Перевод: с русского на все языки

со всех языков на русский

fuel+core

  • 81 высокий

    аэропорт высокой плотности воздушного движения
    high-density airport
    вспышка высокой интенсивности
    high-intensity flash
    высокая частота радиосвязи
    high frequency
    высокие широты
    high latitude
    двигатель с высокой степенью двухконтурности
    high bypass ratio engine
    двигатель с высокой степенью сжатия
    high compression ratio engine
    зона высокой интенсивности
    hard-core area
    компрессор высокого давления
    high-pressure compressor
    конфигурация при высокой подъемной силе
    high lift configuration
    конфигурация при высокой степени двухконтурности
    hight-bypass configuration
    конфигурация при высоком сопротивлении
    high drag configuration
    крайне высокая частота радиосвязи
    extremely high frequency
    маршрут высокой интенсивности
    high-density route
    насос высокого давления
    high pressure pump
    огни ВПП высокой интенсивности
    high intensity runway lights
    полеты на высоких эшелонах
    high-level operations
    ротор высокого давления
    high pressure rotor
    сеть с высокой пропускной способностью
    high level network
    система огней высокой интенсивности
    high-intensity lighting system
    (на аэродроме) ступень высокого давления
    high-pressure stage
    топливная система высокого давления
    high-pressure fuel system
    турбина высокого давления
    high-pressure turbine
    турбовентиляторный двигатель с высокой степенью двухконтурности
    high-bypass fanjet
    условия при высокой плотности воздушного движения
    high density traffic environment
    фильтр высокого давления
    high pressure filter
    электропроводка высокого напряжения на воздушном судне
    aircraft high tension wiring

    Русско-английский авиационный словарь > высокий

  • 82 высоко

    аэропорт высокой плотности воздушного движения
    high-density airport
    вспышка высокой интенсивности
    high-intensity flash
    высокая частота радиосвязи
    high frequency
    высокие широты
    high latitude
    двигатель с высокой степенью двухконтурности
    high bypass ratio engine
    двигатель с высокой степенью сжатия
    high compression ratio engine
    зона высокой интенсивности
    hard-core area
    компрессор высокого давления
    high-pressure compressor
    конфигурация при высокой подъемной силе
    high lift configuration
    конфигурация при высокой степени двухконтурности
    hight-bypass configuration
    конфигурация при высоком сопротивлении
    high drag configuration
    крайне высокая частота радиосвязи
    extremely high frequency
    маршрут высокой интенсивности
    high-density route
    насос высокого давления
    high pressure pump
    огни ВПП высокой интенсивности
    high intensity runway lights
    полеты на высоких эшелонах
    high-level operations
    положение с высоко поднятой носовой частью фюзеляжа
    high nose-up attitude
    ротор высокого давления
    high pressure rotor
    сеть с высокой пропускной способностью
    high level network
    система огней высокой интенсивности
    high-intensity lighting system
    (на аэродроме) ступень высокого давления
    high-pressure stage
    топливная система высокого давления
    high-pressure fuel system
    турбина высокого давления
    high-pressure turbine
    турбовентиляторный двигатель с высокой степенью двухконтурности
    high-bypass fanjet
    условия при высокой плотности воздушного движения
    high density traffic environment
    фильтр высокого давления
    high pressure filter
    электропроводка высокого напряжения на воздушном судне
    aircraft high tension wiring

    Русско-английский авиационный словарь > высоко

  • 83 выше

    аэропорт высокой плотности воздушного движения
    high-density airport
    вспышка высокой интенсивности
    high-intensity flash
    высокая частота радиосвязи
    high frequency
    высокие широты
    high latitude
    выше глиссады
    above the glide slope
    двигатель с высокой степенью двухконтурности
    high bypass ratio engine
    двигатель с высокой степенью сжатия
    high compression ratio engine
    зона высокой интенсивности
    hard-core area
    компрессор высокого давления
    high-pressure compressor
    конфигурация при высокой подъемной силе
    high lift configuration
    конфигурация при высокой степени двухконтурности
    hight-bypass configuration
    конфигурация при высоком сопротивлении
    high drag configuration
    крайне высокая частота радиосвязи
    extremely high frequency
    маршрут высокой интенсивности
    high-density route
    насос высокого давления
    high pressure pump
    огни ВПП высокой интенсивности
    high intensity runway lights
    полеты на высоких эшелонах
    high-level operations
    ротор высокого давления
    high pressure rotor
    световой сигнал лети выше
    fly-up light
    сеть с высокой пропускной способностью
    high level network
    система огней высокой интенсивности
    high-intensity lighting system
    (на аэродроме) ступень высокого давления
    high-pressure stage
    топливная система высокого давления
    high-pressure fuel system
    турбина высокого давления
    high-pressure turbine
    турбовентиляторный двигатель с высокой степенью двухконтурности
    high-bypass fanjet
    условия при высокой плотности воздушного движения
    high density traffic environment
    фильтр высокого давления
    high pressure filter
    электропроводка высокого напряжения на воздушном судне
    aircraft high tension wiring

    Русско-английский авиационный словарь > выше

  • 84 контур

    контур сущ
    1. circuit
    2. contour вид при дожигании во втором контуре
    duct-burning configuration
    внешний контур
    outbound
    внутренний контур двигателя
    engine core
    воздух, проходящий через первый контур
    main air
    время полета по внешнему контуру
    outbound time
    второй контур
    1. secondary duct
    2. compressor air flow duct двухконтурный турбореактивный двигатель с дожиганием топлива во втором контуре
    duct burning bypass engine
    дожигание во внешнем контуре
    fan burning
    изогнутое сопло основного контура
    convoluted primary nozzle
    кожух второго контура
    1. bypass duct casing
    2. bypass shroud (двигателя) контур воздействия шума
    noise exposure contour
    контур воспринимаемого шума
    contour of perceived noise
    контур зоны помех
    interference range contour
    контур обратной связи
    feedback loop
    контур равного уровня шума
    equal noise contour
    контур согласования
    coordination contour
    контур суммарного давления
    total pressure contour
    контур уровня шума
    noise dose contour
    контур уровня шума в районе аэропорта
    airport noise contour
    контур фюзеляжа
    fuselage contour
    контуры воздушного судна
    aircraft geometry
    первый контур
    main duct
    поток во втором контуре
    bypass flow
    форсунка первого контура подачи топлива
    primary fuel nozzle
    шаблон базового контура
    master contour template

    Русско-английский авиационный словарь > контур

  • 85 тяга

    тяга сущ
    1. down-lock actuating rod
    2. pull 3. push 4. rod 5. thrust автоматическое флюгирование по отрицательной тяге
    drag-actuated autofeathering
    автомат тяги
    1. autothrottle system
    (двигателя) 2. autothrottle автомат тяги в системе автопилота
    autopilot auto throttle
    асимметричная тяга двигателей
    asymmetric engines power
    вертикально направленная тяга
    upward thrust
    включать реверс тяги
    deploy a thrust reverser
    воздушный винт прямой тяги
    direct drive propeller
    восстанавливать тягу
    regain thrust
    вспомогательные тяги
    auxiliaries
    выключать реверс тяги
    stow a thrust reverser
    выключение реверса тяги
    thrust brake retraction
    высота уменьшения тяги
    cutback height
    гермовывод тяги управления
    control rod pressure seal
    датчик автомата тяги
    autothrottle transducer
    датчик тяги
    thrust pickup
    двигатель с пониженной тягой
    derated engine
    двигаться за счет собственной тяги
    move under own power
    замок реверса тяги
    reverser lock
    замок створок реверса тяги
    reverser bucket lock
    запас тяги
    thrust reserve
    заход на посадку при симметричной тяге
    symmetric thrust approach
    избыток тяги двигателя
    engine thrust margin
    избыточная тяга
    excess thrust
    измеритель тяги
    thrust meter
    истинная удельная тяга
    actual specific thrust
    ковш реверса тяги
    thrust reverser bucket
    линия тяги
    trust axis
    максимальная тяга
    top thrust
    механизм реверса тяги со струеотражательными заслонками
    target-type thrust reverser
    момент тяги
    thrust moment
    наконечник тяги
    rod end fitting
    несимметричная реверсивная тяга
    asymmetrical reversal thrust
    несимметричность тяги
    thrust misalignment
    нулевая тяга
    zero thrust
    обеспечивать тягу
    provide thrust
    обратная тяга
    1. backward thrust
    2. reversal thrust обратная тяга на режиме малого газа
    reverse idle thrust
    опора тяги
    link rod support
    осевая тяга
    axial thrust
    отражатель в механизме реверса тяги
    power reversal ejector
    отрицательная тяга воздушного винта
    propeller drag
    падение тяги
    thrust decay
    переводить винт на отрицательную тягу
    reverse the propeller
    перекладка реверса на прямую тягу
    thrust reverser stowage
    переключать на прямую тягу
    return to forward thrust
    полет с несимметричной тягой двигателей
    asymmetric flight
    полная прямая тяга
    full forward thrust
    полная реверсивная тяга
    full reverse thrust
    положительная тяга
    positive thrust
    посадка с асимметричной тягой
    asymmetric thrust landing
    посадка с использованием реверса тяги
    reverse-thrust landing
    потеря тяги при скольжении воздушного винта
    airscrew slip loss
    потребная тяга
    required thrust
    привод механизма реверса тяги
    thrust reverser actuator
    применять реверс тяги
    apply reserves thrust
    пружинная тяга
    spring link
    прямая тяга
    forward thrust
    прямая тяга на режиме малого газа
    forward idle thrust
    развивать тягу
    develop thrust
    располагаемая тяга
    available thrust
    расчетная тяга
    design thrust
    реактивная тяга
    jet thrust
    реверсивная тяга
    unwanted reverse thrust
    реверсировать тягу
    reverse thrust
    реверс основной тяги
    core jet reversal
    реверс тяги
    thrust reversal
    регулируемая тяга
    1. variable thrust
    2. controllable thrust режимная тяга
    operating thrust
    решетка реверса тяги
    thrust reverser cascade
    рычаг управления реверсом тяги
    1. thrust reverser lever
    2. reverse thrust lever система реверсирования тяги
    thrust reverser system
    система создания дополнительной вертикальной тяги
    augmented system
    сопло с реверсом тяги
    thrust-reverse nozzle
    составляющая силы тяги
    thrust component
    статическая тяга
    static thrust
    створка механизма реверса тяги
    thrust reverser door
    стопорение рулевой тяги
    control-rod locking
    суммарная тяга
    1. resultant thrust
    2. combined thrust 3. overall thrust табло сигнализации положения реверса тяги
    thrust reverser light
    торможение реверсом тяги
    thrust braking
    тормозить отрицательной тягой винта
    brake by propeller drag
    тормозить реверсом тяги
    brake by reverse thrust
    тормозная тяга
    brake compensating rod
    тяга без потерь
    net thrust
    тяга воздушного винта
    1. airscrew propulsion
    2. propeller thrust тяга в полете
    flight thrust
    тяга двигателя
    engine thrust
    тяга на взлетном режиме
    takeoff thrust
    тяга на максимально продолжительном режиме
    maximum continuous thrust
    тяга на режиме максимального газа
    full throttle thrust
    тяга на режиме малого газа
    idling thrust
    тяга на установившемся режиме
    steady thrust
    тяга, необходимая для страгивания
    break-away thrust
    тяга несущего винта
    rotor thrust
    тяга осевой передачи усилий
    push-pull rod
    тяга передачи тормозных усилий
    brake tension rod
    тяга передачи усилий
    drive rod
    тяга поперечного управления
    lateral control rod
    тяга провольного управления
    fore-aft control rod
    тяга продольного управления
    longitudinal control rod
    тяга, регулируемая по величине и направлению
    vectored thrust
    тяга синхронизации закрылков
    flap interconnection rod
    тяга - толкатель
    push rod
    тяга - толкатель клапанов
    valve push rod
    тяга управление пружинным сервокомпенсатором
    spring tab control rod
    тяга управления
    1. control rod
    2. linkage rod тяга управления общим шагом
    collective pitch control rod
    тяга управления створкой
    door operating bar
    тяга управления циклическим шагом
    cyclic pitch control rod
    удельная тяга
    specific thrust
    удельный расход топлива на кг тяги в час
    thrust specific fuel consumption
    указатель реверса тяги
    thrust-reverse indicator
    уменьшать тягу
    reduce thrust
    уменьшение тяги
    thrust reduction
    уменьшение тяги с целью снижения шума
    noise abatement thrust cutback
    уменьшение шума за счет изменения тяги
    noise thrust correction
    устройство для создания тяги
    thrust producting device
    форсажная камера для увеличения тяги
    thrust augmentor
    форсирование тяги
    thrust augmentation
    форсированная тяга
    augmented thrust
    форсировать тягу
    augment thrust
    цапфа крепления тяги
    rod trunnion
    цилиндр реверса тяги
    thrust reverser cylinder
    шаг отрицательной тяги
    1. reverse pitch
    2. drag pitch шаг положительной тяги
    forward pitch
    шаг при отсутствии тяги
    1. zero-thrust pitch
    2. no-lift pitch шум при включении реверса тяги
    reverse thrust noise
    эффект постоянной тяги
    constant thrust effect

    Русско-английский авиационный словарь > тяга

  • 86 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

См. также в других словарях:

  • Core — may refer to: Contents 1 Science and Academics 2 Computers and Technology 3 Media …   Wikipedia

  • Core power — is a parameter used in aeroengine performance engineering to enable a comparison of the power capabilities of jet engine (e.g. turbofan) cores. Although the alternative core size parameter is easier to compute, it only takes into account the… …   Wikipedia

  • Core size — is a parameter used in aeroengine performance engineering to enable a size comparison between jet engine (e.g. turbofan) cores. The alternative core power parameter is more difficult to compute, but has the advantage that it takes into account… …   Wikipedia

  • Fuel pump — should not be confused with fuel dispenser, a device that dispenses fuel into an automobile. A high pressure fuel pump on a Yanmar 2GM20 marine diesel engine. A fuel pump is a frequently (but not always) essential component on a car or other… …   Wikipedia

  • Core — Core, n. [OF. cor, coer, cuer, F. c[oe]ur, fr. L. cor heart. See {Heart}.] 1. The heart or inner part of a thing, as of a column, wall, rope, of a boil, etc.; especially, the central part of fruit, containing the kernels or seeds; as, the core of …   The Collaborative International Dictionary of English

  • Core box — Core Core, n. [OF. cor, coer, cuer, F. c[oe]ur, fr. L. cor heart. See {Heart}.] 1. The heart or inner part of a thing, as of a column, wall, rope, of a boil, etc.; especially, the central part of fruit, containing the kernels or seeds; as, the… …   The Collaborative International Dictionary of English

  • Core print — Core Core, n. [OF. cor, coer, cuer, F. c[oe]ur, fr. L. cor heart. See {Heart}.] 1. The heart or inner part of a thing, as of a column, wall, rope, of a boil, etc.; especially, the central part of fruit, containing the kernels or seeds; as, the… …   The Collaborative International Dictionary of English

  • core — [kôr] n. [ME < OFr cor, prob. < L cor,HEART] 1. the hard, central part of an apple, pear, etc., that contains the seeds 2. the central or innermost part of anything 3. the most important part, as of a matter, discussion, etc.; essence; pith …   English World dictionary

  • fuel element — fuel element, the radioactive material and mechanical devices of the core in a complete unit ready to be incorporated in a nuclear reactor …   Useful english dictionary

  • Fuel tank — A fuel tank is safe container for flammable liquids and typically part of an engine system in which the fuel is stored and propelled (fuel pump) or released (pressurized gas) into an engine. Fuel tanks range in size and complexity from the small… …   Wikipedia

  • fuel-cooled oil cooler (FCOC)/fuel-oil cooler — A heat exchanger in the form of a radiator, in which the fuel passes through the cooler’s core while oil passes around the core. In this process, the heat of the lubricating oil is passed on to the fuel. A bypass valve (normally, a thermostatic… …   Aviation dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»