Перевод: с английского на все языки

со всех языков на английский

formal+mathematics

  • 41 Cros, Hortensius Emile Charles

    [br]
    b. 1 October 1842 Fabrezan (Aude), France
    d. 9 August 1888 Paris, France
    [br]
    French inventor of chromolithography and the principles of reproducible sound recording.
    [br]
    He received no formal education, but was brought up by his father, a distinguished teacher and philosopher. He dabbled in diverse subjects (modern and ancient languages, mathematics, drawing) in 1856–60 when he became an instructor at the institute of the Deaf-Mute at Paris. He became a prolific inventor and poet and took part in artistic life in Paris. In the 1867 Exposition Universelle in Paris, Cros contributed a facsimile telegraph; he deposited with the Académie des Sciences a sealed text on photography which was not opened until 1876. In the meantime he published a small text on a general solution of the problem of colour photography which appeared almost simultaneously with a similar publication by Louis Ducos du Hauron and which gave rise to bitter discussions over priority. He deposited a sealed paper on 18 April 1877 concerning his concept of apparatus for recording and reproduction of sound which he called the paléophone. When it was opened on 3 December 1877 it was not known that T.A. Edison was already active in this field: Cros is considered the conceptual founder of reproducible sound, whereas Edison was the first "to reduce to practice", which is one of the US criteria for patentability.
    [br]
    Bibliography
    French patent no. 124, 213 (filed 1 May and 2 August 1878).
    Further Reading
    Louis Forestier, 1969, Charles Cros: L'Homme et l'oeuvre, Paris: Seghers.
    GB-N

    Biographical history of technology > Cros, Hortensius Emile Charles

  • 42 Gilpin, Thomas

    SUBJECT AREA: Canals
    [br]
    b. 18 March 1728 Chester County, Pennsylvania, USA
    d. 30 April 1778 Winchester, Virginia, USA
    [br]
    American manufacturer.
    [br]
    Thomas Gilpin belonged to a wealthy Quaker family descended from Joseph Gilpin, who had emigrated from England in 1696. He received little formal education and was mainly self-educated in mathematics, surveying and science, in which subjects he was particularly interested. With estates in Delaware and Maryland, he was involved in farming and manufacturing. He moved to Philadelphia in 1769, which further extended his activities. With his fortune he was able to indulge his interest in science, and he was one of the original members of the American Philosophical Society in 1769. He wrote papers on the wheat fly, the seventeen-year locust and the migration of herrings. It was through this Society that he became friendly with Benjamin Franklin, to whom he wrote on 10 October 1769 setting out his proposals for and advocacy of a canal linking the Elk River on Chesapeake Bay with the Delaware River and Bay, thereby cutting off a long haul of several hundred miles for vessels around Cape Charles with a dangerous passage unto the Atlantic Ocean. Gilpin also invented a hydraulic pump that delighted Franklin very much. Gilpin had visited England in 1768 during the formation of his ideas for the Chesapeake \& Delaware Canal, and probably visited the Bridgewater Canal while there. Despite his pressing advocacy the canal had to wait until after his death, but later his son Joshua, a director from 1803 to 1824, saw the canal through many difficulties although he had resigned before the official opening in 1829. At the outbreak of the American War of Independence, in 1777, Gilpin, together with other Quakers, was arrested in Philadelphia owing to suspicions of his loyalty on the grounds that as a Quaker he refused to sign the Oath of Allegiance. He was later exiled to Winchester, Virginia, where he died in April 1778.
    [br]
    Further Reading
    1925, "Memoir of Thomas Gilpin", Pennsylvania Magazine of History and Biography.
    R.D.Gray, 1967, The National Waterway: A History of the Chesapeake and Delaware Canal, 1769–1985, Urbana: Illinois University Press.
    JHB

    Biographical history of technology > Gilpin, Thomas

  • 43 Krylov, Alexei Nicolaevitch

    SUBJECT AREA: Ports and shipping
    [br]
    b. 15 August 1863 Visyoger, Siberia
    d. 26 October 1945 Leningrad (now St Petersburg), Russia
    [br]
    Russian academician and naval architect) exponent of a rigorous mathematical approach to the study of ship motions.
    [br]
    After schooling in France and Germany, Krylov returned to St Petersburg (as it then was) and in 1878 entered the Naval College. Upon graduating, he started work with the Naval Hydrographic Department; the combination of his genius and breadth of interest became apparent, and from 1888 until 1890 he undertook simultaneously a two-year university course in mathematics and a naval architecture course at his old college. On completion of his formal studies, Krylov commenced fifty years of service to the academic bodies of St Petersburg, including eight years as Superintendent of the Russian Admiralty Ship Model Experiment Tank. For many years he was Professor of Naval Architecture in the city, reorganizing the methods of teaching of his profession in Russia. It was during this period that he laid the foundations of his remarkable research and published the first of his many books destined to become internationally accepted in the fields of waves, rolling, ship motion and vibration. Practical work was not overlooked: he was responsible for the design of many vessels for the Imperial Russian Navy, including the battleships Sevastopol and Petropavlovsk, and went on, as Director of Naval Construction, to test anti-rolling tanks aboard military vessels in the North Atlantic in 1913. Following the Revolution, Krylov was employed by the Soviet Union to re-establish scientific links with other European countries, and on several occasions he acted as Superintendent in the procurement of important technical material from overseas. In 1919 he was appointed Head of the Marine Academy, and from then on participated in many scientific conferences and commissions, mainly in the shipbuilding field, and served on the Editorial Board of the well-respected Russian periodical Sudostroenie (Shipbuilding). The breadth of his personal research was demonstrated by the notable contributions he made to the Russian development of the gyro compass.
    [br]
    Principal Honours and Distinctions
    Member, Russian Academy of Science 1814. Royal Institution of Naval Architects Gold Medal 1898. State Prize of the Soviet Union (first degree). Stalin Premium for work on compass deviation.
    Bibliography
    Krylov published more than 500 books, papers and articles; these have been collected and published in twelve volumes by the Academy of Sciences of the USSR. 1942, My Memories (autobiography).
    AK / FMW

    Biographical history of technology > Krylov, Alexei Nicolaevitch

  • 44 Pascal, Blaise

    [br]
    b. 19 June 1623 Clermont Ferrand, France
    d. 19 August 1662 Paris, France
    [br]
    French mathematician, physicist and religious philosopher.
    [br]
    Pascal was the son of Etienne Pascal, President of the Court of Aids. His mother died when he was 3 years old and he was brought up largely by his two sisters, one of whom was a nun at Port Royal. They moved to Paris in 1631 and again to Rouen ten years later. He received no formal education. In 1654 he was involved in a carriage accident in which he saw a mystical vision of God and from then on confined himself to philosophical rather than scientific matters. In the field of mathematics he is best known for his work on conic sections and on the laws of probability. As a youth he designed a calculating machine of which, it is said, some seventy were made. His main contribution to technology was his elucidation of the laws of hydrostatics which formed the basis of all hydrostatic machines in subsequent years. Pascal, however, did not put these laws to any practical use: that was left to the English cabinet-maker and engineer Joseph Bramah more than a century later. Suffering from indifferent health, Pascal persuaded his brother-in-law Périer to repeat the experiments of Evangelista Torricelli on the pressure of the atmosphere. This involved climbing the 4,000 ft (1,220 m) of the Puy de Dôme, a mountain close to Clermont, with a heavy mercury-in-glass barometer. The experiment was reported in the 1647 pamphlet "Expériences nouvelles touchant le vide". The Hydrostatic Law was laid down by Pascal in Traité de l'équilibre des liqueurs, published a year after his death. In this he established the fact that in a fluid at rest the pressure is transmitted equally in all directions.
    [br]
    Bibliography
    1647, "Expériences nouvelles touchant le vide". 1663, Traité de l'équilibre des liqueurs.
    Further Reading
    J.Mesnard, 1951, Pascal, His Life and Works.
    I.McNeil, 1972, Hydraulic Power, London: Longmans.
    IMcN

    Biographical history of technology > Pascal, Blaise

  • 45 Riquet, Pierre Paul

    SUBJECT AREA: Canals, Civil engineering
    [br]
    b. 29 June 1604 Béziers, Hérault, France
    d. 1 October 1680 buried at Toulouse, France
    [br]
    French canal engineer and constructor of the Canal du Midi.
    [br]
    Pierre Paul Riquet was the son of a wealthy lawyer whose ancestors came from Italy. In his education at the Jesuit College in Béziers he showed obvious natural ability in science and mathematics, but he received no formal engineering training. With his own and his wife's fortunes he was able to purchase a château at Verfeil, near Toulouse. In 1630 he was appointed a collector of the salt tax in Languedoc and in a short time became Lessee General (Fermier Général) of this tax for the whole province. This entailed constant travel through the district, with the result that he became very familiar with this part of the country. He also became involved in military contracting. He acquired a vast fortune out of both activities. At this time he pondered the possibility of building a canal from Toulouse to the Mediterranean beyond Béziers and, after further investigation as to possible water supplies, he wrote to Colbert in Paris on 16 November 1662 advocating the construction of the canal. Although the idea proved acceptable it was not until 27 May 1665 that Riquet was authorized to direct operations, and on 14 October 1666 he was given authority to construct the first part of the canal, from Toulouse to Trebes. Work started on 1 January 1667. By 1669 he had between 7,000 and 8,000 men employed on the work. Unhappily, Riquet died just over six months before the canal was completed, the official opening beingon 15 May 1681.
    Although Riquet's fame rightly rests on the Canal du Midi, probably the greatest work of its time in Europe, he was also consulted about and was responsible for other projects. He built an aqueduct on more than 100 arches to lead water into the grounds of the château of his friend the marquis de Castres. The plans for this work, which involved considerable practical difficulties, were finalized in 1670, and water flowed into the château grounds in 1676. Also in 1676, Riquet was commissioned to lead the waters of the river Ourcq into Paris; he drew up plans, but he was too busy to undertake the construction and on his death the work was shelved until Napoleon's time. He was responsible for the creation of the port of Sète on the Mediterranean at the end of the Canal du Midi. He was also consulted on the supply of water to the Palace of Versailles and on a proposed route which later became the Canal de Bourgogne. Riquet was a very remarkable man: when he started the construction of the canal he was well over 60 years old, an age at which most people are retiring, and lived almost to its completion.
    [br]
    Further Reading
    L.T.C.Rolt, 1973, From Sea to Sea, London: Allen Lane; rev. ed. 1994, Bridgwater: Internet Ltd.
    Jean-Denis Bergasse, 1982–7, Le Canal de Midi, 4 vols, Hérault:—Vol. I: Pierre Paul Riquet et le Canal du Midi dans les arts et la littérature; Vol II: Trois Siècles de
    batellerie et de voyage; Vol. III: Des Siècles d'aventures humaine; Vol. IV: Grands Moments et grands sites.
    JHB

    Biographical history of technology > Riquet, Pierre Paul

  • 46 Russell, John Scott

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 May 1808 Parkhead, near Glasgow, Scotland
    d. 8 June 1882 Isle of Wight, England
    [br]
    Scottish engineer, naval architect and academic.
    [br]
    A son of the manse, Russell was originally destined for the Church and commenced studies at the University of St Andrews, but shortly afterwards he transferred to Glasgow, graduating MA in 1825 when only 17 years old. He began work as a teacher in Edinburgh, working up from a school to the Mechanics Institute and then in 1832 to the University, where he took over the classes in natural philosophy following the death of the professor. During this period he designed and advised on the application of steam power to road transport and to the Forth and Clyde Canal, thereby awakening his interest in ships and naval architecture.
    Russell presented papers to the British Association over several years, and one of them, The Wave Line Theory of Ship Form (although now superseded), had great influence on ship designers of the time and helped to establish the formal study of hydromechanics. With a name that was becoming well known, Russell looked around for better opportunities, and on narrowly missing appointment to the Chair of Mathematics at Edinburgh University he joined the upand-coming Clyde shipyard of Caird \& Co., Greenock, as Manager in 1838.
    Around 1844 Russell and his family moved to London; following some business problems he was in straitened circumstances. However, appointment as Secretary to the Committee setting up the Great Exhibition of 1851 eased his path into London's intellectual society and allowed him to take on tasks such as, in 1847, the purchase of Fairbairn's shipyard on the Isle of Dogs and the subsequent building there of I.K. Brunel's Great Eastern steamship. This unhappy undertaking was a millstone around the necks of Brunel and Russell and broke the health of the former. With the yard failing to secure the order for HMS Warrior, the Royal Navy's first ironclad, Russell pulled out of shipbuilding and for the remainder of his life was a designer, consultant and at times controversial, but at all times polished and urbane, member of many important committees and societies. He is remembered as one of the founders of the Institution of Naval Architects in 1860. His last task was to design a Swiss Lake steamer for Messrs Escher Wyss, a company that coincidentally had previously retained Sir William Fairbairn.
    [br]
    Principal Honours and Distinctions
    FRS 1847.
    Bibliography
    John Scott Russell published many papers under the imprint of the British Association, the Royal Society of Arts and the Institution of Naval Architects. His most impressive work was the mammoth three-volume work on shipbuilding published in London in 1865 entitled The Modern System of Naval Architecture. Full details and plans of the Great Eastern are included.
    Further Reading
    G.S.Emmerson, 1977, John Scott Russell, a Great Victorian Engineer and Naval Architect, London: Murray
    FMW

    Biographical history of technology > Russell, John Scott

См. также в других словарях:

  • Mathematics education — A mathematics lecture at Aalto University School of Science and Technology. Educational Research …   Wikipedia

  • Mathematics and art — have a long historical relationship. The ancient Egyptians and ancient Greeks knew about the golden ratio, regarded as an aesthetically pleasing ratio, and incorporated it into the design of monuments including the Great Pyramid,[1] the Parthenon …   Wikipedia

  • Formal science — A formal science is a theoretical study that is concerned with theoretical formal systems, for instance, logic, mathematics, systems theory and the theoretical branches of computer science, information theory, economics, statistics, and… …   Wikipedia

  • mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… …   Universalium

  • mathematics, foundations of — Scientific inquiry into the nature of mathematical theories and the scope of mathematical methods. It began with Euclid s Elements as an inquiry into the logical and philosophical basis of mathematics in essence, whether the axioms of any system… …   Universalium

  • formal logic — the branch of logic concerned exclusively with the principles of deductive reasoning and with the form rather than the content of propositions. [1855 60] * * * Introduction       the abstract study of propositions, statements, or assertively used …   Universalium

  • Mathematics — Maths and Math redirect here. For other uses see Mathematics (disambiguation) and Math (disambiguation). Euclid, Greek mathematician, 3r …   Wikipedia

  • Formal group — In mathematics, a formal group law is (roughly speaking) a formal power series behaving as if it were the product of a Lie group. They were first defined in 1946 by S. Bochner. The term formal group sometimes means the same as formal group law,… …   Wikipedia

  • Formal proof — See also: mathematical proof, proof theory, and axiomatic system A formal proof or derivation is a finite sequence of sentences (called well formed formulas in the case of a formal language) each of which is an axiom or follows from the… …   Wikipedia

  • Formal system — In formal logic, a formal system (also called a logical system,Audi, Robert (Editor). The Cambridge Dictionary of Philosophy . Second edition, Cambridge University Press, 1999. ISBN 978 0521631365 (hardcover) and ISBN 978 0521637220 (paperback).] …   Wikipedia

  • Formal — The term formal has a number of uses, including:General*relating to formality *opposite of informalocial* Formal occasion ** Formal attire worn on such occasions ** Formals are particular meals at some British universities ** In Australian or… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»