Перевод: со всех языков на английский

с английского на все языки

fellow+of+the+british+academy

  • 1 Fellow of the British Academy

    Abbreviation: FBA

    Универсальный русско-английский словарь > Fellow of the British Academy

  • 2 член Британской Академии

    1. Fellow of the British Academy

     

    член Британской Академии

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > член Британской Академии

  • 3 член Британской академии

    Универсальный русско-английский словарь > член Британской академии

  • 4 Daguerre, Louis Jacques Mandé

    [br]
    b. 18 November 1787 Carmeilles-en-Parisis, France
    d. 10 July 1851 Petit-Bry-sur-Marne, France
    [br]
    French inventor of the first practicable photographic process.
    [br]
    The son of a minor official in a magistrate's court, Daguerre showed an early aptitude for drawing. He was first apprenticed to an architect, but in 1804 he moved to Paris to learn the art of stage design. He was particularly interested in perspective and lighting, and later showed great ingenuity in lighting stage sets. Fascinated by a popular form of entertainment of the period, the panorama, he went on to create a variant of it called the diorama. It is assumed that he used a camera obscura for perspective drawings and, by purchasing it from the optician Chevalier, he made contact with Joseph Nicéphore Niepce. In 1829 Niepce and Daguerre entered into a formal partnership to perfect Niepce's heliographic process, but the partnership was dissolved when Niepce died in 1833, when only limited progress had been made. Daguerre continued experimenting alone, however, using iodine and silver plates; by 1837 he had discovered that images formed in the camera obscura could be developed by mercury vapour and fixed with a hot salt solution. After unsuccessfully attempting to sell his process, Daguerre approached F.J.D. Arago, of the Académie des Sciences, who announced the discovery in 1839. Details of Daguerre's work were not published until August of that year when the process was presented free to the world, except England. With considerable business acumen, Daguerre had quietly patented the process through an agent, Miles Berry, in London a few days earlier. He also granted a monopoly to make and sell his camera to a Monsieur Giroux, a stationer by trade who happened to be a relation of Daguerre's wife. The daguerreotype process caused a sensation when announced. Daguerre was granted a pension by a grateful government and honours were showered upon him all over the world. It was a direct positive process on silvered copper plates and, in fact, proved to be a technological dead end. The future was to lie with negative-positive photography devised by Daguerre's British contemporary, W.H.F. Talbot, although Daguerre's was the first practicable photographic process to be announced. It captured the public's imagination and in an improved form was to dominate professional photographic practice for more than a decade.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur 1839. Honorary FRS 1839. Honorary Fellow of the National Academy of Design, New York, 1839. Honorary Fellow of the Vienna Academy 1843. Pour le Mérite, bestowed by Frederick William IV of Prussia, 1843.
    Bibliography
    14 August 1839, British patent no. 8,194 (daguerrotype photographic process).
    The announcement and details of Daguerre's invention were published in both serious and popular English journals. See, for example, 1839 publications of Athenaeum, Literary Gazette, Magazine of Science and Mechanics Magazine.
    Further Reading
    H.Gernsheim and A.Gernsheim, 1956, L.J.M. Daguerre (the standard account of Daguerre's work).
    —1969, The History of Photography, rev. edn, London (a very full account).
    J.M.Eder, 1945, History of Photography, trans. E. Epstean, New York (a very full account).
    JW

    Biographical history of technology > Daguerre, Louis Jacques Mandé

  • 5 Meek, Marshall

    SUBJECT AREA: Ports and shipping
    [br]
    b. 22 April 1925 Auchtermuchty, Fife, Scotland
    [br]
    Scottish naval architect and leading twentieth-century exponent of advanced maritime technology.
    [br]
    After early education at Cupar in Fife, Meek commenced training as a naval architect, taking the then popular sandwich apprenticeship of alternate half years at the University of Glasgow (with a Caird Scholarship) and at a shipyard, in his case the Caledon of Dundee. On leaving Dundee he worked for five years with the British Ship Research Association before joining Alfred Holt \& Co., owners of the Blue Funnel Line. During his twenty-five years at Liverpool, he rose to Chief Naval Architect and Director and was responsible for bringing the cargo-liner concept to its ultimate in design. When the company had become Ocean Fleets, it joined with other British shipowners and looked to Meek for the first purpose-built containership fleet in the world. This required new ship designs, massive worldwide investment in port facilities and marketing to win public acceptance of freight containers, thereby revolutionizing dry-cargo shipping. Under the houseflag of OCL (now POCL), this pioneer service set the highest standards of service and safety and continues to operate on almost every ocean.
    In 1979 Meek returned to the shipbuilding industry when he became Head of Technology at British Shipbuilders. Closely involved in contemporary problems of fuel economy and reduced staffing, he held the post for five years before his appointment as Managing Director of the National Maritime Institute. He was deeply involved in the merger with the British Ship Research Association to form British Maritime Technology (BMT), an organization of which he became Deputy Chairman.
    Marshall Meek has held many public offices, and is one of the few to have been President of two of the United Kingdom's maritime institutions. He has contributed over forty papers to learned societies, has acted as Visiting Professor to Strathclyde University and University College London, and serves on advisory committees to the Ministry of Defence, the Department of Transport and Lloyd's Register of Shipping. While in Liverpool he served as a Justice of the Peace.
    [br]
    Principal Honours and Distinctions
    CBE 1989. Fellow of the Royal Academy of Engineering 1990. President, Royal Institution of Naval Architects 1990–3; North East Coast Institution of Engineers and Shipbuilders 1984–6. Royal Designer for Industry (RDI) 1986. Royal Institution of Naval Architects Silver Medal (on two occasions).
    Bibliography
    1970, "The first OCL containerships", Transactions of the Royal Institution of Naval Architects.
    FMW

    Biographical history of technology > Meek, Marshall

  • 6 Moulton, Alexander

    [br]
    b. 9 April 1920 Stratford-on-Avon
    [br]
    English inventor of vehicle suspension systems and the Moulton bicycle.
    [br]
    He spent his childhood at The Hall in Bradfordon-Avon. He was educated at Marlborough College, and in 1937 was apprenticed to the Sentinel Steam Wagon Company of Shrewsbury. About that same time he went to King's College, Cambridge, where he took the Mechanical Sciences Tripos. It was then wartime, and he did research on aero-engines at the Bristol Aeroplane Company, where he became Personal Assistant to Sir Roy Fedden. He left Bristol's in 1945 to join his family firm, Spencer \& Moulton, of which he eventually became Technical Director and built up the Research Department. In 1948 he invented his first suspension unit, the "Flexitor", in which an inner shaft and an outer shell were separated by an annular rubber body which was bonded to both.
    In 1848 his great-grandfather had founded the family firm in an old woollen mill, to manufacture vulcanized rubber products under Charles Goodyear's patent. The firm remained a family business with Spencer's, consultants in railway engineering, until 1956 when it was sold to the Avon Rubber Company. He then formed Moulton Developments to continue his work on vehicle suspensions in the stables attached to The Hall. Sponsored by the British Motor Corporation (BMC) and the Dunlop Rubber Company, he invented a rubber cone spring in 1951 which was later used in the BMC Mini (see Issigonis, Sir Alexander Arnold Constantine): by 1994 over 4 million Minis had been fitted with these springs, made by Dunlop. In 1954 he patented the Hydrolastic suspension system, in which all four wheels were independently sprung with combined rubber springs and damper assembly, the weight being supported by fluid under pressure, and the wheels on each side being interconnected, front to rear. In 1962 he formed Moulton Bicycles Ltd, having designed an improved bicycle system for adult use. The conventional bicycle frame was replaced by a flat-sided oval steel tube F-frame on a novel rubber front and rear suspension, with the wheel size reduced to 41 cm (16 in.) with high-pressure tyres. Raleigh Industries Ltd having refused his offer to produce the Moulton Bicycle under licence, he set up his own factory on his estate, producing 25,000 bicycles between 1963 and 1966. In 1967 he sold out to Raleigh and set up as Bicycle Consultants Ltd while continuing the suspension development of Moulton Developments Ltd. In the 1970s the combined firms employed some forty staff, nearly 50 per cent of whom were graduates.
    He won the Queen's Award for Industry in 1967 for technical innovation in Hydrolastic car suspension and the Moulton Bicycle. Since that time he has continued his innovative work on suspensions and the bicycle. In 1983 he introduced the AM bicycle series of very sophisticated space-frame design with suspension and 43 cm (17 in.) wheels; this machine holds the world speed record fully formed at 82 km/h (51 mph). The current Rover 100 and MGF use his Hydragas interconnected suspension. By 1994 over 7 million cars had been fitted with Moulton suspensions. He has won many design awards and prizes, and has been awarded three honorary doctorates of engineering. He is active in engineering and design education.
    [br]
    Principal Honours and Distinctions
    Queen's Award for Industry 1967; CBE; RDI. Fellow of the Royal Academy of Engineering.
    Further Reading
    P.R.Whitfield, 1975, Creativity in Industry, London: Penguin Books.
    IMcN

    Biographical history of technology > Moulton, Alexander

  • 7 Abel, Sir Frederick August

    [br]
    b. 17 July 1827 Woolwich, London, England
    d. 6 September 1902 Westminster, London, England
    [br]
    English chemist, co-inventor of cordite find explosives expert.
    [br]
    His family came from Germany and he was the son of a music master. He first became interested in science at the age of 14, when visiting his mineralogist uncle in Hamburg, and studied chemistry at the Royal Polytechnic Institution in London. In 1845 he became one of the twenty-six founding students, under A.W.von Hofmann, of the Royal College of Chemistry. Such was his aptitude for the subject that within two years he became von Hermann's assistant and demonstrator. In 1851 Abel was appointed Lecturer in Chemistry, succeeding Michael Faraday, at the Royal Military Academy, Woolwich, and it was while there that he wrote his Handbook of Chemistry, which was co-authored by his assistant, Charles Bloxam.
    Abel's four years at the Royal Military Academy served to foster his interest in explosives, but it was during his thirty-four years, beginning in 1854, as Ordnance Chemist at the Royal Arsenal and at Woolwich that he consolidated and developed his reputation as one of the international leaders in his field. In 1860 he was elected a Fellow of the Royal Society, but it was his studies during the 1870s into the chemical changes that occur during explosions, and which were the subject of numerous papers, that formed the backbone of his work. It was he who established the means of storing gun-cotton without the danger of spontaneous explosion, but he also developed devices (the Abel Open Test and Close Test) for measuring the flashpoint of petroleum. He also became interested in metal alloys, carrying out much useful work on their composition. A further avenue of research occurred in 1881 when he was appointed a member of the Royal Commission set up to investigate safety in mines after the explosion that year in the Sealham Colliery. His resultant study on dangerous dusts did much to further understanding on the use of explosives underground and to improve the safety record of the coal-mining industry. The achievement for which he is most remembered, however, came in 1889, when, in conjunction with Sir James Dewar, he invented cordite. This stable explosive, made of wood fibre, nitric acid and glycerine, had the vital advantage of being a "smokeless powder", which meant that, unlike the traditional ammunition propellant, gunpowder ("black powder"), the firer's position was not given away when the weapon was discharged. Although much of the preliminary work had been done by the Frenchman Paul Vieille, it was Abel who perfected it, with the result that cordite quickly became the British Army's standard explosive.
    Abel married, and was widowed, twice. He had no children, but died heaped in both scientific honours and those from a grateful country.
    [br]
    Principal Honours and Distinctions
    Grand Commander of the Royal Victorian Order 1901. Knight Commander of the Most Honourable Order of the Bath 1891 (Commander 1877). Knighted 1883. Created Baronet 1893. FRS 1860. President, Chemical Society 1875–7. President, Institute of Chemistry 1881–2. President, Institute of Electrical Engineers 1883. President, Iron and Steel Institute 1891. Chairman, Society of Arts 1883–4. Telford Medal 1878, Royal Society Royal Medal 1887, Albert Medal (Society of Arts) 1891, Bessemer Gold Medal 1897. Hon. DCL (Oxon.) 1883, Hon. DSc (Cantab.) 1888.
    Bibliography
    1854, with C.L.Bloxam, Handbook of Chemistry: Theoretical, Practical and Technical, London: John Churchill; 2nd edn 1858.
    Besides writing numerous scientific papers, he also contributed several articles to The Encyclopaedia Britannica, 1875–89, 9th edn.
    Further Reading
    Dictionary of National Biography, 1912, Vol. 1, Suppl. 2, London: Smith, Elder.
    CM

    Biographical history of technology > Abel, Sir Frederick August

  • 8 Gilbert, Joseph Henry

    [br]
    b. 1 August 1817 Hull, England
    d. 23 December 1901 England
    [br]
    English chemist who co-established the reputation of Rothampsted Experimental Station as at the forefront of agricultural research.
    [br]
    Joseph Gilbert was the son of a congregational minister. His schooling was interrupted by the loss of an eye as the result of a shooting accident, but despite this setback he entered Glasgow University to study analytical chemistry, and then went to University College, London, where he was a fellow student of John Bennet Lawes. During his studies he visited Giessen, Germany, and worked in the laboratory of Justus von Liebig. In 1843, at the age of 26, he was hired as an assistant by Lawes, who was 29 at that time; an unbroken friendship and collaboration existed between the two until Lawes died in 1900. They began a series of experiments on grain production and grew plots under different applications of nitrogen, with control plots that received none at all. Much of the work at Rothampsted was on the nitrogen requirements of plants and how this element became available to them. The grain grown in these experiments was analyzed to determine whether nitrogen input affected grain quality. Gilbert was a methodical worker who by the time of his death had collected together some 50,000 carefully stored and recorded samples.
    [br]
    Principal Honours and Distinctions
    Knighted 1893. FRS 1860. Fellow of the Chemistry Society 1841, President 1882–3. President, Chemical Section of the British Association 1880. Sibthorpian Professor of Rural Economy, Oxford University, 1884. Honorary Professor of the Royal Agricultural College, Cirencester. Honorary member of the Royal Agricultural Society of England 1883. Royal Society Royal Medal 1867 (jointly with Lawes). Society of Arts Albert Gold Medal 1894 (jointly with Lawes). Liebig Foundation of the Royal Bavarian Academy of Science Silver Medal 1893 (jointly with Lawes).
    AP

    Biographical history of technology > Gilbert, Joseph Henry

  • 9 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 10 Dakin, Henry Drysdale

    SUBJECT AREA: Medical technology
    [br]
    b. 12 March 1880 Hampstead, England
    d. 10 February 1952 Scarborough-on-Hudson, New York, USA
    [br]
    English biochemist, advocate and exponent of the treatment of wounds with antiseptic fluid, Dakin's solution (Eusol).
    [br]
    The youngest of a family of eight of moderate means, Dakin received his early education in Leeds experiencing strict scientific training as a public analyst. He regarded this as having been of the utmost value to him in his lifelong commitment to the emerging discipline of biochemistry.
    He was one of the earliest to specialize in the significance of optical activity in organic chemistry, and obtained his BSc from Manchester in 1901. Following this, he worked at the Lister (Jenner) Institute of Preventive Medicine and at Heidelberg. He then received an invitation to join Christian Herter in a private research laboratory that had been established in New York. There, for the rest of his life, he continued his studies into a wide variety of biochemical topics. Christian Herter died in 1910, and six years later his widow and Dakin were married.
    Unable to serve in the First World War, he made a major contribution, in collaboration with Carrel, with the technique for the antiseptic irrigation of wounds with a buffered hypochlorite solution (Eusol), a therapy which in the 1990s is still an accepted approach to the treatment of infected wounds. The original trials were carried out on the liner Aquitania, then serving as a hospital ship in the Dardanelles.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Society 1917. Davy Medal 1941. Honorary doctorates, Yale, Leeds and Heidelberg Universities.
    Bibliography
    1915, "On the use of certain antiseptic substances in the treatment of infected wounds", British Medical Journal.
    1915, with A.Carrel, "Traitement abortif de l'infection des plaies", Bulletin of the
    Academy of Medicine.
    MG

    Biographical history of technology > Dakin, Henry Drysdale

См. также в других словарях:

  • British Academy — The British Academy is the United Kingdom s national academy for the humanities and the social sciences. It was established by Royal Charter in 1902, and is a fellowship of more than 800 scholars. The Academy is self governing and independent. As …   Wikipedia

  • British Academy Film Awards 2011 — Die 64. Verleihung der British Academy Film Awards fand am 13. Februar 2011 im Royal Opera House in London statt. Die Filmpreise der British Academy of Film and Television Arts (BAFTA) wurden in 23 Kategorien verliehen. Gastgeber der… …   Deutsch Wikipedia

  • Fellow of the Royal Society — Royal Society Le bâtiment de la Royal Society à Londres. La Royal Society, dont le nom officiel est Royal Society of London for the Improvement of Natural Knowledge et que l on peut traduire par Société royale de Londres, est une institution… …   Wikipédia en Français

  • The New Palgrave Dictionary of Economics — (2008), 2nd Edition, is an eight volume reference work, edited by Steven N. Durlauf and Lawrence E. Blume. It contains 5.8 million words and spans 7,680 pages with 1,872 articles. Included are 1057 new articles and, from earlier, 80 essays that… …   Wikipedia

  • The New Palgrave Dictionary of Economics, 2nd Edition — The New Palgrave Dictionary of Economics, 2nd Edition, is an eight volume reference work published in May 2008, edited by Steven N. Durlauf and Lawrence E. Blume. It contains 5.8 million words, spans 7,680 pages with 1,872 articles written by… …   Wikipedia

  • fellow — /fel oh/, n. 1. a man or boy: a fine old fellow; a nice little fellow. 2. Informal. beau; suitor: Mary had her fellow over to meet her folks. 3. Informal. person; one: They don t treat a fellow very well here. 4. a person of small worth or no… …   Universalium

  • Fellow — Fel|low 〈[fɛ̣loʊ] m. 6; in England〉 1. Mitglied einer wissenschaftl. Vereinigung 2. Mitglied eines Colleges 3. Stipendiat [engl., „Gefährte, Mitglied einer Körperschaft, Bursche“] * * * Fel|low [ fɛloʊ ], der; s, s [engl. fellow, eigtl. = Partner …   Universal-Lexikon

  • fellow — fel•low [[t]ˈfɛl oʊ[/t]] n. 1) a man or boy 2) inf inf a beau; suitor 3) inf inf a person; one: They don t treat a fellow very well here[/ex] 4) a companion; comrade; associate 5) a person belonging to the same rank or class; equal; peer 6) one… …   From formal English to slang

  • Fellow of the Royal Society — Gebäude der Royal Society in London Gebäude der Royal Society in Edinburgh …   Deutsch Wikipedia

  • North British Academy of Arts — Coordinates: 54°58′44″N 1°36′47″W / 54.979°N 1.613°W / 54.979; 1.613 The North British Academy of Arts (1908 …   Wikipedia

  • The Beatles — This article is about the band. For other uses, see The Beatles (disambiguation). Fab Four redirects here. For other uses, see Fab Four (disambiguation) …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»