and in 1869 he resumed his career as a chemical engineer, first managing a glass works and then travelling to Africa to work in silver mines. Upon the death of his father he returned to his home town, where he remained until his own death in 1882.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1865. Paris Exposition Internationale Gold Medal for Services to Photography, 1878.
    Bibliography
    December 1855, British patent nos 2,815, 2,816.
    Further Reading
    G.Tissandiers, 1876, A History and Handbook of Photography, trans. J.Thomson. J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York.
    H.Gernsheim and A.Gernsheim, 1969, The History of Photography, rev. edn, London.
    JW

    Biographical history of technology > Poitevin, Alphonse Louise

  • 25 Pratt, Francis Ashbury

    [br]
    b. 15 February 1827 Woodstock, Vermont, USA
    d. 10 February 1902 Hartford, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Francis A.Pratt served an apprenticeship as a machinist with Warren Aldrich, and on completing it in 1848 he entered the Gloucester Machine Works as a journeyman machinist. From 1852 to 1854 he worked at the Colt Armory in Hartford, Connecticut, where he met his future partner, Amos Whitney. He then became Superintendent of the Phoenix Iron Works, also at Hartford and run by George S.Lincoln \& Company. While there he designed the well-known "Lincoln" miller, which was first produced in 1855. This was a development of the milling machine built by Robbins \& Lawrence and designed by F.W. Howe, and incorporated a screw drive for the table instead of the rack and pinion used in the earlier machine.
    Whitney also moved to the Phoenix Iron Works, and in 1860 the two men started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, F.A.Pratt being elected President. The firm specialized in making machine tools and tools particularly for the armament industry. In the 1870s Pratt made no less than ten trips to Europe gaining orders for equipping armouries in many different countries. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm. Pratt remained President of the company until 1898, after which he served as their Consulting Engineer for a short time before retiring from professional life. He was granted a number of patents relating to machine tools. He was a founder member of the American Society of Mechanical Engineers in 1880 and was elected a vice-president in 1881. He was an alderman of the city of Hartford.
    [br]
    Principal Honours and Distinctions
    Vice-President, American Society of Mechanical Engineers 1881.
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, 111. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Pratt, Francis Ashbury

  • 26 Riley, James

    SUBJECT AREA: Metallurgy
    [br]
    b. 1840 Halifax, England
    d. 15 July 1910 Harrogate, England
    [br]
    English steelmaker who promoted the manufacture of low-carbon bulk steel by the open-hearth process for tin plate and shipbuilding; pioneer of nickel steels.
    [br]
    After working as a millwright in Halifax, Riley found employment at the Ormesby Ironworks in Middlesbrough until, in 1869, he became manager of the Askam Ironworks in Cumberland. Three years later, in 1872, he was appointed Blast-furnace Manager at the pioneering Siemens Steel Company's works at Landore, near Swansea in South Wales. Using Spanish ore, he produced the manganese-rich iron (spiegeleisen) required as an additive to make satisfactory steel. Riley was promoted in 1874 to be General Manager at Landore, and he worked with William Siemens to develop the use of the latter's regenerative furnace for the production of open-hearth steel. He persuaded Welsh makers of tin plate to use sheets rolled from lowcarbon (mild) steel instead of from charcoal iron and, partly by publishing some test results, he was instrumental in influencing the Admiralty to build two naval vessels of mild steel, the Mercury and the Iris.
    In 1878 Riley moved north on his appointment as General Manager of the Steel Company of Scotland, a firm closely associated with Charles Tennant that was formed in 1872 to make steel by the Siemens process. Already by 1878, fourteen Siemens melting furnaces had been erected, and in that year 42,000 long tons of ingots were produced at the company's Hallside (Newton) Works, situated 8 km (5 miles) south-east of Glasgow. Under Riley's leadership, steelmaking in open-hearth furnaces was initiated at a second plant situated at Blochairn. Plates and sections for all aspects of shipbuilding, including boilers, formed the main products; the company also supplied the greater part of the steel for the Forth (Railway) Bridge. Riley was associated with technical modifications which improved the performance of steelmaking furnaces using Siemens's principles. He built a gasfired cupola for melting pig-iron, and constructed the first British "universal" plate mill using three-high rolls (Lauth mill).
    At the request of French interests, Riley investigated the properties of steels containing various proportions of nickel; the report that he read before the Iron and Steel Institute in 1889 successfully brought to the notice of potential users the greatly enhanced strength that nickel could impart and its ability to yield alloys possessing substantially lower corrodibility.
    The Steel Company of Scotland paid dividends in the years to 1890, but then came a lean period. In 1895, at the age of 54, Riley moved once more to another employer, becoming General Manager of the Glasgow Iron and Steel Company, which had just laid out a new steelmaking plant at Wishaw, 25 km (15 miles) south-east of Glasgow, where it already had blast furnaces. Still the technical innovator, in 1900 Riley presented an account of his experiences in introducing molten blast-furnace metal as feed for the open-hearth steel furnaces. In the early 1890s it was largely through Riley's efforts that a West of Scotland Board of Conciliation and Arbitration for the Manufactured Steel Trade came into being; he was its first Chairman and then its President.
    In 1899 James Riley resigned from his Scottish employment to move back to his native Yorkshire, where he became his own master by acquiring the small Richmond Ironworks situated at Stockton-on-Tees. Although Riley's 1900 account to the Iron and Steel Institute was the last of the many of which he was author, he continued to contribute to the discussion of papers written by others.
    [br]
    Principal Honours and Distinctions
    President, West of Scotland Iron and Steel Institute 1893–5. Vice-President, Iron and Steel Institute, 1893–1910. Iron and Steel Institute (London) Bessemer Gold Medal 1887.
    Bibliography
    1876, "On steel for shipbuilding as supplied to the Royal Navy", Transactions of the Institute of Naval Architects 17:135–55.
    1884, "On recent improvements in the method of manufacture of open-hearth steel", Journal of the Iron and Steel Institute 2:43–52 plus plates 27–31.
    1887, "Some investigations as to the effects of different methods of treatment of mild steel in the manufacture of plates", Journal of the Iron and Steel Institute 1:121–30 (plus sheets II and III and plates XI and XII).
    27 February 1888, "Improvements in basichearth steel making furnaces", British patent no. 2,896.
    27 February 1888, "Improvements in regenerative furnaces for steel-making and analogous operations", British patent no. 2,899.
    1889, "Alloys of nickel and steel", Journal of the Iron and Steel Institute 1:45–55.
    Further Reading
    A.Slaven, 1986, "James Riley", in Dictionary of Scottish Business Biography 1860–1960, Volume 1: The Staple Industries (ed. A.Slaven and S. Checkland), Aberdeen: Aberdeen University Press, 136–8.
    "Men you know", The Bailie (Glasgow) 23 January 1884, series no. 588 (a brief biography, with portrait).
    J.C.Carr and W.Taplin, 1962, History of the British Steel Industry, Harvard University Press (contains an excellent summary of salient events).
    JKA

    Biographical history of technology > Riley, James

  • 27 Stumpf, Johann

    [br]
    fl. c. 1900 Germany
    [br]
    German inventor of a successful design of uniflow steam engine.
    [br]
    In 1869 Stumpf was commissioned by the Pope Manufacturing Company of Hertford, Connecticut, to set up two triple-expansion, vertical, Corliss pumping engines. He tried to simplify this complicated system and started research with the internal combustion engine and the steam turbine particularly as his models. The construction of steam turbines in several stages where the steam passed through in a unidirectional flow was being pursued at that time, and Stumpf wondered whether it would be possible to raise the efficiency of a reciprocating steam engine to the same thermal level as the turbine by the use of the uniflow principle.
    Stumpf began to investigate these principles without studying the work of earlier pioneers like L.J. Todd, which he later thought would have led him astray. It was not until 1908, when he was Professor at the Institute of Technology in Berlin- Charlottenburg, that he patented his successful "una-flow" steam engine. In that year he took out six British patents for improvements in details on his original one Stumpf fully realized the thermal advantages of compressing the residual steam and was able to evolve systems of coping with excessive compression when starting. He also placed steam-jackets around the ends of the cylinder. Stumpf's first engine was built in 1908 by the Erste B runner Maschinenfabrik-Gesellschaft, and licences were taken out by many other manufacturers, including those in Britain and the USA. His engine was developed into the most economical type of reciprocating steam engine.
    [br]
    Bibliography
    1912, The Una-Flow Steam Engine, Munich: R. Oldenbourg (his own account of the una-flow engine).
    Further Reading
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press; R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (both discuss Stumpf's engine).
    H.J.Braun, "The National Association of German-American Technologists and technology transfer between Germany and the United States, 1844–1930", History of Technology 8 (provides details of Stumpf's earlier work).
    RLH

    Biographical history of technology > Stumpf, Johann

  • 28 Swan, Sir Joseph Wilson

    [br]
    b. 31 October 1828 Sunderland, England
    d. 27 May 1914 Warlingham, Surrey, England
    [br]
    English chemist, inventor in Britain of the incandescent electric lamp and of photographic processes.
    [br]
    At the age of 14 Swan was apprenticed to a Sunderland firm of druggists, later joining John Mawson who had opened a pharmacy in Newcastle. While in Sunderland Swan attended lectures at the Athenaeum, at one of which W.E. Staite exhibited electric-arc and incandescent lighting. The impression made on Swan prompted him to conduct experiments that led to his demonstration of a practical working lamp in 1879. As early as 1848 he was experimenting with carbon as a lamp filament, and by 1869 he had mounted a strip of carbon in a vessel exhausted of air as completely as was then possible; however, because of residual air, the filament quickly failed.
    Discouraged by the cost of current from primary batteries and the difficulty of achieving a good vacuum, Swan began to devote much of his attention to photography. With Mawson's support the pharmacy was expanded to include a photographic business. Swan's interest in making permanent photographic records led him to patent the carbon process in 1864 and he discovered how to make a sensitive dry plate in place of the inconvenient wet collodian process hitherto in use. He followed this success with the invention of bromide paper, the subject of a British patent in 1879.
    Swan resumed his interest in electric lighting. Sprengel's invention of the mercury pump in 1865 provided Swan with the means of obtaining the high vacuum he needed to produce a satisfactory lamp. Swan adopted a technique which was to become an essential feature in vacuum physics: continuing to heat the filament during the exhaustion process allowed the removal of absorbed gases. The inventions of Gramme, Siemens and Brush provided the source of electrical power at reasonable cost needed to make the incandescent lamp of practical service. Swan exhibited his lamp at a meeting in December 1878 of the Newcastle Chemical Society and again the following year before an audience of 700 at the Newcastle Literary and Philosophical Society. Swan's failure to patent his invention immediately was a tactical error as in November 1879 Edison was granted a British patent for his original lamp, which, however, did not go into production. Parchmentized thread was used in Swan's first commercial lamps, a material soon superseded by the regenerated cellulose filament that he developed. The cellulose filament was made by extruding a solution of nitro-cellulose in acetic acid through a die under pressure into a coagulating fluid, and was used until the ultimate obsolescence of the carbon-filament lamp. Regenerated cellulose became the first synthetic fibre, the further development and exploitation of which he left to others, the patent rights for the process being sold to Courtaulds.
    Swan also devised a modification of Planté's secondary battery in which the active material was compressed into a cellular lead plate. This has remained the central principle of all improvements in secondary cells, greatly increasing the storage capacity for a given weight.
    [br]
    Principal Honours and Distinctions
    Knighted 1904. FRS 1894. President, Institution of Electrical Engineers 1898. First President, Faraday Society 1904. Royal Society Hughes Medal 1904. Chevalier de la Légion d'Honneur 1881.
    Bibliography
    2 January 1880, British patent no. 18 (incandescent electric lamp).
    24 May 1881, British patent no. 2,272 (improved plates for the Planté cell).
    1898, "The rise and progress of the electrochemical industries", Journal of the Institution of Electrical Engineers 27:8–33 (Swan's Presidential Address to the Institution of Electrical Engineers).
    Further Reading
    M.E.Swan and K.R.Swan, 1968, Sir Joseph Wilson Swan F.R.S., Newcastle upon Tyne (a detailed account).
    R.C.Chirnside, 1979, "Sir Joseph Swan and the invention of the electric lamp", IEE
    Electronics and Power 25:96–100 (a short, authoritative biography).
    GW

    Biographical history of technology > Swan, Sir Joseph Wilson

  • 29 Volk, Magnus

    [br]
    b. 19 October 1851 Brighton, England
    d. 20 May 1937 Brighton, England
    [br]
    English pioneer in the use of electric power; built the first electric railway in the British Isles to operate a regular service.
    [br]
    Volk was the son of a German immigrant clockmaker and continued the business with his mother after his father died in 1869, although when he married in 1879 his profession was described as "electrician". He installed Brighton's first telephone the same year and in 1880 he installed electric lighting in his own house, using a Siemens Brothers dynamo (see Siemens, Dr Ernst Werner von) driven by a Crossley gas engine. This was probably one of the first half-dozen such installations in Britain. Magnus Volk \& Co. became noted electrical manufacturers and contractors, and, inter alia, installed electric light in Brighton Pavilion in place of gas.
    By 1883 Volk had moved house. He had kept the dynamo and gas engine used to light his previous house, and he also had available an electric motor from a cancelled order. After approaching the town clerk of Brighton, he was given permission for a limited period to build and operate a 2 ft (61 cm) gauge electric railway along the foreshore. Using the electrical equipment he already had, Volk built the line, a quarter of a mile (400 m) long, in eight weeks. The car was built by a local coachbuilder, with the motor under the seat; electric current at 50 volts was drawn from one running rail and returned through the other.
    The railway was opened on 4 August 1883. It operated regularly for several months and then, permission to run it having been renewed, it was rebuilt for the 1884 season to 2 ft 9 in. (84 cm) gauge, with improved equipment. Despite storm damage from time to time, Volk's Electric Railway, extended in length, has become an enduring feature of Brighton's sea front. In 1887 Volk made an electric dogcart, and an electric van which he built for the Sultan of Turkey was probably the first motor vehicle built in Britain for export. In 1896 he opened the Brighton \& Rottingdean Seashore Electric Tramroad, with very wide-gauge track laid between the high-and low-tide lines, and a long-legged, multi-wheel car to run upon it, through the water if necessary. This lasted only until 1901, however. Volk subsequently became an early enthusiast for aircraft.
    [br]
    Further Reading
    C.Volk, 1971, Magnus Volk of Brighton, Chichester: Phillimore (his life and career as described by his son).
    C.E.Lee, 1979, "The birth of electric traction", Railway Magazine (May).
    PJGR

    Biographical history of technology > Volk, Magnus

  • 30 Whitney, Amos

    [br]
    b. 8 October 1832 Biddeford, Maine, USA
    d. 5 August 1920 Poland Springs, Maine, USA
    [br]
    American mechanical engineer and machine-tool manufacturer.
    [br]
    Amos Whitney was a member of the same distinguished family as Eli Whitney. His father was a locksmith and machinist and he was apprenticed at the age of 14 to the Essex Machine Company of Lawrence, Massachusetts. In 1850 both he and his father were working at the Colt Armory in Hartford, Connecticut, where he first met his future partner, F.A. Pratt. They both subsequently moved to the Phoenix Iron Works, also at Hartford, and in 1860 they started in a small way doing machine work on their own account. In 1862 they took a third partner, Monroe Stannard, and enlarged their workshop. The business continued to expand, but Pratt and Whitney remained at the Phoenix Iron Works until 1864 and in the following year they built their first new factory. The Pratt \& Whitney Company was incorporated in 1869 with a capital of $350,000, Amos Whitney being appointed General Superintendent. The firm specialized in making machine tools and tools particularly for the armament industry. Pratt \& Whitney was one of the leading firms developing the system of interchangeable manufacture which led to the need to establish national standards of measurement. The Rogers-Bond Comparator, developed with the backing of Pratt \& Whitney, played an important part in the establishment of these standards, which formed the basis of the gauges of many various types made by the firm.
    Amos Whitney was made Vice-President of Pratt \& Whitney Company in 1893 and was President from 1898 until 1901, when the company was acquired by the Niles- Bement-Pond Company: he then remained as one of the directors. He was elected a Member of the American Society of Mechanical Engineers in 1913.
    [br]
    Further Reading
    J.W.Roe, 1916, English and American Tool Builders, New Haven; reprinted 1926, New York, and 1987, Bradley, Ill. (describes the origin and development of the Pratt \& Whitney Company).
    RTS

    Biographical history of technology > Whitney, Amos

См. также в других словарях:

  • All the Year Round — was a Victorian periodical, being a British weekly literary magazine founded and owned by Charles Dickens, published between 1859 and 1895 throughout the United Kingdom. Edited by Charles Dickens, it was the direct successor to his previous… …   Wikipedia

  • Time Person of the Year — For other uses, see Person of the Year. For other uses, see Man of the Year. Person of the Year (formerly Man of the Year) is an annual issue of the United States newsmagazine Time that features and profiles a person, couple, group, idea, place,… …   Wikipedia

  • All the Year Round — Couverture de la troisième série, janvier 1891 Auteur Charles Dickens ( Boz ) …   Wikipédia en Français

  • 1869 (disambiguation) — 1869 may refer to:*the year 1869 *the number 1869, see 1869 (number) * 1869 a computer game …   Wikipedia

  • Man of the Year — Personnalité de l année selon Time Magazine Pour les articles homonymes, voir Man of the Year (film, 2006). La Personnalité de l’année (Person of the Year) est un titre qui est décerné chaque année en décembre depuis 1927 par la rédaction de… …   Wikipédia en Français

  • Person of the Year — Personnalité de l année selon Time Magazine Pour les articles homonymes, voir Man of the Year (film, 2006). La Personnalité de l’année (Person of the Year) est un titre qui est décerné chaque année en décembre depuis 1927 par la rédaction de… …   Wikipédia en Français

  • 1869 in literature — The year 1869 in literature involved some significant new books.Events*Macmillan Publishing opens first American office in New York City headed by George Edward BrettNew books*Louisa May Alcott Good Wives *R M Ballantyne Erling the Bold *Horatio… …   Wikipedia

  • 1869 in archaeology — The year 1869 in archaeology involved some significant events.ExplorationsExcavations* Near Kusadasi, Turkey, the site of Ephesus is first excavated by British archaeologist J.T. Wood. * Near Miamisburg, Ohio, the site of Miamisburg Mound is… …   Wikipedia

  • 1869 in science — The year 1869 in science and technology involved some significant events, listed below.Events* November 4 The first issue of scientific journal Nature is published. * Paul Langerhans discovers the islets of Langerhans in the pancreas. *Dmitri… …   Wikipedia

  • 1869 in architecture — The year 1869 in architecture involved some significant events.Buildings* November 17 The modern Suez Canal opens. * Construction of Neuschwanstein in Bavaria, designed by Christian Jank, is begun. * The Rotes Rathaus in Berlin, Germany is… …   Wikipedia

  • 1869 in the United Kingdom — Events from the year 1869 in the United Kingdom.Incumbents*Monarch Victoria of the United Kingdom *Prime Minister William Gladstone, LiberalEvents* 6 March the first international cycle race is held at Crystal Palace, London.cite… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»