Перевод: со всех языков на все языки

со всех языков на все языки

funeral+honours

  • 41 отдавать последний долг

    книжн.
    pay (show) the last honours (respects) to smb.

    Хоронить Гришутку пришли два села. Привёл свой батальон Корчагин, вся комсомольская организация пришла отдать последний долг своему товарищу. (Н. Островский, Как закалялась сталь) — Two villages turned up for Grisha Khorovodko's funeral. Korchagin brought his battalion, and the whole Komsomol organisation came to pay its last respects to their comrade.

    Русско-английский фразеологический словарь > отдавать последний долг

  • 42 ὁσία

    ὁσί-α, [dialect] Ion. [full] ὁσίη, , (fem. of ὅσιος)
    A divine law, οὐδ' ὁσίη κακὰ ῥάπτειν ἀλλήλοισιν it is against the law of God and nature to.., Od.16.423, cf. 22.412, Pi.P.9.36, Call.Aet.3.1.5 ; τοῖσι οὐδὲ κτήνεα ὁσίη θύειν ἐστί those for whom it is not lawful, Hdt.2.45 ; ὅσον.. ὁ. ἐστὶ λέγειν ib. 171 ;

    ἐκ πάσης ὁ. h.Merc. 470

    ; ὁσίης πλέον εἰπεῖν more than law allows, Emp.4.7 ; νομίσας πολλὴν ὁ. τοῦ πράγματος holding the thing fully sanctioned, Ar.Pl. 682 ;

    οὔτε θεοὺς οὔθ' ὁσίαν οὔτ' ἄλλ' οὐδὲν ἐποιήσατ' ἐμποδών D.21.104

    ; τῶν ἱερῶν ὀσία παντί all may share lawfully in the rites, Berl.Sitzb.1927.158 ([place name] Cyrene): personified Ὁσία, Righteousness, E.Ba. 370 (lyr.).
    II the service or worship owed by man to God, rites, offerings, etc., κἀγὼ τῆς ὁσίης ἐπιβήσομαι ἧς περ Ἀπόλλων I will enter into (enjoyment of) the same worship as A., h.Merc.173 ; ὣς ὁσίη γένετο the rites were established, h.Ap. 237 ; ὁσίη κρεάων the rite of the flesh-offering, h.Merc.130: so without a gen., offering,

    λιτῇ προσγελάσαις ὁσίῃ AP9.91

    (Arch.Jun.).
    2 funeral rites, last honours paid to the dead,

    τὴν ὁ. ἀποπληροῦν Iamb.VP30.184

    .
    III prov., ὁσίας ἕκατι for form's sake, Lat. dicis causa, E.IT 1461 ;

    ὁσίας ἕνεκα Eub.110

    , Ephipp.15.4 ; so ὁσίᾳ (or Ὁσίᾳ)

    δίδωμ' ἔπος τόδε E. IT 1161

    . ( οὐκ ὀσία Berl.Sitzb. l. c.)

    Greek-English dictionary (Αγγλικά Ελληνικά-λεξικό) > ὁσία

  • 43 Branly, Edouard Eugène

    [br]
    b. 23 October 1844 Amiens, France
    d. 24 March 1940 Paris, France
    [br]
    French electrical engineer, who c.1890 invented the coherer for detecting radio waves.
    [br]
    Branly received his education at the Lycée de Saint Quentin in the Département de l'Aisne and at the Henri IV College of Paris University, where he became a Fellow of the University, graduating as a Doctor of Physics in 1873. That year he was appointed a professor at the College of Bourges and Director of Physics Instruction at the Sorbonne. Three years later he moved to the Free School in Paris as Professor of Advanced Studies. In addition to these responsibilities, he qualified as an MD in 1882 and practised medicine from 1896 to 1916. Whilst carrying out experiments with Hertzian (radio) waves in 1890, Branly discovered that a tube of iron filings connected to a source of direct voltage only became conductive when the radio waves were present. This early form of rectifier, which he called a coherer and which needed regular tapping to maintain its response, was used to operate a relay when the waves were turned on and off by Morse signals, thus providing the first practical radio communication.
    [br]
    Principal Honours and Distinctions
    Papal Order of Commander of St George 1899. Légion d'honneur, Chevalier 1900, Commandeur 1925. Osiris Prize (jointly with Marie Curie) 1903. Argenteuil Prize and Associate of the Royal Belgian Academy 1910. Member of the Academy of Science 1911. State Funeral at Notre Dame Cathedral.
    Bibliography
    Amongst his publications in Comptes rendus were "Conductivity of mediocre conductors", "Conductivity of gases", "Telegraphic conduction without wires" and "Conductivity of imperfect conductors realised at a distance by wireless by spark discharge of a capacitor".
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, London: Methuen. E.Larien, 1971, A History of Invention, London: Victor Gollancz.
    V.J.Phillips: 1980, Early Radio Wave Detectors, London: Peter Peregrinus.
    KF

    Biographical history of technology > Branly, Edouard Eugène

  • 44 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 45 Elder, John

    [br]
    b. 9 March 1824 Glasgow, Scotland
    d. 17 September 1869 London, England
    [br]
    Scottish engineer who introduced the compound steam engine to ships and established an important shipbuilding company in Glasgow.
    [br]
    John was the third son of David Elder. The father came from a family of millwrights and moved to Glasgow where he worked for the well-known shipbuilding firm of Napier's and was involved with improving marine engines. John was educated at Glasgow High School and then for a while at the Department of Civil Engineering at Glasgow University, where he showed great aptitude for mathematics and drawing. He spent five years as an apprentice under Robert Napier followed by two short periods of activity as a pattern-maker first and then a draughtsman in England. He returned to Scotland in 1849 to become Chief Draughtsman to Napier, but in 1852 he left to become a partner with the Glasgow general engineering company of Randolph Elliott \& Co. Shortly after his induction (at the age of 28), the engineering firm was renamed Randolph Elder \& Co.; in 1868, when the partnership expired, it became known as John Elder \& Co. From the outset Elder, with his partner, Charles Randolph, approached mechanical (especially heat) engineering in a rigorous manner. Their knowledge and understanding of entropy ensured that engine design was not a hit-and-miss affair, but one governed by recognition of the importance of the new kinetic theory of heat and with it a proper understanding of thermodynamic principles, and by systematic development. In this Elder was joined by W.J.M. Rankine, Professor of Civil Engineering and Mechanics at Glasgow University, who helped him develop the compound marine engine. Elder and Randolph built up a series of patents, which guaranteed their company's commercial success and enabled them for a while to be the sole suppliers of compound steam reciprocating machinery. Their first such engine at sea was fitted in 1854 on the SS Brandon for the Limerick Steamship Company; the ship showed an improved performance by using a third less coal, which he was able to reduce still further on later designs.
    Elder developed steam jacketing and recognized that, with higher pressures, triple-expansion types would be even more economical. In 1862 he patented a design of quadruple-expansion engine with reheat between cylinders and advocated the importance of balancing reciprocating parts. The effect of his improvements was to greatly reduce fuel consumption so that long sea voyages became an economic reality.
    His yard soon reached dimensions then unequalled on the Clyde where he employed over 4,000 workers; Elder also was always interested in the social welfare of his labour force. In 1860 the engine shops were moved to the Govan Old Shipyard, and again in 1864 to the Fairfield Shipyard, about 1 mile (1.6 km) west on the south bank of the Clyde. At Fairfield, shipbuilding was commenced, and with the patents for compounding secure, much business was placed for many years by shipowners serving long-distance trades such as South America; the Pacific Steam Navigation Company took up his ideas for their ships. In later years the yard became known as the Fairfield Shipbuilding and Engineering Company Ltd, but it remains today as one of Britain's most efficient shipyards and is known now as Kvaerner Govan Ltd.
    In 1869, at the age of only 45, John Elder was unanimously elected President of the Institution of Engineers and Shipbuilders in Scotland; however, before taking office and giving his eagerly awaited presidential address, he died in London from liver disease. A large multitude attended his funeral and all the engineering shops were silent as his body, which had been brought back from London to Glasgow, was carried to its resting place. In 1857 Elder had married Isabella Ure, and on his death he left her a considerable fortune, which she used generously for Govan, for Glasgow and especially the University. In 1883 she endowed the world's first Chair of Naval Architecture at the University of Glasgow, an act which was reciprocated in 1901 when the University awarded her an LLD on the occasion of its 450th anniversary.
    [br]
    Principal Honours and Distinctions
    President, Institution of Engineers and Shipbuilders in Scotland 1869.
    Further Reading
    Obituary, 1869, Engineer 28.
    1889, The Dictionary of National Biography, London: Smith Elder \& Co. W.J.Macquorn Rankine, 1871, "Sketch of the life of John Elder" Transactions of the
    Institution of Engineers and Shipbuilders in Scotland.
    Maclehose, 1886, Memoirs and Portraits of a Hundred Glasgow Men.
    The Fairfield Shipbuilding and Engineering Works, 1909, London: Offices of Engineering.
    P.M.Walker, 1984, Song of the Clyde, A History of Clyde Shipbuilding, Cambridge: PSL.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge: Cambridge University Press (covers Elder's contribution to the development of steam engines).
    RLH / FMW

    Biographical history of technology > Elder, John

См. также в других словарях:

  • Honours of Winston Churchill — Churchill s identification document as an Honorary Citizen of the United States Sir Winston Churchill received numerous honours and awards throughout his career as a statesman and author. Perhaps the highest of these was the state funeral held at …   Wikipedia

  • Honours of Scotland — The Honours of Scotland, also known as the Scottish regalia and the Scottish Crown Jewels, dating from the fifteenth and sixteenth centuries, are the oldest set of crown jewels in the British Isles. The existing set were used for the coronation… …   Wikipedia

  • Honours of Hugh Grant — Hugh Grant s acting career has spanned over two decades. Besides gaining immense fame and commercial success, Grant has been bestowed with various awards and honours worldwide. He is known for giving witty and irreverent acceptance speeches. His… …   Wikipedia

  • Death and state funeral of Jack Layton — Layton five months prior to his death On August 22, 2011, Canadian New Democratic Party leader and Leader of the Opposition …   Wikipedia

  • Death and funeral of Otto von Habsburg — His Imperial and Royal Highness Archduke Otto of Austria, Prince Royal of Hungary[1][2] and his wife Princess Regi …   Wikipedia

  • State funeral — A state funeral is a public funeral ceremony held to honour heads of state or other important people of national significance. They usually include much pomp and ceremony. Generally, they are held to involve the general public in the mourning… …   Wikipedia

  • Death and state funeral of Lech Kaczyński and Maria Kaczyńska — …   Wikipedia

  • 2011 New Year Honours — The New Year Honours 2011, principally for the United Kingdom but also the Commonwealth Realms, were announced on 31 December 2010 to celebrate the year passed and mark the beginning of 2011.[1][2] The recipients of honours are displayed here as… …   Wikipedia

  • last honours — Funeral rites • • • Main Entry: ↑honour …   Useful english dictionary

  • military honours — /mɪlətri ˈɒnəz/ (say miluhtree onuhz) plural noun ceremonies performed by troops as a mark of respect, as at the funeral of a member of the armed forces. Also, military honors …  

  • Gilbert du Motier, marquis de Lafayette — Lafayette …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»