Перевод: с английского на все языки

со всех языков на английский

construction+of+steam+engines

  • 21 Bollée, Ernest-Sylvain

    [br]
    b. 19 July 1814 Clefmont (Haute-Marne), France
    d. 11 September 1891 Le Mans, France
    [br]
    French inventor of the rotor-stator wind engine and founder of the Bollée manufacturing industry.
    [br]
    Ernest-Sylvain Bollée was the founder of an extensive dynasty of bellfounders based in Le Mans and in Orléans. He and his three sons, Amédée (1844–1917), Ernest-Sylvain fils (1846–1917) and Auguste (1847-?), were involved in work and patents on steam-and petrol-driven cars, on wind engines and on hydraulic rams. The presence of the Bollées' car industry in Le Mans was a factor in the establishment of the car races that are held there.
    In 1868 Ernest-Sylvain Bollée père took out a patent for a wind engine, which at that time was well established in America and in England. In both these countries, variable-shuttered as well as fixed-blade wind engines were in production and patented, but the Ernest-Sylvain Bollée patent was for a type of wind engine that had not been seen before and is more akin to the water-driven turbine of the Jonval type, with its basic principle being parallel to the "rotor" and "stator". The wind drives through a fixed ring of blades on to a rotating ring that has a slightly greater number of blades. The blades of the fixed ring are curved in the opposite direction to those on the rotating blades and thus the air is directed onto the latter, causing it to rotate at a considerable speed: this is the "rotor". For greater efficiency a cuff of sheet iron can be attached to the "stator", giving a tunnel effect and driving more air at the "rotor". The head of this wind engine is turned to the wind by means of a wind-driven vane mounted in front of the blades. The wind vane adjusts the wind angle to enable the wind engine to run at a constant speed.
    The fact that this wind engine was invented by the owner of a brass foundry, with all the gear trains between the wind vane and the head of the tower being of the highest-quality brass and, therefore, small in scale, lay behind its success. Also, it was of prefabricated construction, so that fixed lengths of cast-iron pillar were delivered, complete with twelve treads of cast-iron staircase fixed to the outside and wrought-iron stays. The drive from the wind engine was taken down the inside of the pillar to pumps at ground level.
    Whilst the wind engines were being built for wealthy owners or communes, the work of the foundry continued. The three sons joined the family firm as partners and produced several steam-driven vehicles. These vehicles were the work of Amédée père and were l'Obéissante (1873); the Autobus (1880–3), of which some were built in Berlin under licence; the tram Bollée-Dalifol (1876); and the private car La Mancelle (1878). Another important line, in parallel with the pumping mechanism required for the wind engines, was the development of hydraulic rams, following the Montgolfier patent. In accordance with French practice, the firm was split three ways when Ernest-Sylvain Bollée père died. Amédée père inherited the car side of the business, but it is due to Amédée fils (1867– 1926) that the principal developments in car manufacture came into being. He developed the petrol-driven car after the impetus given by his grandfather, his father and his uncle Ernest-Sylvain fils. In 1887 he designed a four-stroke single-cylinder engine, although he also used engines designed by others such as Peugeot. He produced two luxurious saloon cars before putting Torpilleur on the road in 1898; this car competed in the Tour de France in 1899. Whilst designing other cars, Amédée's son Léon (1870–1913) developed the Voiturette, in 1896, and then began general manufacture of small cars on factory lines. The firm ceased work after a merger with the English firm of Morris in 1926. Auguste inherited the Eolienne or wind-engine side of the business; however, attracted to the artistic life, he sold out to Ernest Lebert in 1898 and settled in the Paris of the Impressionists. Lebert developed the wind-engine business and retained the basic "stator-rotor" form with a conventional lattice tower. He remained in Le Mans, carrying on the business of the manufacture of wind engines, pumps and hydraulic machinery, describing himself as a "Civil Engineer".
    The hydraulic-ram business fell to Ernest-Sylvain fils and continued to thrive from a solid base of design and production. The foundry in Le Mans is still there but, more importantly, the bell foundry of Dominique Bollée in Saint-Jean-de-Braye in Orléans is still at work casting bells in the old way.
    [br]
    Further Reading
    André Gaucheron and J.Kenneth Major, 1985, The Eolienne Bollée, The International Molinological Society.
    Cénomane (Le Mans), 11, 12 and 13 (1983 and 1984).
    KM

    Biographical history of technology > Bollée, Ernest-Sylvain

  • 22 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 23 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 24 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 25 Priestman, William Dent

    [br]
    b. 23 August 1847 Sutton, Hull, England
    d. 7 September 1936 Hull, England
    [br]
    English oil engine pioneer.
    [br]
    William was the second son and one of eleven children of Samuel Priestman, who had moved to Hull after retiring as a corn miller in Kirkstall, Leeds, and who in retirement had become a director of the North Eastern Railway Company. The family were strict Quakers, so William was sent to the Quaker School in Bootham, York. He left school at the age of 17 to start an engineering apprenticeship at the Humber Iron Works, but this company failed so the apprenticeship was continued with the North Eastern Railway, Gateshead. In 1869 he joined the hydraulics department of Sir William Armstrong \& Company, Newcastle upon Tyne, but after a year there his father financed him in business at a small, run down works, the Holderness Foundry, Hull. He was soon joined by his brother, Samuel, their main business being the manufacture of dredging equipment (grabs), cranes and winches. In the late 1870s William became interested in internal combustion engines. He took a sublicence to manufacture petrol engines to the patents of Eugène Etève of Paris from the British licensees, Moll and Dando. These engines operated in a similar manner to the non-compression gas engines of Lenoir. Failure to make the two-stroke version of this engine work satisfactorily forced him to pay royalties to Crossley Bros, the British licensees of the Otto four-stroke patents.
    Fear of the dangers of petrol as a fuel, reflected by the associated very high insurance premiums, led William to experiment with the use of lamp oil as an engine fuel. His first of many patents was for a vaporizer. This was in 1885, well before Ackroyd Stuart. What distinguished the Priestman engine was the provision of an air pump which pressurized the fuel tank, outlets at the top and bottom of which led to a fuel atomizer injecting continuously into a vaporizing chamber heated by the exhaust gases. A spring-loaded inlet valve connected the chamber to the atmosphere, with the inlet valve proper between the chamber and the working cylinder being camoperated. A plug valve in the fuel line and a butterfly valve at the inlet to the chamber were operated, via a linkage, by the speed governor; this is believed to be the first use of this method of control. It was found that vaporization was only partly achieved, the higher fractions of the fuel condensing on the cylinder walls. A virtue was made of this as it provided vital lubrication. A starting system had to be provided, this comprising a lamp for preheating the vaporizing chamber and a hand pump for pressurizing the fuel tank.
    Engines of 2–10 hp (1.5–7.5 kW) were exhibited to the press in 1886; of these, a vertical engine was installed in a tram car and one of the horizontals in a motor dray. In 1888, engines were shown publicly at the Royal Agricultural Show, while in 1890 two-cylinder vertical marine engines were introduced in sizes from 2 to 10 hp (1.5–7.5 kW), and later double-acting ones up to some 60 hp (45 kW). First, clutch and gearbox reversing was used, but reversing propellers were fitted later (Priestman patent of 1892). In the same year a factory was established in Philadelphia, USA, where engines in the range 5–20 hp (3.7–15 kW) were made. Construction was radically different from that of the previous ones, the bosses of the twin flywheels acting as crank discs with the main bearings on the outside.
    On independent test in 1892, a Priestman engine achieved a full-load brake thermal efficiency of some 14 per cent, a very creditable figure for a compression ratio limited to under 3:1 by detonation problems. However, efficiency at low loads fell off seriously owing to the throttle governing, and the engines were heavy, complex and expensive compared with the competition.
    Decline in sales of dredging equipment and bad debts forced the firm into insolvency in 1895 and receivers took over. A new company was formed, the brothers being excluded. However, they were able to attend board meetings, but to exert no influence. Engine activities ceased in about 1904 after over 1,000 engines had been made. It is probable that the Quaker ethics of the brothers were out of place in a business that was becoming increasingly cut-throat. William spent the rest of his long life serving others.
    [br]
    Further Reading
    C.Lyle Cummins, 1976, Internal Fire, Carnot Press.
    C.Lyle Cummins and J.D.Priestman, 1985, "William Dent Priestman, oil engine pioneer and inventor: his engine patents 1885–1901", Proceedings of the Institution of
    Mechanical Engineers 199:133.
    Anthony Harcombe, 1977, "Priestman's oil engine", Stationary Engine Magazine 42 (August).
    JB

    Biographical history of technology > Priestman, William Dent

  • 26 Diesel, Rudolph Christian Karl

    [br]
    b. 1858 Paris, France
    d. 1913 at sea, in the English Channel
    [br]
    German inventor of the Diesel or Compression Ignition engine.
    [br]
    A German born in Paris, he was educated in Augsburg and later in Munich, where he graduated first in his class. There he took some courses under Professor Karl von Linde, pioneer of mechanical refrigeration and an authority on thermodynamics, who pointed out the low efficiency of the steam engine. He went to work for the Linde Ice Machine Company as an engineer and later as Manager; there he conceived a new basic cycle and worked out its thermodynamics, which he published in 1893 as "The theory and construction of a rational heat motor". Compressing air adiabatically to one-sixteenth of its volume caused the temperature to rise to 1,000°F (540°C). Injected fuel would then ignite automatically without any electrical system. He obtained permission to use the laboratories of the Augsburg-Nuremburg Engine Works to build a single-cylinder prototype. On test it blew up, nearly killing Diesel. He proved his principle, however, and obtained financial support from the firm of Alfred Krupp. The design was refined until successful and in 1898 an engine was put on display in Munich with the result that many business people invested in Diesel and his engine and its worldwide production. Diesel made over a million dollars out of the invention. The heart of the engine is the fuel-injection pump, which operates at a pressure of c.500 psi (35 kg/cm). The first English patent for the engine was in 1892. The firms in Augsburg sent him abroad to sell his engine; he persuaded the French to adopt it for submarines, Germany having refused this. Diesel died in 1913 in mysterious circumstances, vanishing from the Harwich-Antwerp ferry.
    [br]
    Further Reading
    E.Diesel, 1937, Diesel, derMensch, das Werk, das Schicksal, Hamburg. J.S.Crowther, 1959, Six Great Engineers, London.
    John F.Sandfort, 1964, Heat Engines.
    IMcN

    Biographical history of technology > Diesel, Rudolph Christian Karl

  • 27 Ferguson, Peter Jack

    SUBJECT AREA: Ports and shipping
    [br]
    b. 21 July 1840 Partick, near Glasgow, Scotland
    d. 17 March 1911 Greenock, Scotland
    [br]
    Scottish marine engineer, pioneer of multiple-expansion steam reciprocating machinery.
    [br]
    Ferguson was educated at the High School of Glasgow before going on to serve his apprenticeship in the engineering department of Thomas Wingate's shipyard. This yard, situated at Whiteinch, then just outside the Glasgow boundary, built interesting and innovative craft and had a tradition of supplying marine engines that were at the leading edge of technology. On his appointment as Manager, Ferguson designed several new types of engines, and in 1872 he was responsible for the construction of what is claimed to be the world's first triple-expansion engine, predating the machinery on SS Propontis by two years and Napier's masterpiece, the SS Aberdeen, by nine years. In 1885, along with others, he founded the shipyard of Fleming and Ferguson, of Paisley, which in the subsequent eighty-five years was to build nearly seven hundred ships. From the outset they built advanced steam reciprocating machinery as well as dredging and other types of plant. The new shipyard was to benefit from Ferguson's experience and from the inspiration he had gained in Wingate's, where experimentation was the norm.
    [br]
    Further Reading
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuiding, Cambridge: PSL.
    FMW

    Biographical history of technology > Ferguson, Peter Jack

  • 28 Webb, Francis William

    [br]
    b. 21 May 1836 Tixall, Staffordshire, England
    d. 4 June 1906 Bournemouth, England
    [br]
    English locomotive engineer who pioneered compound locomotives in Britain and the use of steel for boilers.
    [br]
    Webb was a pupil at Crewe Works, London \& North Western Railway (LNWR), under F. Trevithick (son of Richard Trevithick), and was subsequently placed in charge of the works under Trevithick's successor, J.Ramsbottom. After a brief spell away from the LNWR, Webb returned in 1871 and was made Chief Mechanical Engineer, a post he held until his retirement in 1904.
    Webb's initial designs included the highly successful "Precedent" or "Jumbo" class 2– 4–0, from which the example Hardwicke (now preserved by the National Railway Museum, York) achieved an average speed of 67.2 mph (108.1 km/h) between Crewe and Carlisle in 1895. His 0–6–0 "coal engines" were straightforward and cheap and were built in large numbers. In 1879 Webb, having noted the introduction of compound locomotives in France by J.T.A. Mallet, rebuilt an existing 2–2–2 locomotive as a two-cylinder compound. Then in 1882, seeking fuel economy and the suppression of coupling rods, he produced a compound locomotive to his own design, the 2–2, 2–0 Experiment, in which two outside high-pressure cylinders drove the rear driving-wheels, and a single inside large-diameter low-pressure cylinder drove the front driving-wheels. This was followed by a large number of compound locomotives: three successive classes of 2–2, 2–0s; some 2–2, 2–2s; some 4–4–0s; and some 0–8–0s for goods traffic. Although these were capable of good performance, their overall value was controversial: Webb, who was notoriously autocratic, may never have been fully informed of their defects, and after his retirement most were quickly scrapped. Webb made many other innovations during his career, one of the most important being the construction of boilers from steel rather than wrought iron.
    [br]
    Further Reading
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 14 (describes Webb's career).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 2825–1925, London: The Locomotive Publishing Co., Chs 18 and 20 (includes a critique of Webb's compound locomotives).
    PJGR

    Biographical history of technology > Webb, Francis William

  • 29 Fairlie, Robert Francis

    [br]
    b. March 1831 Scotland
    d. 31 July 1885 Clapham, London, England
    [br]
    British engineer, designer of the double-bogie locomotive, advocate of narrow-gauge railways.
    [br]
    Fairlie worked on railways in Ireland and India, and established himself as a consulting engineer in London by the early 1860s. In 1864 he patented his design of locomotive: it was to be carried on two bogies and had a double boiler, the barrels extending in each direction from a central firebox. From smokeboxes at the outer ends, return tubes led to a single central chimney. At that time in British practice, locomotives of ever-increasing size were being carried on longer and longer rigid wheelbases, but often only one or two of their three or four pairs of wheels were powered. Bogies were little used and then only for carrying-wheels rather than driving-wheels: since their pivots were given no sideplay, they were of little value. Fairlie's design offered a powerful locomotive with a wheelbase which though long would be flexible; it would ride well and have all wheels driven and available for adhesion.
    The first five double Fairlie locomotives were built by James Cross \& Co. of St Helens during 1865–7. None was particularly successful: the single central chimney of the original design had been replaced by two chimneys, one at each end of the locomotive, but the single central firebox was retained, so that exhaust up one chimney tended to draw cold air down the other. In 1870 the next double Fairlie, Little Wonder, was built for the Festiniog Railway, on which C.E. Spooner was pioneering steam trains of very narrow gauge. The order had gone to George England, but the locomotive was completed by his successor in business, the Fairlie Engine \& Steam Carriage Company, in which Fairlie and George England's son were the principal partners. Little Wonder was given two inner fireboxes separated by a water space and proved outstandingly successful. The spectacle of this locomotive hauling immensely long trains up grade, through the Festiniog Railway's sinuous curves, was demonstrated before engineers from many parts of the world and had lasting effect. Fairlie himself became a great protagonist of narrow-gauge railways and influenced their construction in many countries.
    Towards the end of the 1860s, Fairlie was designing steam carriages or, as they would now be called, railcars, but only one was built before the death of George England Jr precipitated closure of the works in 1870. Fairlie's business became a design agency and his patent locomotives were built in large numbers under licence by many noted locomotive builders, for narrow, standard and broad gauges. Few operated in Britain, but many did in other lands; they were particularly successful in Mexico and Russia.
    Many Fairlie locomotives were fitted with the radial valve gear invented by Egide Walschaert; Fairlie's role in the universal adoption of this valve gear was instrumental, for he introduced it to Britain in 1877 and fitted it to locomotives for New Zealand, whence it eventually spread worldwide. Earlier, in 1869, the Great Southern \& Western Railway of Ireland had built in its works the first "single Fairlie", a 0–4–4 tank engine carried on two bogies but with only one of them powered. This type, too, became popular during the last part of the nineteenth century. In the USA it was built in quantity by William Mason of Mason Machine Works, Taunton, Massachusetts, in preference to the double-ended type.
    Double Fairlies may still be seen in operation on the Festiniog Railway; some of Fairlie's ideas were far ahead of their time, and modern diesel and electric locomotives are of the powered-bogie, double-ended type.
    [br]
    Bibliography
    1864, British patent no. 1,210 (Fairlie's master patent).
    1864, Locomotive Engines, What They Are and What They Ought to Be, London; reprinted 1969, Portmadoc: Festiniog Railway Co. (promoting his ideas for locomotives).
    1865, British patent no. 3,185 (single Fairlie).
    1867. British patent no. 3,221 (combined locomotive/carriage).
    1868. "Railways and their Management", Journal of the Society of Arts: 328. 1871. "On the Gauge for Railways of the Future", abstract in Report of the Fortieth
    Meeting of the British Association in 1870: 215. 1872. British patent no. 2,387 (taper boiler).
    1872, Railways or No Railways. "Narrow Gauge, Economy with Efficiency; or Broad Gauge, Costliness with Extravagance", London: Effingham Wilson; repr. 1990s Canton, Ohio: Railhead Publications (promoting the cause for narrow-gauge railways).
    Further Reading
    Fairlie and his patent locomotives are well described in: P.C.Dewhurst, 1962, "The Fairlie locomotive", Part 1, Transactions of the Newcomen Society 34; 1966, Part 2, Transactions 39.
    R.A.S.Abbott, 1970, The Fairlie Locomotive, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Fairlie, Robert Francis

  • 30 Allen, Horatio

    [br]
    b. 10 May 1802 Schenectady, New York, USA
    d. 1 January 1890 South Orange, New Jersey, USA
    [br]
    American engineer, pioneer of steam locomotives.
    [br]
    Allen was the Resident Engineer for construction of the Delaware \& Hudson Canal and in 1828 was instructed by J.B. Jervis to visit England to purchase locomotives for the canal's rail extension. He drove the locomotive Stourbridge Lion, built by J.U. Rastrick, on its first trial on 9 August 1829, but weak track prevented its regular use.
    Allen was present at the Rainhill Trials on the Liverpool \& Manchester Railway in October 1829. So was E.L.Miller, one of the promoters of the South Carolina Canal \& Rail Road Company, to which Allen was appointed Chief Engineer that autumn. Allen was influential in introducing locomotives to this railway, and the West Point Foundry built a locomotive for it to his design; it was the first locomotive built in the USA for sale. This locomotive, which bore some resemblance to Novelty, built for Rainhill by John Braithwaite and John Ericsson, was named Best Friend of Charleston. On Christmas Day 1830 it hauled the first scheduled steam train to run in America, carrying 141 passengers.
    In 1832 the West Point Foundry built four double-ended, articulated 2–2–0+0–2–2 locomotives to Horatio Allen's design for the South Carolina railroad. From each end of a central firebox extended two boiler barrels side by side with common smokeboxes and chimneys; wheels were mounted on swivelling sub-frames, one at each end, beneath these boilers. Allen's principal object was to produce a powerful locomotive with a light axle loading.
    Allen subsequently became a partner in Stillman, Allen \& Co. of New York, builders of marine engines, and in 1843 was President of the Erie Railroad.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Dictionary of American Biography.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    J.H.White Jr, 1994, "Old debts and new visions", in Common Roots—Separate Branches, London: Science Museum, 79–82.
    PJGR

    Biographical history of technology > Allen, Horatio

  • 31 Bury, Edward

    [br]
    b. 22 October 1794 Salford, Lancashire, England
    d. 25 November 1858 Scarborough, Yorkshire, England
    [br]
    English steam locomotive designer and builder.
    [br]
    Bury was the earliest engineer to build locomotives distinctively different from those developed by Robert Stephenson yet successful in mainline passenger service. A Liverpool sawmill owner, he set up as a locomotive manufacturer while the Liverpool \& Manchester Railway was under construction and, after experiments, completed the four-wheeled locomotive Liverpool in 1831. It included features that were to be typical of his designs: a firebox in the form of a vertical cylinder with a dome-shaped top and the front flattened to receive the tubes, and inside frames built up from wrought-iron bars. In 1838 Bury was appointed to supply and maintain the locomotives for the London \& Birmingham Railway (L \& BR), then under construction by Robert Stephenson, on the grounds that the latter should not also provide its locomotives. For several years the L \& BR used Bury locomotives exclusively, and they were also used on several other early main lines. Following export to the USA, their bar frames became an enduring feature of locomotive design in that country. Bury claimed, with justification, that his locomotives were economical in maintenance and fuel: the shape of the firebox promoted rapid circulation of water. His locomotives were well built, but some of their features precluded enlargement of the design to produce more powerful locomotives and within a few years they were outclassed.
    [br]
    Principal Honours and Distinctions
    FRS 1844.
    Bibliography
    1840, "On the locomotive engines of the London and Birmingham Railway", Transactions of the Institution of Civil Engineers 3 (4) (provides details of his locomotives and the thinking behind them).
    Further Reading
    C.F.Dendy Marshall, 1953, A History of'Railway Locomotives Down to the End of the Year 1831, London: The Locomotive Publishing Co. (describes Bury's early work).
    P.J.G.Ransom, 1990, The Victorian Railway and How It Evolved, London: Heinemann, pp. 167–8 and 174–6.
    PJGR

    Biographical history of technology > Bury, Edward

  • 32 Ericsson, John

    [br]
    b. 31 July 1803 Farnebo, Sweden
    d. 8 March 1899 New York, USA
    [br]
    Swedish (naturalized American 1848) engineer and inventor.
    [br]
    The son of a mine owner and inspector, Ericsson's first education was private and haphazard. War with Russia disrupted the mines and the father secured a position on the Gotha Canal, then under construction. He enrolled John, then aged 13, and another son as cadets in a corps of military engineers engaged on the canal. There John was given a sound education and training in the physical sciences and engineering. At the age of 17 he decided to enlist in the Army, and on receiving a commission he was drafted to cartographic survey duties. After some years he decided that a career outside the Army offered him the best opportunities, and in 1826 he moved to London to pursue a career of mechanical invention.
    Ericsson first developed a heat (external combustion) engine, which proved unsuccessful. Three years later he designed and constructed the steam locomotive Novelty, which he entered in the Rainhill locomotive trials on the new Liverpool \& Manchester Railway. The engine began by performing promisingly, but it later broke down and failed to complete the test runs. Later he devised a self-regulating lead (1835) and then, more important and successful, he invented the screw propeller, patented in 1835 and installed in his first screw-propelled ship of 1839. This work was carried out independently of Sir Francis Pettit Smith, who contemporaneously developed a four-bladed propeller that was adopted by the British Admiralty. Ericsson saw that with screw propulsion the engine could be below the waterline, a distinct advantage in warships. He crossed the Atlantic to interest the American government in his ideas and became a naturalized citizen in 1848. He pioneered the gun turret for mounting heavy guns on board ship. Ericsson came into his own during the American Civil War, with the construction of the epoch-making warship Monitor, a screw-propelled ironclad with gun turret. This vessel demonstrated its powers in a signal victory at Hampton Roads on 9 March 1862.
    Ericsson continued to design warships and torpedoes, pointing out to President Lincoln that success in war would now depend on technological rather than numerical superiority. Meanwhile he continued to pursue his interest in heat engines, and from 1870 to 1888 he spent much of his time and resources in pursuing research into alternative energy sources, such as solar power, gravitation and tidal forces.
    [br]
    Further Reading
    W.C.Church, 1891, Life of John Ericsson, 2 vols, London.
    LRD

    Biographical history of technology > Ericsson, John

  • 33 Garratt, Herbert William

    [br]
    b. 8 June 1864 London, England
    d. 25 September 1913 Richmond, Surrey, England
    [br]
    English engineer, inventor of the Beyer-Garratt articulated locomotive.
    [br]
    After apprenticeship at the North London Railway's locomotive works, Garratt had a varied career which included responsibility for the locomotive departments of several British-owned railways overseas. This gave him an insight into the problems of such lines: locomotives, which were often inadequate, had to be operated over lines with weak bridges, sharp curves and steep gradients. To overcome these problems, he designed an articulated locomotive in which the boiler, mounted on a girder frame, was sus pended between two power bogies. This enabled a wide firebox and large-diameter boiler barrel to be combined with large driving-wheels and good visibility. Coal and water containers were mounted directly upon the bogies to keep them steady. The locomotive was inherently stable on curves because the central line of the boiler between its pivots lay within the curve of the centre line of the track. Garratt applied for a patent for his locomotive in 1907 and manufacture was taken up by Beyer, Peacock \& Co. under licence: the type became known as the Beyer-Garratt. The earliest Beyer-Garratt locomotives were small, but subsequent examples were larger. Sadly, only twenty-six locomotives of the type had been built or were under construction when Garratt died in 1913. Subsequent classes came to include some of the largest and most powerful steam locomotives: they were widely used and particularly successful in Central and Southern Africa, where examples continue to give good service in the 1990s.
    [br]
    Bibliography
    H.W.Garratt took out nine British patents, of which the most important is: 1907, British patent no. 17,165, "Improvements in and Relating to Locomotive Engines".
    Further Reading
    R.L.Hills, 1979–80, "The origins of the Garratt locomotive", Transactions of the Newcomen Society 51:175 (a good description of Garratt's career and the construction of the earliest Beyer-Garratt locomotives).
    A.E.Durrant, 1981, Garratt Locomotives of the World, Newton Abbot: David \& Charles. L.Wiener, 1930, Articulated Locomotives, London: Constable \& Co.
    PJGR

    Biographical history of technology > Garratt, Herbert William

  • 34 Locke, Joseph

    [br]
    b. 9 August 1805 Attercliffe, Yorkshire, England
    d. 18 September 1860 Moffat, Scotland
    [br]
    English civil engineer who built many important early main-line railways.
    [br]
    Joseph Locke was the son of a colliery viewer who had known George Stephenson in Northumberland before moving to Yorkshire: Locke himself became a pupil of Stephenson in 1823. He worked with Robert Stephenson at Robert Stephenson \& Co.'s locomotive works and surveyed railways, including the Leeds \& Selby and the Canterbury \& Whitstable, for George Stephenson.
    When George Stephenson was appointed Chief Engineer for construction of the Liverpool \& Manchester Railway in 1826, the first resident engineer whom he appointed to work under him was Locke, who took a prominent part in promoting traction by locomotives rather than by fixed engines with cable haulage. The pupil eventually excelled the master and in 1835 Locke was appointed in place of Stephenson as Chief Engineer for construction of the Grand Junction Railway. He introduced double-headed rails carried in chairs on wooden sleepers, the prototype of the bullhead track that became standard on British railways for more than a century. By preparing the most detailed specifications, Locke was able to estimate the cost of the railway much more accurately than was usual at that time, and it was built at a cost close to the estimate; this made his name. He became Engineer to the London \& Southampton Railway and completed the Sheffield, Ashton-under-Lyme \& Manchester Railway, including the 3-mile (3.8 km) Woodhead Tunnel, which had been started by Charles Vignoles. He was subsequently responsible for many British main lines, including those of the companies that extended the West Coast Route northwards from Preston to Scotland. He was also Engineer to important early main lines in France, notably that from Paris to Rouen and its extension to Le Havre, and in Spain and Holland. In 1847 Locke was elected MP for Honiton.
    Locke appreciated early in his career that steam locomotives able to operate over gradients steeper than at first thought practicable would be developed. Overall his monument is not great individual works of engineering, such as the famous bridges of his close contemporaries Robert Stephenson and I.K. Brunel, but a series of lines built economically but soundly through rugged country without such works; for example, the line over Shap, Cumbria.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur, France. FRS. President, Institution of Civil Engineers 1858–9.
    Further Reading
    Obituary, 1861, Minutes of Proceedings of the Institution of Civil Engineers 20. L.T.C.Rolt, 1962, Great Engineers, London: G. Bell \& Sons, ch. 6.
    Industrial Heritage, 1991, Vol. 9(2):9.
    See also: Brassey, Thomas
    PJGR

    Biographical history of technology > Locke, Joseph

  • 35 Kettering, Charles Franklin

    [br]
    b. 29 August 1876 near Londonsville, Ohio, USA
    d. 25 November 1958 Dayton, Ohio, USA
    [br]
    American engineer and inventor.
    [br]
    Kettering gained degrees in mechanical and electrical engineering from Ohio State University. He was employed by the National Construction Register (NCR) of Dayton, Ohio, where he devised an electric motor for use in cash registers. He became Head of the Inventions Department of that company but left in 1909 to form, with the former Works Manager of NCR, Edward A. Deeds, the Dayton Engineering Laboratories (later called Delco), to develop improved lighting and ignition systems for automobiles. In the first two years of the new company he produced not only these but also the first self-starter, both of which were fitted to the Cadillac, America's leading luxury car. In 1914 he founded Dayton Metal Products and the Dayton Wright Airplane Company. Two years later Delco was bought by General Motors. In 1925 the independent research facilities of Delco were moved to Detroit and merged with General Motors' laboratories to form General Motors Research Corporation, of which Kettering was President and General Manager. (He had been Vice-President of General Motors since 1920.) In that position he headed investigations into methods of achieving maximum engine performance as well as into the nature of friction and combustion. Many other developments in the automobile field were made under his leadership, such as engine coolers, variable-speed transmissions, balancing machines, the two-way shock absorber, high-octane fuel, leaded petrol or gasoline, fast-drying lacquers, crank-case ventilators, chrome plating, and the high-compression automobile engine. Among his other activities were the establishment of the Charles Franklin Kettering Foundation for the Study of Chlorophyll and Photosynthesis at Antioch College, and the founding of the Sloan- Kettering Institute for Cancer Research in New York City. He sponsored the Fever Therapy Research Project at Miami Valley Hospital at Dayton, which developed the hypertherm, or artificial fever machine, for use in the treatment of disease. He resigned from General Motors in 1947.
    IMcN

    Biographical history of technology > Kettering, Charles Franklin

  • 36 Roberts, Richard

    [br]
    b. 22 April 1789 Carreghova, Llanymynech, Montgomeryshire, Wales
    d. 11 March 1864 London, England
    [br]
    Welsh mechanical engineer and inventor.
    [br]
    Richard Roberts was the son of a shoemaker and tollkeeper and received only an elementary education at the village school. At the age of 10 his interest in mechanics was stimulated when he was allowed by the Curate, the Revd Griffith Howell, to use his lathe and other tools. As a young man Roberts acquired a considerable local reputation for his mechanical skills, but these were exercised only in his spare time. For many years he worked in the local limestone quarries, until at the age of 20 he obtained employment as a pattern-maker in Staffordshire. In the next few years he worked as a mechanic in Liverpool, Manchester and Salford before moving in 1814 to London, where he obtained employment with Henry Maudslay. In 1816 he set up on his own account in Manchester. He soon established a reputation there for gear-cutting and other general engineering work, especially for the textile industry, and by 1821 he was employing about twelve men. He built machine tools mainly for his own use, including, in 1817, one of the first planing machines.
    One of his first inventions was a gas meter, but his first patent was obtained in 1822 for improvements in looms. His most important contribution to textile technology was his invention of the self-acting spinning mule, patented in 1825. The normal fourteen-year term of this patent was extended in 1839 by a further seven years. Between 1826 and 1828 Roberts paid several visits to Alsace, France, arranging cottonspinning machinery for a new factory at Mulhouse. By 1826 he had become a partner in the firm of Sharp Brothers, the company then becoming Sharp, Roberts \& Co. The firm continued to build textile machinery, and in the 1830s it built locomotive engines for the newly created railways and made one experimental steam-carriage for use on roads. The partnership was dissolved in 1843, the Sharps establishing a new works to continue locomotive building while Roberts retained the existing factory, known as the Globe Works, where he soon after took as partners R.G.Dobinson and Benjamin Fothergill (1802–79). This partnership was dissolved c. 1851, and Roberts continued in business on his own for a few years before moving to London as a consulting engineer.
    During the 1840s and 1850s Roberts produced many new inventions in a variety of fields, including machine tools, clocks and watches, textile machinery, pumps and ships. One of these was a machine controlled by a punched-card system similar to the Jacquard loom for punching rivet holes in plates. This was used in the construction of the Conway and Menai Straits tubular bridges. Roberts was granted twenty-six patents, many of which, before the Patent Law Amendment Act of 1852, covered more than one invention; there were still other inventions he did not patent. He made his contribution to the discussion which led up to the 1852 Act by publishing, in 1830 and 1833, pamphlets suggesting reform of the Patent Law.
    In the early 1820s Roberts helped to establish the Manchester Mechanics' Institute, and in 1823 he was elected a member of the Literary and Philosophical Society of Manchester. He frequently contributed to their proceedings and in 1861 he was made an Honorary Member. He was elected a Member of the Institution of Civil Engineers in 1838. From 1838 to 1843 he served as a councillor of the then-new Municipal Borough of Manchester. In his final years, without the assistance of business partners, Roberts suffered financial difficulties, and at the time of his death a fund for his aid was being raised.
    [br]
    Principal Honours and Distinctions
    Member, Institution of Civil Engineers 1838.
    Further Reading
    There is no full-length biography of Richard Roberts but the best account is H.W.Dickinson, 1945–7, "Richard Roberts, his life and inventions", Transactions of the Newcomen Society 25:123–37.
    W.H.Chaloner, 1968–9, "New light on Richard Roberts, textile engineer (1789–1864)", Transactions of the Newcomen Society 41:27–44.
    RTS

    Biographical history of technology > Roberts, Richard

См. также в других словарях:

  • Steam engine — A steam engine is a heat engine that performs mechanical work using steam as its working fluid. [ [http://www.britannica.com/EBchecked/topic/564472/steam engine steam engine Britannica Online Encyclopedia ] ] Steam engines have a long history,… …   Wikipedia

  • Steam shovel — A steam shovel is a large steam powered excavating machine designed for lifting and moving material such as rock and soil. It is the earliest type of power shovel.Origins and development The steam shovel was invented by William Otis, who received …   Wikipedia

  • Steam wagon — 1930 Foden C Type 5 ton overtype steam wagon …   Wikipedia

  • Steam whistle — A steam whistle is a device used to produce sound with the aid of live steam. Unlike a horn, the sounding mechanism of a whistle contains no moving parts (compare to train horn).The whistle consists of the following main parts, as seen on the… …   Wikipedia

  • Steam locomotive — A steam locomotive is a locomotive powered by steam. The term usually refers to its use on railways, but can also refer to a road locomotive such as a traction engine or steamroller.Steam locomotives dominated rail traction from the mid 19th… …   Wikipedia

  • Steam Railroading Institute — The Steam Railroading Institute is located at 405 South Washington Street, Owosso, Michigan. The Steam Railroading Institute is an organization dedicated to the preservation, restoration, and operation of historical railroad equipment and items.… …   Wikipedia

  • Steam diesel hybrid locomotive — This is a historical article. For more recent developments, see Hybrid train A steam diesel hybrid locomotive was a railway locomotive with a piston engine which could run on either steam from a boiler or diesel fuel. Examples were built in the… …   Wikipedia

  • Steam Gun Boat — The Steam Gun Boat (SGB) was a class of steam gun boats built during 1940 1942 for the Coastal Forces of the Royal Navy.They were developed in parallel with the Fairmile D motor torpedo boats ( Dog boats ), specifically as a response to the need… …   Wikipedia

  • Marine steam engine — Period cut away diagram of a triple expansion steam engine installation, circa 1918 A marine steam engine is a reciprocating steam engine that is used to power a ship or boat. Steam turbines and diesel engines largely replaced reciprocating steam …   Wikipedia

  • Boiler (steam generator) — Contents 1 Steam generator (component of prime mover) 2 Boiler types 2.1 Haycock and wagon top boilers …   Wikipedia

  • Railway engines (Thomas and Friends) — For the narrow gauge railway engines from Thomas and Friends, see Narrow gauge engines (Thomas and Friends). This article lists the standard gauge Railway Engine characters of the Television Series Thomas and Friends (formerly Thomas the Tank… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»