Перевод: со всех языков на все языки

со всех языков на все языки

25+years+in+canada

  • 81 Dow, Herbert Henry

    SUBJECT AREA: Metallurgy
    [br]
    b. 26 February 1866 Belleville, Ontario, Canada
    d. 15 October 1930 Rochester, Minnesota, USA
    [br]
    American industrial chemist, pioneer manufacturer of magnesium alloys.
    [br]
    Of New England ancestry, his family returned there soon after his birth and later moved to Cleveland, Ohio. In 1884, Dow entered the Case School of Applied Science, graduating in science four years later. His thesis dealt partly with the brines of Ohio, and he was persuaded to present a paper on brine to the meeting of the American Association for he Advancement of Science being held in Cleveland the same year. That entailed visits to collect samples of brines from various localities, and led to the observation that their composition varied, one having a higher lithium content while another was richer in bromine. This study of brines proved to be the basis for his career in industrial chemistry. In 1888 Dow was appointed Professor of Chemistry at the Homeopathic Hospital College in Cleveland, but he continued to work on brine, obtaining a patent in the same year for extracting bromine by blowing air through slightly electrolysed brine. He set up a small company to exploit the process, but it failed; the process was taken up and successfully worked by the Midland Chemical Company in Midland, Michigan. The electrolysis required a direct-current generator which, when it was installed in 1892, was probably the first of its kind in America. Dow next set up a company to produce chlorine by the electrolysis of brine. It moved to Midland in 1896, and the Dow Central Company purchased the Midland Chemical Company in 1900. Its main concern was the manufacture of bleaching powder, but the company continued to grow, based on Dow's steady development of chemical compounds that could be derived from brines. His search for further applications of chlorine led to the making of insecticides and an interest in horticulture. Meanwhile, his experience at the Homeopathic Hospital doubtless fired an interest in pharmaceuticals. One of the substances found in brine was magnesium chloride, and by 1918 magnesium metal was being produced on a small scale by electrolysis. An intensive study of its alloys followed, leading to the large-scale production of these important light-metal alloys, under the name of Dowmetals. Two other "firsts" achieved by the company were the synthetic indigo process and the production of the element iodine in the USA. The Dow company became one of the leading chemical manufacturers in the USA, and at the same time Dow played an active part in public life, serving on many public and education boards.
    [br]
    Principal Honours and Distinctions
    Society of Chemical Industry Perkin Medal 1930.
    Bibliography
    Dow was granted 65 patents for a wide range of chemical processes.
    Further Reading
    Obituary, 1930, Ind. Eng. Chem. (October).
    "The Dow Chemical Company", 1925, Ind. Eng. Chem. (September)
    LRD

    Biographical history of technology > Dow, Herbert Henry

  • 82 Fessenden, Reginald Aubrey

    [br]
    b. 6 October 1866 East Bolton, Quebec, Canada
    d. 22 July 1932 Bermuda
    [br]
    Canadian radio pioneer who made the first known broadcast of speech and music.
    [br]
    After initial education at Trinity College School, Port Hope, Ontario, Fessenden studied at Bishops University, Lennoxville, Quebec. When he graduated in 1885, he became Principal of the Whitney Institute in Bermuda, but he left the following year to go to New York in pursuit of his scientific interests. There he met Edison and eventually became Chief Chemist at the latter's Laboratory in Orange, New Jersey. In 1890 he moved to the Westinghouse Electric and Manufacturing Company, and two years later he returned to an academic career as Professor of Electrical Engineering, initially at Purdue University, Lafayette, Indiana, and then at the Western University of Pennsylvania, where he worked on wireless communication. From 1900 to 1902 he carried out experiments in wireless telegraphy at the US Weather Bureau, filing several patents relating to wire and liquid thermal detectors, or barretters. Following this he set up the National Electric Signalling Company; under his direction, Alexanderson and other engineers at the General Electric Company developed a high-frequency alternator that enabled him to build the first radiotelephony transmitter at Brant Rock, Massachusetts. This made its initial broadcast of speech and music on 24 December 1906, received by ship's wireless operators several hundred miles away. Soon after this the transmitter was successfully used for two-way wireless telegraphy communication with Scotland. Following this landmark event, Fessenden produced numerous inventions, including a radio compass, an acoustic depth-finder and several submarine signalling devices, a turboelectric drive for battleships and, notably, in 1912 the heterodyne principle used in radio receivers to convert signals to a lower (intermediate) frequency.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Medal of Honour 1921.
    Bibliography
    US patents relating to barretters include nos. 706,740, 706,742 and 706,744 (wire, 1902) and 731,029 (liquid, 1903). His invention of the heterodyne was filed as US patent no. 1,050,441 (1913).
    Further Reading
    Helen M.Fessenden, 1940, Fessenden. Builder of Tomorrow. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen. O.E.Dunlop, 1944, Radio's 100 Men of Science.
    KF

    Biographical history of technology > Fessenden, Reginald Aubrey

  • 83 McKay, Donald

    SUBJECT AREA: Ports and shipping
    [br]
    b. 4 September 1810 Shelburne, Nova Scotia, Canada
    d. 20 September 1880 Hamilton, Massachusetts, USA
    [br]
    American shipbuilder of Western Ocean packets and clippers.
    [br]
    Of Scottish stock, McKay was the son of a farmer and the grandson of a loyalist officer who had left the United States after the War of Independence. After some elementary shipwright training in Nova Scotia, McKay travelled to New York to apprentice to the great American shipbuilder Isaac Webb, then building some of the outstanding ships of the nineteenth century. At the age of 21 and a fully fledged journeyman, McKay again set out and worked in various shipyards before joining William Currier in 1841 to establish a yard in Newburyport, Massachusetts. He moved on again in 1843 to form another venture, the yard of McKay and Pickett in the same locality.
    In 1844 McKay came to know Enoch Train of Boston, then proprietor of a fleet of fast clipper ships on the US A-to-Liverpool run. He persuaded McKay to set out on his own and promised to support him with orders for ships. The partnership with Pickett was dissolved amicably and Donald McKay opened the yard in East Boston, from which some of the world's fastest ships were to be launched. McKay's natural ability as a shipwright had been enhanced by the study of mathematics and engineering drawing, something he had learned from his wife Albenia Boole, the daughter of another shipbuilder. He was not too proud to learn from other masters on the East Coast such as William H.Webb and John Willis Griffiths. The first ships from East Boston included the Washington Irvine of 1845 and the Anglo Saxon of 1846; they were well built and had especially comfortable emigrant accommodation. However, faster ships were to follow, almost all three-masted, fully rigged ships with very fine or "extreme" lines, including the Flying Cloud for the Californian gold rush of 1851, the four-masted barque Great Republic; then, c. 1854, the Lightning was ordered by James Baines of Liverpool for his Black Ball Line. The Lightning holds to this day the speed record for a square-rigged ship's daily run. As the years passed the shipbuilding scene changed, and while McKay's did build some iron ships for the US Navy, they became much less profitable and in 1875 the yard closed down, with McKay retiring to take up farming.
    [br]
    Further Reading
    Frank C.Bowen, 1952, "Shipbuilders of other days, Donald McKay of Boston",
    Shipbuilding and Shipping Record (18 September).
    FMW

    Biographical history of technology > McKay, Donald

  • 84 Schawlow, Arthur Leonard

    [br]
    b. 5 May 1921 Mount Vernon, New York, USA
    [br]
    American physicist involved in laser-spectroscopy research.
    [br]
    When Arthur L.Schawlow was 3 years old his family moved to Canada: it was in Toronto that he received his education, graduating from the University of Toronto with a BA in physics in 1941. He was awarded an MA in 1942, taught classes for military personnel at the University until 1944 and worked for a year on radar equipment. He returned to the University of Toronto in 1945 to carry out research on optical spectroscopy and received his PhD in 1949. From 1949 to 1951 he held a postgraduate fellowship at Columbia University, where he worked with Charles H. Townes on microwave spectroscopy. From 1951 to 1961 he was a research physicist at the Bell Telephone Laboratories, working mainly on superconductivity, but he maintained his association with Townes, who had pioneered the maser (an acronym of microwave amplification by stimulated emission of radiation). In a paper published in Physical Review in December 1958, Townes and Schawlow suggested the possibility of a development into optical frequencies or an optical maser, later known as a laser (an acronym of light amplification by stimulated emission of radiation). In 1960 the first such device was made by Theodore H. Maiman. In 1960 Schawlow returned to Columbia University as a visiting professor and in the following year was appointed Professor of Physics at Stanford University, where he continued his researches in laser spectroscopy. He is a member of the National Academy of Sciences, the American Physical Society, the Optical Society of America and the Institute of Electrical and Electronic Engineers.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1981. Franklin Institute Stuart Ballantine Medal 1962. Institute of Physics of London Thomas Young Medal and Prize 1963. Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Prize 1964. Optical Society of America Frederick Ives Medal 1976. Honorary degrees from the State University of Ghent, the University of Bradford and the University of Toronto.
    Bibliography
    Schawlow is the author of many scientific papers and, with Charles H.Townes, of
    Microwave Spectroscopy (1955).
    Further Reading
    T.Wasson (ed.), 1987, Nobel Prize Winners, New York, pp. 930–3 (contains a short biography).
    RTS

    Biographical history of technology > Schawlow, Arthur Leonard

  • 85 Wallis, Sir Barnes Neville

    [br]
    b. 26 September 1887 Ripley, Derbyshire, England
    d. 30 October 1979 Leatherhead, Surrey, England
    [br]
    English aeronautical designer and inventor.
    [br]
    Wallis was apprenticed first at Thames Engineering Works, and then, in 1908, at John Samuel White's shipyard at Cowes. In 1913, the Government, spurred on by the accelerating development of the German Zeppelins (see Zeppelin, Ferdinand von), ordered an airship from Vickers; Wallis was invited to join the design team. Thus began his long association with aeronautical design and with Vickers. This airship, and the R80 that followed it, were successfully completed, but the military lost interest in them.
    In 1924 the Government initiated a programme for the construction of two airships to settle once and for all their viability for long-dis-tance air travel. The R101 was designed by a Government-sponsored team, but the R100 was designed by Wallis working for a subsidiary of Vickers. The R100 took off on 29 July 1930 for a successful round trip to Canada, but the R101 crashed on its first flight on 4 October, killing many of its distinguished passengers. The shock of this disaster brought airship development in Britain to an abrupt end and forced Wallis to direct his attention to aircraft.
    In aircraft design, Wallis is known for his use of geodesic construction, which combined lightness with strength. It was applied first to the single-engined "Wellesley" and then the twin-en-gined "Wellington" bomber, which first flew in 1936. With successive modifications, it became the workhorse of RAF Bomber Command during the Second World War until the autumn of 1943, when it was replaced by four-engined machines. In other areas, it remained in service until the end of the war and, in all, no fewer than 11,461 were built.
    Wallis is best known for his work on bomb design, first the bouncing bomb that was used to breach the Möhne and Eder dams in the Ruhr district of Germany in 1943, an exploit immortalized in the film Dambusters. Encouraged by this success, the authorities then allowed Wallis to realize an idea he had long urged, that of heavy, penetration bombs. In the closing stages of the war, Tallboy, of 12,000 lb (5,400 kg), and the 10-ton Grand Slam were used to devastating effect.
    After the Second World War, Wallis returned to aeronautical design and was given his own department at Vickers to promote his ideas, principally on variable-geometry or swing-wing aircraft. Over the next thirteen years he battled towards the prototype stage of this revolutionary concept. That never came, however; changing conditions and requirements and increasing costs led to the abandonment of the project. Bit-terly disappointed, Wallis continued his researches into high-speed aircraft until his retirement from Vickers (by then the British Aircraft Corporation), in 1971.
    [br]
    Principal Honours and Distinctions
    Knighted 1968. FRS 1945.
    Further Reading
    J.Morpurgo, 1972, Barnes Wallis: A Biography, London: Longman (a readable account, rather biased in Wallis's favour).
    C.J.Heap, 1987, The Papers of Sir Barnes Wallis (1887–1979) in the Science Museum Library, London: Science Museum; with a biographical introd. by L.R.Day.
    LRD

    Biographical history of technology > Wallis, Sir Barnes Neville

  • 86 رائد

    رائِد \ pioneer: one of the first settlers in a new country; one of the first men to study a new subject or to make a new kind of machine, etc.: the pioneers of Canada; a pioneer photographer of 100 years ago.

    Arabic-English dictionary > رائد

  • 87 مبتكر

    مُبْتَكِر \ pioneer: one of the first settlers in a new country; one of the first men to study a new subject or to make a new kind of machine, etc.: the pioneers of Canada; a pioneer photographer of 100 years ago. \ مُبْتَلّ \ soggy: (of ground or food) heavy and wet: a soggy field; soggy bread. wet: not dry; having liquid on the surface, or inside the material: wet hands; wet cloth.

    Arabic-English dictionary > مبتكر

См. также в других словарях:

  • Canada at the Summer Olympics — Canada has competed at 23 Summer Olympic Games, missing only the inaugural 1896 Summer Olympics and the boycotted 1980 Summer Olympics. The nation made its debut at the 1900 Summer Olympics. Canada competes under the IOC country code CAN.Canada… …   Wikipedia

  • cañada — /keuhn yah deuh, yad euh/, n. Chiefly Western U.S. 1. a dry riverbed. 2. a small, deep canyon. [1840 50; < Sp, equiv. to cañ(a) CANE + ada n. suffix] * * * Canada Introduction Canada Background: A land of vast distances and rich natural resources …   Universalium

  • Canada — /kan euh deuh/, n. a nation in N North America: a member of the Commonwealth of Nations. 29,123,194; 3,690,410 sq. mi. (9,558,160 sq. km). Cap.: Ottawa. * * * Canada Introduction Canada Background: A land of vast distances and rich natural… …   Universalium

  • Canada under British rule (1763–1867) — History of Canada This article is part of a series Timeline …   Wikipedia

  • Canada Post millennium stamps — Due to popular demand, Canada Post released the 68 specially designed stamps as a series of 17 Millennium souvenir sheets, each depicting four different stamps, starting December 17, 1999 through to March 17, 2000.December 1999This first series… …   Wikipedia

  • Canada Games — The Canada Games is a high level multi sport event with a National Artists Program held every two years in Canada, alternating between the Canada Winter Games and the Canada Summer Games. Athletes are strictly amateur only, and represent their… …   Wikipedia

  • Canada's Walk of Fame — Infobox generic style0 =class= infobox style= width:22em; font size:90%; color =red name =Canada s Walk of Fame sub0 = img1 = Canadaswalkoffame.gif width1 = 200px cap1 = lbl1 =Established row1 =1998 lbl2 =Location row2 =Toronto lbl3 =Founder row3 …   Wikipedia

  • Canada national cricket team — Infobox non test cricket team country name = Canada image caption = Flag of Canada icc member year = 1968 icc status = Associate with ODI status icc region = Americas current captain = Ashish Bagai WCL division = One regional tournament = ICC… …   Wikipedia

  • Canada Company —    Founded in London, 1824, by John Gait, as a colonizing scheme. A large tract of land was purchased in what is now western Ontario. Dunlop, Talbot, Strickland, and other pioneers of Upper Canada were associated with Gait in the enterprise. The… …   The makers of Canada

  • Canada at the 1976 Summer Olympics — Infobox Olympics Canada games=1976 Summer competitors= sports= flagbearer=Abby Hoffman gold=0 silver=5 bronze=6 total=11Canada was the host nation for the 1976 Summer Olympics in Montreal.MedalistsCanada finished in 27th position in the final… …   Wikipedia

  • CANADA — CANADA, country in northern half of North America and a member of the British Commonwealth. At the beginning of the 21st century, its population of approximately 370,000 Jews made it the world s fourth largest Jewish community after the United… …   Encyclopedia of Judaism

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»