Перевод: с русского на все языки

со всех языков на русский

эффективность+эксплуатации

  • 21 избыточная информация

    1. superfluous information
    2. redundant information

     

    избыточная информация

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    избыточная информация
    Во-первых, та информация, которая не нужна для принятия решения. Она бывает двух видов: сведения, не имеющие отношения к содержанию принимаемых решений, и сведения, поступающие в объеме, недоступном для своевременной обработки органом управления. При проектировании автоматизированных систем управления необходимо выявлять И.и. и избавляться от нее, что повысит эффективность эксплуатации компьютерной техники и качество управления. Однако, во-вторых, И.и. — важное средство борьбы с помехами при передаче сообщений. Поэтому в ряде случаев в информационных системах вводится искусственная избыточность информации (по сравнению с необходимым количеством символов для передачи сообщений): например, в код добавляются контрольные разряды, в сообщение включаются дополнительные контрольные цифры. По-видимому, призывы к «устранению», «ликвидации» И.и. в АСУ, часто появляющиеся в литературе, чрезмерно категоричны. Следует говорить о некоем оптимальном уровне избыточности.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > избыточная информация

  • 22 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 23 широковещательное объектно-ориентированное сообщение о событии на подстанции

    1. GOOSE
    2. generic object oriented substation event

     

    GOOSE-сообщение
    -

    [Интент]

    широковещательное объектно-ориентированное сообщение о событии на подстанции

    Широковещательный высокоскоростной внеочередной отчет, содержащий статус каждого из входов, устройств пуска, элементов выхода и реле, реальных и виртуальных.
    Примечание. Этот отчет выдается многократно последовательно, как правило, сразу после первого отчета с интервалами 2, 4, 8,…, 60000 мс. Значение задержки первого повторения является конфигурируемым. Такой отчет обеспечивает выдачу высокоскоростных сигналов отключения с высокой вероятностью доставки.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    общие объектно-ориентированные события на подстанции
    -
    [ ГОСТ Р МЭК 61850-7-2-2009]

    GOOSE
    Generic Object Oriented Substation Event
    (стандарт МЭК 61850-8-1)
    Протокол передачи данных о событиях на подстанции.
    Один из трех протоколов передачи данных, предлагаемых к использованию в МЭК 61850.
    Фактически данный протокол служит для замены медных кабельных связей, предназначенных для передачи дискретных сигналов между устройствами.
    [ Цифровые подстанции. Проблемы внедрения устройств РЗА]

    EN

    generic object oriented substation event
    on the occurrence of any change of state, an IED will multicast a high speed, binary object, Generic Object Oriented Substation Event (GOOSE) report by exception, typically containing the double command state of each of its status inputs, starters, output elements and relays, actual and virtual.

    This report is re-issued sequentially, typically after the first report, again at intervals of 2, 4, 8…60000 ms. (The first repetition delay value is an open value it may be either shorter or longer).

    A GOOSE report enables high speed trip signals to be issued with a high probability of delivery
    [IEC 61850-2, ed. 1.0 (2003-08)]

    До недавнего времени для передачи дискретных сигналов между терминалами релейной защиты и автоматики (РЗА) использовались дискретные входы и выходные реле. Передача сигнала при этом осуществляется подачей оперативного напряжения посредством замыкания выходного реле одного терминала на дискретный вход другого терминала (далее такой способ передачи будем называть традиционным).
    Такой способ передачи информации имеет следующие недостатки:

    • необходимо большое количество контрольных кабелей, проложенных между шкафами РЗА,
    • терминалы РЗА должны иметь большое количество дискретных входов и выходных реле,
    • количество передаваемых сигналов ограничивается определенным количеством дискретных входов и выходных реле,
    • отсутствие контроля связи между терминалами РЗА,
    • возможность ложного срабатывания дискретного входа при замыкании на землю в цепи передачи сигнала.

    Информационные технологии уже давно предоставляли возможность для передачи информации между микропроцессорными терминалами по цифровой сети. Разработанный недавно стандарт МЭК 61850 предоставил такую возможность для передачи сигналов между терминалами РЗА.
    Стандарт МЭК 61850 использует для передачи данных сеть Ethernet. Внутри стандарта МЭК 61850 предусмотрен такой механизм, как GOOSE-сообщения, которые и используются для передачи сообщений между терминалами РЗА.
    Принцип передачи GOOSE-сообщений показан на рис. 1.

    5683

    Устройство-отправитель передает по сети Ethernet информацию в широковещательном диапазоне.
    В сообщении присутствует адрес отправителя и адреса, по которым осуществляется его передача, а также значение сигнала (например «0» или «1»).
    Устройство-получатель получит сообщение, а все остальные устройства его проигнорируют.
    Поскольку передача GOOSE-сообщений осуществляется в широковещательном диапазоне, т.е. нескольким адресатам, подтверждение факта получения адресатами сообщения отсутствует. По этой причине передача GOOSE-сообщений в установившемся режиме производится с определенной периодичностью.
    При наступлении нового события в системе (например, КЗ и, как следствие, пуска измерительных органов защиты) начинается спонтанная передача сообщения через увеличивающиеся интервалы времени (например, 1 мс, 2 мс, 4 мс и т.д.). Интервалы времени между передаваемыми сообщениями увеличиваются, пока не будет достигнуто предельное значение, определяемое пользователем (например, 50 мс). Далее, до момента наступления нового события в системе, передача будет осуществляется именно с таким периодом. Указанное проиллюстрировано на рис. 2.

    5684

    Технология повторной передачи не только гарантирует получение адресатом сообщения, но также обеспечивает контроль исправности линии связи и устройств – любые неисправности будут обнаружены по истечении максимального периода передачи GOOSE-сообщений (с точки зрения эксплуатации практически мгновенно). В случае передачи сигналов традиционным образом неисправность выявляется либо в процессе плановой проверки устройств, либо в случае неправильной работы системы РЗА.

    Еще одной особенностью передачи GOOSE-сообщений является использование функций установки приоритетности передачи телеграмм (priority tagging) стандарта Ethernet IEEE 802.3u, которые не используются в других протоколах, в том числе уровня TCP/IP. То есть GOOSE-сообщения идут в обход «нормальных» телеграмм с более высоким приоритетом (см. рис. 3).

    5685


    Однако стандарт МЭК 61850 декларирует передачу не только дискретной информации между терминалами РЗА, но и аналоговой. Это означает, что в будущем будет иметься возможность передачи аналоговой информации от ТТ и ТН по цифровым каналам связи. На данный момент готовых решений по передаче аналоговой информации для целей РЗА (в рамках стандарта МЭК 61850) ни один из производителей не предоставляет.
    Для того чтобы использовать GOOSE-сообщения для передачи дискретных сигналов между терминалами РЗА необходима достаточная надежность и быстродействие передачи GOOSE-сообщений. Надежность передачи GOOSE-сообщений обеспечивается следующим:

    • Протокол МЭК 61850 использует Ethernet-сеть, за счет этого выход из строя верхнего уровня АСУ ТП и любого из устройств РЗА не отражается на передаче GOOSE-сообщений оставшихся в работе устройств,
    • Терминалы РЗА имеют два независимых Ethernet-порта, при выходе одного из них из строя второй его полностью заменяет,
    • Сетевые коммутаторы, к которым подключаются устройства РЗА, соединяются в два независимых «кольца»,
    • Разные порты одного терминала РЗА подключаются к разным сетевым коммутаторам, подключенным к разным «кольцам»,
    • Каждый сетевой коммутатор имеет дублированное питание от разных источников,
    • Во всех устройствах РЗА осуществляется постоянный контроль возможности прохождения каждого сигнала. Это позволяет автоматически определить не только отказы цифровой связи, но и ошибки параметрирования терминалов.

    5686

    На рис. 4 изображен пример структурной схемы сети Ethernet (100 Мбит/c) подстанции. Отказ в передаче GOOSE-сообщения от одного устройства защиты другому возможен в результате совпадения как минимум двух событий. Например, одновременный отказ двух коммутаторов, к которым подключено одно устройство или одновременный отказ обоих портов одного устройства. Могут быть и более сложные отказы, связанные с одновременным наложением большего количества событий. Таким образом, единичные отказы оборудования не могут привести к отказу передачи GOOSEсообщений. Дополнительно увеличивает надежность то обстоятельство, что даже в случае отказа в передаче GOOSE-сообщения, устройство, принимающее сигнал, выдаст сигнал неисправности, и персонал примет необходимые меры для ее устранения.

    Быстродействие.
    В соответствии с требованиями стандарта МЭК 61850 передача GOOSE-сообщений должна осуществляться со временем не более 4 мс (для сообщений, требующих быстрой передачи, например, для передачи сигналов срабатывания защит, пусков АПВ и УРОВ и т.п.). Вообще говоря, время передачи зависит от топологии сети, количества устройств в ней, загрузки сети и загрузки вычислительных ресурсов терминалов РЗА, версии операционной системы терминала, коммуникационного модуля, типа центрального процессора терминала, количества коммутаторов и некоторых других аспектов. Поэтому время передачи GOOSE-сообщений должно быть подтверждено опытом эксплуатации.
    Используя для передачи дискретных сигналов GOOSE-сообщения необходимо обращать внимание на то обстоятельство, что при использовании аппаратуры некоторых производителей, в случае отказа линии связи, значение передаваемого сигнала может оставаться таким, каким оно было получено в момент приема последнего сообщения.
    Однако при отказе связи бывают случаи, когда сигнал должен принимать определенное значение. Например, значение сигнала блокировки МТЗ ввода 6–10 кВ в логике ЛЗШ при отказе связи целесообразно установить в значение «1», чтобы при КЗ на отходящем присоединении не произошло ложного отключения ввода. Так, к примеру, при проектировании терминалов фирмы Siemens изменить значение сигнала при отказе связи возможно с помощью свободно-программируемой CFCлогики (см. рис. 5).

    5687

    К CFC-блоку SI_GET_STATUS подводится принимаемый сигнал, на выходе блока мы можем получить значение сигнала «Value» и его статус «NV». Если в течение определенного времени не поступит сообщение со значением сигнала, статус сигнала «NV» примет значение «1». Далее статус сигнала и значение сигнала подводятся к элементу «ИЛИ», на выходе которого будет получено значение сигнала при исправности линии связи или «1» при нарушении исправности линии связи. Изменив логику, можно установить значение сигнала равным «0» при обрыве связи.
    Использование GOOSE-сообщений предъявляет специальные требования к наладке и эксплуатации устройств РЗА. Во многом процесс наладки становится проще, однако при выводе устройства из работы необходимо следить не только за выводом традиционных цепей, но и не забывать отключать передачу GOOSE-сообщений.
    При изменении параметрирования одного устройства РЗА необходимо производить загрузку файла параметров во все устройства, с которыми оно было связано.
    В нашей стране имеется опыт внедрения и эксплуатации систем РЗА с передачей дискретных сигналов с использованием GOOSE-сообщений. На первых объектах GOOSE-сообщения использовались ограниченно (ПС 500 кВ «Алюминиевая»).
    На ПС 500 кВ «Воронежская» GOOSEсообщения использовались для передачи сигналов пуска УРОВ, пуска АПВ, запрета АПВ, действия УРОВ на отключение смежного элемента, положения коммутационных аппаратов, наличия/отсутствия напряжения, сигналы ЛЗШ, АВР и т.п. Кроме того, на ОРУ 500 кВ и 110 кВ ПС «Воронежская» были установлены полевые терминалы, в которые собиралась информация с коммутационного оборудования и другая дискретная информация с ОРУ (рис. 6). Далее информация с помощью GOOSE-сообщений передавалась в терминалы РЗА, установленные в ОПУ подстанции (рис. 7, 8).
    GOOSE-сообщения также были использованы при проектировании уже введенных в эксплуатацию ПС 500 кВ «Бескудниково», ПС 750 кВ «Белый Раст», ПС 330кВ «Княжегубская», ПС 220 кВ «Образцово», ПС 330 кВ «Ржевская». Эта технология применяется и при проектировании строящихся и модернизируемых подстанций ПС 500 кВ «Чагино», ПС 330кВ «Восточная», ПС 330 кВ «Южная», ПС 330 кВ «Центральная», ПС
    330 кВ «Завод Ильич» и многих других.
    Основные преимущества использования GOOSE-сообщений:

    • позволяет снизить количество кабелей вторичной коммутации на ПС;
    • обеспечивает лучшую помехозащищенность канала связи;
    • позволяет снизить время монтажных и пусконаладочных работ;
    • исключает проблему излишнего срабатывания дискретных входов терминалов из-за замыканий на землю в цепях оперативного постоянного тока;
    • убирает зависимость количества передаваемых сигналов от количества дискретных входов и выходных реле терминалов;
    • обеспечивает возможность реконструкции и изменения связей между устройствами РЗА без прокладки дополнительных кабельных связей и повторного монтажа в шкафах;
    • позволяет использовать МП терминалы РЗА с меньшим количеством входов и выходов (уменьшение габаритов и стоимости устройства);
    • позволяет контролировать возможность прохождения сигнала (увеличивается надежность).

    Безусловно, для окончательных выводов должен появиться достаточный опыт эксплуатации. В настоящее время большинство производителей устройств РЗА заявили о возможности использования GOOSEсообщений. Стандарт МЭК 61850 определяет передачу GOOSE-сообщений между терминалами разных производителей. Использование GOOSE-сообщений для передачи дискретных сигналов – это качественный скачок в развитии систем РЗА. С развитием стандарта МЭК 61850, переходом на Ethernet 1 Гбит/сек, с появлением новых цифровых ТТ и ТН, новых выключателей с возможностью подключения их блока управления к шине процесса МЭК 61850, эффективность использования GOOSE-сообщений намного увеличится. Облик будущих подстанций представляется с минимальным количеством контрольных кабелей, с передачей всех сообщений между устройствами РЗА, ТТ, ТН, коммутационными аппаратами через цифровую сеть. Устройства РЗА будут иметь минимальное количество выходных реле и дискретных входов

    [ http://romvchvlcomm.pbworks.com/f/goosepaper1.pdf]


    В стандарте определены два способа передачи данных напрямую между устройствами: GOOSE и GSSE. Это тоже пример наличия двух способов для реализации одной функции. GOOSE - более новый способ передачи сообщений, разработан специально для МЭК 61850. Способ передачи сообщений GSSE ранее присутствовал в стандарте UCA 2.0, являющимся одним из предшественников МЭК 61850. По сравнению с GSSE, GOOSE имеет более простой формат (Ethernet против стека OSI протоколов) и возможность передачи различных типов данных. Вероятно, способ GSSE включили в МЭК 61850 для того, чтобы производители, имеющие в своих устройствах протокол UCA 2.0, могли сразу декларировать соответствие МЭК 61850. В настоящее время все производители используют только GOOSE для передачи сообщений между устройствами.
    Для выбора списка передаваемых данных в GOOSE, как и в отчѐтах, используются наборы данных. Однако тут требования уже другие. Время обработки GOOSE-сообщений должно быть минимальным, поэтому логично передавать наиболее простые типы данных. Обычно передаѐтся само значение сигнала и в некоторых случаях добавляется поле качества. Метка времени обычно включается в набор данных.
    ...
    В устройствах серии БЭ2704 в передаваемых GOOSE-сообщениях содержатся данные типа boolean. Приниматься могут данные типа boolean, dbpos, integer.
    Устоявшаяся тенденция существует только для передачи дискретной информации. Аналоговые данные пока передают немногие производители, и поэтому устоявшаяся тенденция в передаче аналоговой информации в данный момент отсутствует.
    [ Источник]


     

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > широковещательное объектно-ориентированное сообщение о событии на подстанции

  • 24 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 25 нерациональный метод ограничения выбросов вредных веществ

    1. mass
    2. HTCART

    2.1.32 нерациональный метод ограничения выбросов вредных веществ: Любой метод или способ, который при эксплуатации ТС в нормальных условиях уменьшает эффективность системы ограничения выбросов вредных веществ до уровня ниже предполагаемого при использовании предписанных методов определения концентрации выбросов вредных веществ.

    2.2 В настоящем стандарте применены следующие обозначения и сокращения:

    2.2.1 Обозначения и единицы измерения показателей, определяемых в испытаниях

    Обозначение

    Наименование показателя

    показателя

    единицы измерения показателя

    АР

    м2

    Площадь поперечного сечения изокинетического пробоотборника

    АТ

    м2

    Площадь поперечного сечения выпускной трубы

    СЕЕ

    -

    Эффективность по этану

    СЕМ

    -

    Эффективность по метану

    С1

    -

    Углеводороды, эквивалентные углероду С1

    сопс

    млн-1 или объемная доля, %

    Концентрация. Указанное обозначение используется в качестве нижнего индекса

    D0

    м3

    Отрезок, отсекаемый на координатной оси калибровочной функции PDP

    DF

    -

    Коэффициент разбавления

    D

    -

    Константа функции Бесселя

    Е

    -

    Константа функции Бесселя

    EZ

    г/(кВт×ч)

    Интерполированный выброс NOx в контрольной точке

    fa

    -

    Лабораторный атмосферный коэффициент

    fc

    с-1

    Частота, отсекаемая фильтром Бесселя

    FFH

    -

    Удельный коэффициент топлива для расчета влажного состояния по сухому состоянию

    Fs

    -

    Стехиометрический коэффициент

    GAIRV

    кг/ч

    Массовый расход воздуха на впуске во влажном состоянии

    GAIRD

    кг/ч

    Массовый расход воздуха на впуске в сухом состоянии

    GDILW

    кг/ч

    Массовый расход разбавленного воздуха во влажном состоянии

    GEDFW

    кг/ч

    Эквивалентный массовый расход разбавленных отработавших газов во влажном состоянии

    GEXHW

    кг/ч

    Массовый расход отработавших газов во влажном состоянии

    GFUEL

    кг/ч

    Массовый расход топлива

    GTOTW

    кг/ч

    Массовый расход разбавленных отработавших газов во влажном состоянии

    H

    мДж/м3

    Теплотворная способность

    HREF

    г/кг

    Исходная абсолютная влажность (10,71 г/кг)

    Ha

    г/кг

    Абсолютная влажность воздуха на впуске

    Hd

    г/кг

    Абсолютная влажность разбавляющего воздуха

    HTCART

    моль/моль

    Водородно-углеродное число

    i

    -

    Нижний индекс, обозначающий i-й режим

    К

    -

    Константа Бесселя

    k

    м-1

    Коэффициент светопоглощения

    KH, D

    -

    Поправочный коэффициент на влажность для NОx дизельного двигателя

    KH, G

    -

    Поправочный коэффициент на влажность для NOx газового двигателя

    Kv

    Калибровочная функция трубки Вентури CFV

    KW, a

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для воздуха на впуске

    KW, d

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавляющего воздуха

    KW, e

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для разбавленных отработавших газов

    KW, r

    -

    Поправочный коэффициент при переходе из сухого состояния во влажное для неразбавленных отработавших газов

    L

    %

    Крутящий момент в процентах максимального крутящего момента испытуемого двигателя

    La

    м

    Эффективная база дымомера

    т

    Коэффициент наклона калибровочной функции насоса PDP

    mass

    г/ч или г

    Массовый расход (интенсивность потока). Указанное обозначение используется в качестве нижнего индекса

    MDIL

    кг

    Масса пробы разбавляющего воздуха, прошедшей через фильтры для отбора проб вредных частиц

    Md

    мг

    Уловленная масса проб вредных частиц в разбавляющем воздухе

    Мf

    мг

    Уловленная масса проб вредных частиц

    Мf, p

    мг

    Масса проб вредных частиц, уловленная на основном фильтре

    Мf, b

    мг

    Масса проб вредных частиц, уловленная на вспомогательном фильтре

    MSAM

    кг

    Масса пробы разбавленных отработавших газов, прошедших через фильтры для отбора вредных частиц

    MSEK

    кг

    Масса вторичного разбавляющего воздуха

    MTOTW

    кг

    Общая масса пробы CVS за цикл во влажном состоянии

    MTOTW, i

    кг

    Мгновенная масса пробы CVS во влажном состоянии

    N

    %

    Дымность

    NP

    -

    Общее число оборотов насоса PDP за цикл

    NP, i

    -

    Число оборотов насоса PDP в течение определенного промежутка времени

    n

    мин-1

    Частота вращения двигателя

    np

    с-1

    Частота вращения насоса PDP

    nhi

    мин-1

    Высокая частота вращения двигателя

    nlo

    мин-1

    Низкая частота вращения двигателя

    nref

    мин-1

    Исходная частота вращения двигателя для испытания ETC

    pa

    кПа

    Давление насыщения пара на впуске воздуха в двигатель

    pA

    кПа

    Абсолютное давление

    pB

    кПа

    Полное давление

    pd

    кПа

    Давление насыщения пара разбавляющего воздуха

    ps

    кПа

    Сухое атмосферное давление

    p1

    кПа

    Снижение давления на входе в насос

    P(a)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, устанавливаемыми при проведении испытаний

    P(b)

    кВт

    Мощность, поглощаемая вспомогательными устройствами, демонтируемыми при проведении испытания

    P(n)

    кВт

    Некорректированная полезная мощность

    P(m)

    кВт

    Мощность, измеренная на испытательном стенде

    W

    -

    Константа Бесселя

    QS

    м3

    Объемный расход воздуха в трубке Вентури CFV

    q

    -

    Коэффициент разбавления

    r

    -

    Отношение площадей поперечного сечения изокинетического пробоотборника и выпускной трубы

    Ra

    %

    Относительная влажность воздуха на впуске

    Rd

    %

    Относительная влажность разбавляющего воздуха

    Si

    m-1

    Мгновенное значение дымности

    Sl

    -

    Коэффициент l-смещения

    T

    К

    Абсолютная температура

    Rf

    -

    Коэффициент чувствительности FID

    r

    кг/м3

    Плотность

    S

    кВт

    Мощность, на которую отрегулирован динамометр

    Та

    К

    Абсолютная температура воздуха на впуске

    t

    с

    Время измерения

    te

    с

    Время срабатывания электрического сигнала

    tf

    с

    Время реакции фильтра для функции Бесселя

    tp

    с

    Физическое время реакции

    Dt

    с

    Временной интервал между последовательными моментами считывания данных о дымности (= 1/частота отбора проб)

    Dt1

    с

    Временной интервал между значениями мгновенных расходов в трубке Вентури CFV

    t

    %

    Прозрачность дыма

    V0

    м3/об

    Калибровочная функция объемного расхода насоса PDP в эксплуатационных условиях (на 1 оборот вала насоса)

    W

    -

    Число Воббе

    Wact

    КВт×ч

    Фактическая работа за цикл испытания ETC

    Wref

    КВт×ч

    Исходная работа за цикл испытания ETC

    WF

    -

    Коэффициент весомости

    WFE

    -

    Эффективный коэффициент весомости

    X0

    м3/oб

    Калибровочная функция объемного расхода воздуха насоса PDP (на 1 оборот вала насоса)

    Yi

    м-1

    Среднее значение коэффициента светопоглощения за 1 с по Бесселю

    2.2.2 Обозначения химических компонентов

    СН4 - метан;

    С2Н6 - этан;

    С2Н5ОН - этанол;

    С3Н8 - пропан;

    СО - оксид углерода;

    DOP - диоктилфталат;

    СО2 - диоксид углерода;

    НС - углеводороды;

    NMHC - (non-methane hydrocarbons) углеводороды, не содержащие метан;

    x - оксиды азота;

    NO - оксид азота;

    2 - диоксид азота;

    РТ - (particulates) вредные частицы.

    ТНС - (total hydrocarbons) общее количество углеводородов.

    2.2.3 Сокращения

    CFV - (critical flow venturi) трубка Вентури с критическим расходом;

    CLD - (chemiluminescent detector) хемилюминесцентный детектор;

    CVS - (constant volume sampling) отбор проб при постоянном объеме;

    ELR - (European load response test) европейский цикл испытаний реакции двигателя на изменение нагрузки;

    ESC - (European steady state cycle) европейский цикл испытаний в установившихся режимах;

    ETC - (European transient cycle) европейский цикл испытаний в переходных режимах;

    FID - (flame ionization detector) плазменно-ионизационный детектор;

    GC - (gas chromatograph) газовый хроматограф;

    HCLD - (heated chemiluminescent detector) нагреваемый хемилюминесцентный детектор;

    HFID - (heated flame ionization detector) нагреваемый плазменно-ионизационный детектор;

    LPG - (liquefied petroleum gas) сжиженный нефтяной газ;

    NDIR - (non-dispersive infrared) недисперсионный инфракрасный анализатор;

    NG - (natural gas) природный газ;

    NMC - (non-methane cutter) отделитель фракций, не содержащих метан;

    PDP - (positive displacement pomp) насос с объемным регулированием;

    PSS - (particulate sampling system) система отбора проб вредных частиц.

    Источник: ГОСТ Р 41.49-2003: Единообразные предписания, касающиеся сертификации двигателей с воспламенением от сжатия и двигателей, работающих на природном газе, а также двигателей с принудительным зажиганием, работающих на сжиженном нефтяном газе, и транспортных средств, оснащенных двигателями с воспламенением от сжатия, двигателями, работающими на природном газе, и двигателями с принудительным зажиганием, работающими на сжиженном нефтяном газе. В отношении выбросов вредных веществ оригинал документа

    Русско-английский словарь нормативно-технической терминологии > нерациональный метод ограничения выбросов вредных веществ

  • 26 автоматическое повторное включение

    1. Wiedereinschaltung, automatische
    2. selbsttätiges Wiederschließen (eines mechanischen Schaltgerätes)
    3. Kurzunterbrechung
    4. automatische Wiedereinschaltung

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > автоматическое повторное включение

  • 27 автоматическое повторное включение

    1. reclosure
    2. reclosing
    3. reclose
    4. autoreclosure
    5. autoreclosing
    6. automatic recluse
    7. automatic reclosing
    8. auto-reclosing
    9. ARC
    10. AR

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > автоматическое повторное включение

  • 28 автоматическое повторное включение

    1. refermeture automatique
    2. réenclenchement automatique

     

    автоматическое повторное включение
    АПВ

    Коммутационный цикл, при котором выключатель вслед за его отключением автоматически включается через установленный промежуток времени (О - tбт - В).
    [ ГОСТ Р 52565-2006]

    автоматическое повторное включение
    АПВ

    Автоматическое включение аварийно отключившегося элемента электрической сети
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    (автоматическое) повторное включение
    АПВ


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    EN

    automatic reclosing
    automatic reclosing of a circuit-breaker associated with a faulted section of a network after an interval of time which permits that section to recover from a transient fault
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    auto-reclosing
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEC 62271-100, ed. 2.0 (2008-04)]
    auto-reclosing (of a mechanical switching device)
    the operating sequence of a mechanical switching device whereby, following its opening, it closes automatically after a predetermined time
    [IEV number 441-16-10]

    FR

    réenclenchement automatique
    refermeture du disjoncteur associé à une fraction de réseau affectée d'un défaut, par un dispositif automatique après un intervalle de temps permettant la disparition d'un défaut fugitif
    [IEC 61936-1, ed. 1.0 (2002-10)]
    [IEV 604-02-32]


    refermeture automatique
    séquence de manoeuvres par laquelle, à la suite d’une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEC 62271-100, ed. 2.0 (2008-04)]
    refermeture automatique (d'un appareil mécanique de connexion)
    séquence de manoeuvres par laquelle, à la suite d'une ouverture, un appareil mécanique de connexion est refermé automatiquement après un intervalle de temps prédéterminé
    [IEV number 441-16-10]

     
    Автоматическое повторное включение (АПВ), быстрое автоматическое обратное включение в работу высоковольтных линий электропередачи и электрооборудования высокого напряжения после их автоматического отключения; одно из наиболее эффективных средств противоаварийной автоматики. Повышает надёжность электроснабжения потребителей и восстанавливает нормальный режим работы электрической системы. Во многих случаях после быстрого отключения участка электрической системы, на котором возникло короткое замыкание в результате кратковременного нарушения изоляции или пробоя воздушного промежутка, при последующей подаче напряжения повторное короткое замыкание не возникает.   АПВ выполняется с помощью автоматических устройств, воздействующих на высоковольтные выключатели после их аварийного автоматического отключения от релейной защиты. Многие из этих автоматических устройств обеспечивают АПВ при самопроизвольном отключении выключателей, например при сильных сотрясениях почвы во время близких взрывов, землетрясениях и т. п. Эффективность АПВ тем выше, чем быстрее следует оно за аварийным отключением, т. е. чем меньше время перерыва питания потребителей. Это время зависит от длительности цикла АПВ. В электрических системах применяют однократное АПВ — с одним циклом, двукратное — при неуспешном первом цикле, и трёхкратное — с тремя последовательными циклами. Цикл АПВ — время от момента подачи сигнала на отключение до замыкания цепи главными контактами выключателя — состоит из времени отключения и включения выключателя и времени срабатывания устройства АПВ. Длительность бестоковой паузы, когда потребитель не получает электроэнергию, выбирается такой, чтобы успело произойти восстановление изоляции (деионизация среды) в месте короткого замыкания, привод выключателя после отключения был бы готов к повторному включению, а выключатель к моменту замыкания его главных контактов восстановил способность к отключению поврежденной цепи в случае неуспешного АПВ. Время деионизации зависит от среды, климатических условий и других факторов. Время восстановления отключающей способности выключателя определяется его конструкцией и количеством циклов АПВ., предшествовавших данному. Обычно длительность 1-го цикла не превышает 0,5—1,5 сек, 2-го — от 10 до 15 сек, 3-го — от 60 до 120 сек.

    Наиболее распространено однократное АПВ, обеспечивающее на воздушных линиях высокого напряжения (110 кв и выше) до 86 %, а на кабельных линиях (3—10 кв) — до 55 % успешных включений. Двукратное АПВ обеспечивает во втором цикле до 15 % успешных включений. Третий цикл увеличивает число успешных включений всего на 3—5 %. На линиях электропередачи высокого напряжения (от 110 до 500 кВ) применяется однофазовое АПВ; при этом выключатели должны иметь отдельные приводы на каждой фазе.

    Применение АПВ экономически выгодно, т. к. стоимость устройств АПВ и их эксплуатации несравнимо меньше ущерба из-за перерыва в подаче электроэнергии.
    [ БСЭ]

     

    НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ АПВ

    Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
    Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
    Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
    При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
    Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
    На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор. [Овчинников В. В., Автоматическое повторное включение. — М.:Энергоатомиздат, 1986.— 96 с: ил. — (Б-ка электромонтера; Вып. 587). Энергоатомиздат, 1986]

    АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ (АПВ)

    3.3.2. Устройства АПВ должны предусматриваться для быстрого восстановления питания потребителей или межсистемных и внутрисистемных связей путем автоматического включения выключателей, отключенных устройствами релейной защиты.

    Должно предусматриваться автоматическое повторное включение:

    1) воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учетом конкретных условий;

    2) шин электростанций и подстанций (см. 3.3.24 и 3.3.25);

    3) трансформаторов (см. 3.3.26);

    4) ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей (см. 3.3.38).

    Для осуществления АПВ по п. 1-3 должны также предусматриваться устройства АПВ на обходных, шиносоединительных и секционных выключателях.

    Допускается в целях экономии аппаратуры выполнение устройства группового АПВ на линиях, в первую очередь кабельных, и других присоединениях 6-10 кВ. При этом следует учитывать недостатки устройства группового АПВ, например возможность отказа в случае, если после отключения выключателя одного из присоединений отключение выключателя другого присоединения происходит до возврата устройства АПВ в исходное положение.

    3.3.3. Устройства АПВ должны быть выполнены так, чтобы они не действовали при:

    1) отключении выключателя персоналом дистанционно или при помощи телеуправления;

    2) автоматическом отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

    3) отключении выключателя защитой от внутренних повреждений трансформаторов и вращающихся машин, устройствами противоаварийной автоматики, а также в других случаях отключений выключателя, когда действие АПВ недопустимо. АПВ после действия АЧР (ЧАПВ) должно выполняться в соответствии с 3.3.81.

    Устройства АПВ должны быть выполнены так, чтобы была исключена возможностью многократного включения на КЗ при любой неисправности в схеме устройства.

    Устройства АПВ должны выполняться с автоматическим возвратом.

    3.3.4. При применении АПВ должно, как правило, предусматриваться ускорение действия релейной защиты на случай неуспешного АПВ. Ускорение действия релейной защиты после неуспешного АПВ выполняется с помощью устройства ускорения после включения выключателя, которое, как правило, должно использоваться и при включении выключателя по другим причинам (от ключа управления, телеуправления или устройства АВР). При ускорении защиты после включения выключателя должны быть приняты меры против возможного отключения выключателя защитой под действием толчка тока при включении из-за неодновременного включения фаз выключателя.

    Не следует ускорять защиты после включения выключателя, когда линия уже включена под напряжение другим своим выключателем (т. е. при наличии симметричного напряжения на линии).

    Допускается не ускорять после АПВ действие защит линий 35 кВ и ниже, выполненных на переменном оперативном токе, если для этого требуется значительное усложнение защит и время их действия при металлическом КЗ вблизи места установки не превосходит 1,5 с.

    3.3.5. Устройства трехфазного АПВ (ТАПВ) должны осуществляться преимущественно с пуском при несоответствии между ранее поданной оперативной командой и отключенным положением выключателя; допускается также пуск устройства АПВ от защиты.

    3.3.6. Могут применяться, как правило, устройства ТАПВ однократного или двукратного действия (последнее - если это допустимо по условиям работы выключателя). Устройство ТАПВ двукратного действия рекомендуется принимать для воздушных линий, в особенности для одиночных с односторонним питанием. В сетях 35 кВ и ниже устройства ТАПВ двукратного действия рекомендуется применять в первую очередь для линий, не имеющих резервирования по сети.

    В сетях с изолированной или компенсированной нейтралью, как правило, должна применяться блокировка второго цикла АПВ в случае замыкания на землю после АПВ первого цикла (например, по наличию напряжений нулевой последовательности). Выдержка времени ТАПВ во втором цикле должна быть не менее 15-20 с.

    3.3.7. Для ускорения восстановления нормального режима работы электропередачи выдержка времени устройства ТАПВ (в особенности для первого цикла АПВ двукратного действия на линиях с односторонним питанием) должна приниматься минимально возможной с учетом времени погасания дуги и деионизации среды в месте повреждения, а также с учетом времени готовности выключателя и его привода к повторному включению.

    Выдержка времени устройства ТАПВ на линии с двусторонним питанием должна выбираться также с учетом возможного неодновременного отключения повреждения с обоих концов линии; при этом время действия защит, предназначенных для дальнего резервирования, учитываться не должно. Допускается не учитывать разновременности отключения выключателей по концам линии, когда они отключаются в результате срабатывания высокочастотной защиты.

    С целью повышения эффективности ТАПВ однократного действия допускается увеличивать его выдержку времени (по возможности с учетом работы потребителя).

    3.3.8. На одиночных линиях 110 кВ и выше с односторонним питанием, для которых допустим в случае неуспешного ТАПВ переход на длительную работу двумя фазами, следует предусматривать ТАПВ двукратного действия на питающем конце линии. Перевод линии на работу двумя фазами может производиться персоналом на месте или при помощи телеуправления.

    Для перевода линии после неуспешного АПВ на работу двумя фазами следует предусматривать пофазное управление разъединителями или выключателями на питающем и приемном концах линии.

    При переводе линии на длительную работу двумя фазами следует при необходимости принимать меры к уменьшению помех в работе линий связи из-за неполнофазного режима работы линии. С этой целью допускается ограничение мощности, передаваемой по линии в неполнофазном режиме (если это возможно по условиям работы потребителя).

    В отдельных случаях при наличии специального обоснования допускается также перерыв в работе линии связи на время неполнофазного режима.

    3.3.9. На линиях, отключение которых не приводит к нарушению электрической связи между генерирующими источниками, например на параллельных линиях с односторонним питанием, следует устанавливать устройства ТАПВ без проверки синхронизма.

    3.3.10. На одиночных линиях с двусторонним питанием (при отсутствии шунтирующих связей) должен предусматриваться один из следующих видов трехфазного АПВ (или их комбинаций):

    а) быстродействующее ТАПВ (БАПВ)

    б) несинхронное ТАПВ (НАПВ);

    в) ТАПВ с улавливанием синхронизма (ТАПВ УС).

    Кроме того, может предусматриваться однофазное АПВ (ОАПВ) в сочетании с различными видами ТАПВ, если выключатели оборудованы пофазным управлением и не нарушается устойчивость параллельной работы частей энергосистемы в цикле ОАПВ.

    Выбор видов АПВ производится, исходя из совокупности конкретных условий работы системы и оборудования с учетом указаний 3.3.11-3.3.15.

    3.3.11. Быстродействующее АПВ, или БАПВ (одновременное включение с минимальной выдержкой времени с обоих концов), рекомендуется предусматривать на линиях по 3.3.10 для автоматического повторного включения, как правило, при небольшом расхождении угла между векторами ЭДС соединяемых систем. БАПВ может применяться при наличии выключателей, допускающих БАПВ, если после включения обеспечивается сохранение синхронной параллельной работы систем и максимальный электромагнитный момент синхронных генераторов и компенсаторов меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины.

    Оценка максимального электромагнитного момента должна производиться для предельно возможного расхождения угла за время БАПВ. Соответственно запуск БАПВ должен производиться лишь при срабатывании быстродействующей защиты, зона действия которой охватывает всю линию. БАПВ должно блокироваться при срабатывании резервных защит и блокироваться или задерживаться при работе УРОВ.

    Если для сохранения устойчивости энергосистемы при неуспешном БАПВ требуется большой объем воздействий от противоаварийной автоматики, применение БАПВ не рекомендуется.

    3.3.12. Несинхронное АПВ (НАПВ) может применяться на линиях по 3.3.10 (в основном 110-220 кВ), если:

    а) максимальный электромагнитный момент синхронных генераторов и компенсаторов, возникающий при несинхронном включении, меньше (с учетом необходимого запаса) электромагнитного момента, возникающего при трехфазном КЗ на выводах машины, при этом в качестве практических критериев оценки допустимости НАПВ принимаются расчетные начальные значения периодических составляющих токов статора при угле включения 180°;

    б) максимальный ток через трансформатор (автотрансформатор) при угле включения 180° меньше тока КЗ на его выводах при питании от шин бесконечной мощности;

    в) после АПВ обеспечивается достаточно быстрая ресинхронизация; если в результате несинхронного автоматического повторного включения возможно возникновение длительного асинхронного хода, должны применяться специальные мероприятия для его предотвращения или прекращения.

    При соблюдении этих условий НАПВ допускается применять также в режиме ремонта на параллельных линиях.

    При выполнении НАПВ необходимо принять меры по предотвращению излишнего срабатывания защиты. С этой целью рекомендуется, в частности, осуществлять включение выключателей при НАПВ в определенной последовательности, например выполнением АПВ с одной из сторон линии с контролем наличия напряжения на ней после успешного ТАПВ с противоположной стороны.

    3.3.13. АПВ с улавливанием синхронизма может применяться на линиях по 3.3.10 для включения линии при значительных (примерно до 4%) скольжениях и допустимом угле.

    Возможно также следующее выполнение АПВ. На конце линии, который должен включаться первым, производится ускоренное ТАПВ (с фиксацией срабатывания быстродействующей защиты, зона действия которой охватывает всю линию) без контроля напряжения на линии (УТАПВ БК) или ТАПВ с контролем отсутствия напряжения на линии (ТАПВ ОН), а на другом ее конце - ТАПВ с улавливанием синхронизма. Последнее производится при условии, что включение первого конца было успешным (это может быть определено, например, при помощи контроля наличия напряжения на линии).

    Для улавливания синхронизма могут применяться устройства, построенные по принципу синхронизатора с постоянным углом опережения.

    Устройства АПВ следует выполнять так, чтобы имелась возможность изменять очередность включения выключателей по концам линии.

    При выполнении устройства АПВ УС необходимо стремиться к обеспечению его действия при возможно большей разности частот. Максимальный допустимый угол включения при применении АПВ УС должен приниматься с учетом условий, указанных в 3.3.12. При применении устройства АПВ УС рекомендуется его использование для включения линии персоналом (полуавтоматическая синхронизация).

    3.3.14. На линиях, оборудованных трансформаторами напряжения, для контроля отсутствия напряжения (КОН) и контроля наличия напряжения (КНН) на линии при различных видах ТАПВ рекомендуется использовать органы, реагирующие на линейное (фазное) напряжение и на напряжения обратной и нулевой последовательностей. В некоторых случаях, например на линиях без шунтирующих реакторов, можно не использовать напряжение нулевой последовательности.

    3.3.15. Однофазное автоматическое повторное включение (ОАПВ) может применяться только в сетях с большим током замыкания на землю. ОАПВ без автоматического перевода линии на длительный неполнофазный режим при устойчивом повреждении фазы следует применять:

    а) на одиночных сильно нагруженных межсистемных или внутрисистемных линиях электропередачи;

    б) на сильно нагруженных межсистемных линиях 220 кВ и выше с двумя и более обходными связями при условии, что отключение одной из них может привести к нарушению динамической устойчивости энергосистемы;

    в) на межсистемных и внутрисистемных линиях разных классов напряжения, если трехфазное отключение линии высшего напряжения может привести к недопустимой перегрузке линий низшего напряжения с возможностью нарушения устойчивости энергосистемы;

    г) на линиях, связывающих с системой крупные блочные электростанции без значительной местной нагрузки;

    д) на линиях электропередачи, где осуществление ТАПВ сопряжено со значительным сбросом нагрузки вследствие понижения напряжения.

    Устройство ОАПВ должно выполняться так, чтобы при выводе его из работы или исчезновении питания автоматически осуществлялся перевод действия защит линии на отключение трех фаз помимо устройства.

    Выбор поврежденных фаз при КЗ на землю должен осуществляться при помощи избирательных органов, которые могут быть также использованы в качестве дополнительной быстродействующей защиты линии в цикле ОАПВ, при ТАПВ, БАПВ и одностороннем включении линии оперативным персоналом.

    Выдержка временем ОАПВ должна отстраиваться от времени погасания дуги и деионизации среды в месте однофазного КЗ в неполнофазном режиме с учетом возможности неодновременного срабатывания защиты по концам линии, а также каскадного действия избирательных органов.

    3.3.16. На линиях по 3.3.15 ОАПВ должно применяться в сочетании с различными видами ТАПВ. При этом должна быть предусмотрена возможность запрета ТАПВ во всех случаях ОАПВ или только при неуспешном ОАПВ. В зависимости от конкретных условий допускается осуществление ТАПВ после неуспешного ОАПВ. В этих случаях предусматривается действие ТАПВ сначала на одном конце линии с контролем отсутствия напряжения на линии и с увеличенной выдержкой времени.

    3.3.17. На одиночных линиях с двусторонним питанием, связывающих систему с электростанцией небольшой мощности, могут применяться ТАПВ с автоматической самосинхронизацией (АПВС) гидрогенераторов для гидроэлектростанций и ТАПВ в сочетании с делительными устройствами - для гидро- и теплоэлектростанций.

    3.3.18. На линиях с двусторонним питанием при наличии нескольких обходных связей следует применять:

    1) при наличии двух связей, а также при наличии трех связей, если вероятно одновременное длительное отключение двух из этих связей (например, двухцепной линии):

    несинхронное АПВ (в основном для линий 110-220 кВ и при соблюдении условий, указанных в 3.3.12, но для случая отключения всех связей);

    АПВ с проверкой синхронизма (при невозможности выполнения несинхронного АПВ по причинам, указанным в 3.3.12, но для случая отключения всех связей).

    Для ответственных линий при наличии двух связей, а также при наличии трех связей, две из которых - двухцепная линия, при невозможности применения НАПВ по причинам, указанным в 3.3.12, разрешается применять устройства ОАПВ, БАПВ или АПВ УС (см. 3.3.11, 3.3.13, 3.3.15). При этом устройства ОАПВ и БАПВ следует дополнять устройством АПВ с проверкой синхронизма;

    2) при наличии четырех и более связей, а также при наличии трех связей, если в последнем случае одновременное длительное отключение двух из этих связей маловероятно (например, если все линии одноцепные), - АПВ без проверки синхронизма.

    3.3.19. Устройства АПВ с проверкой синхронизма следует выполнять на одном конце линии с контролем отсутствия напряжения на линии и с контролем наличия синхронизма, на другом конце - только с контролем наличия синхронизма. Схемы устройства АПВ с проверкой синхронизма линии должны выполняться одинаковыми на обоих концах с учетом возможности изменения очередности включения выключателей линии при АПВ.

    Рекомендуется использовать устройство АПВ с проверкой синхронизма для проверки синхронизма соединяемых систем при включении линии персоналом.

    3.3.20. Допускается совместное применение нескольких видов трехфазного АПВ на линии, например БАПВ и ТАПВ с проверкой синхронизма. Допускается также использовать различные виды устройств АПВ на разных концах линии, например УТАПВ БК (см. 3.3.13) на одном конце линии и ТАПВ с контролем наличия напряжения и синхронизма на другом.

    3.3.21. Допускается сочетание ТАПВ с неселективными быстродействующими защитами для исправления неселективного действия последних. В сетях, состоящих из ряда последовательно включенных линий, при применении для них неселективных быстродействующих защит для исправления их действия рекомендуется применять поочередное АПВ; могут также применяться устройства АПВ с ускорением защиты до АПВ или с кратностью действия (не более трех), возрастающей по направлению к источнику питания.

    3.3.22. При применении трехфазного однократного АПВ линий, питающих трансформаторы, со стороны высшего напряжения которых устанавливаются короткозамыкатели и отделители, для отключения отделителя в бестоковую паузу время действия устройства АПВ должно быть отстроено от суммарного времени включения короткозамыкателя и отключения отделителя. При применении трехфазного АПВ двукратного действия (см. 3.3.6) время действия АПВ в первом цикле по указанному условию не должно увеличиваться, если отключение отделителя предусматривается в бестоковую паузу второго цикла АПВ.

    Для линий, на которые вместо выключателей устанавливаются отделители, отключение отделителей в случае неуспешного АПВ в первом цикле должно производиться в бестоковую паузу второго цикла АПВ.

    3.3.23. Если в результате действия АПВ возможно несинхронное включение синхронных компенсаторов или синхронных электродвигателей и если такое включение для них недопустимо, а также для исключения подпитки от этих машин места повреждения следует предусматривать автоматическое отключение этих синхронных машин при исчезновении питания или переводить их в асинхронный режим отключением АГП с последующим автоматическим включением или ресинхронизацией после восстановления напряжения в результате успешного АПВ.

    Для подстанций с синхронными компенсаторами или синхронными электродвигателями должны применяться меры, предотвращающие излишние срабатывания АЧР при действии АПВ.

    3.3.24. АПВ шин электростанций и подстанций при наличии специальной защиты шин и выключателей, допускающих АПВ, должно выполняться по одному из двух вариантов:

    1) автоматическим опробованием (постановка шин под напряжение выключателем от АПВ одного из питающих элементов);

    2) автоматической сборкой схемы; при этом первым от устройства АПВ включается один из питающих элементов (например, линия, трансформатор), при успешном включении этого элемента производится последующее, возможно более полное автоматическое восстановление схемы доаварийного режима путем включения других элементов. АПВ шин по этому варианту рекомендуется применять в первую очередь для подстанций без постоянного дежурства персонала.

    При выполнении АПВ шин должны применяться меры, исключающие несинхронное включение (если оно является недопустимым).

    Должна обеспечиваться достаточная чувствительность защиты шин на случай неуспешного АПВ.

    3.3.25. На двухтрансформаторных понижающих подстанциях при раздельной работе трансформаторов, как правило, должны предусматриваться устройства АПВ шин среднего и низшего напряжений в сочетании с устройствами АВР; при внутренних повреждениях трансформаторов должно действовать АВР, при прочих повреждениях - АПВ (см. 3.3.42).

    Допускается для двухтрансформаторной подстанции, в нормальном режиме которой предусматривается параллельная работа трансформаторов на шинах данного напряжения, устанавливать дополнительно к устройству АПВ устройство АВР, предназначенное для режима, когда один из трансформаторов выведен в резерв.

    3.3.26. Устройствами АПВ должны быть оборудованы все одиночные понижающие трансформаторы мощностью более 1 MB·А на подстанциях энергосистем, имеющие выключатель и максимальную токовую защиту с питающей стороны, когда отключение трансформатора приводит к обесточению электроустановок потребителей. Допускается в отдельных случаях действие АПВ и при отключении трансформатора защитой от внутренних повреждений.

    3.3.27. При неуспешном АПВ включаемого первым выключателем элемента, присоединенного двумя или более выключателями, АПВ остальных выключателей этого элемента, как правило, должно запрещаться.

    3.3.28. При наличии на подстанции или электростанции выключателей с электромагнитным приводом, если от устройства АПВ могут быть одновременно включены два или более выключателей, для обеспечения необходимого уровня напряжения аккумуляторной батареи при включении и для снижения сечения кабелей цепей питания электромагнитов включения следует, как правило, выполнять АПВ так, чтобы одновременное включение нескольких выключателей было исключено (например, применением на присоединениях АПВ с различными выдержками времени).

    Допускается в отдельных случаях (преимущественно при напряжении 110 кВ и большом числе присоединений, оборудованных АПВ) одновременное включение от АПВ двух выключателей.

    3.3.29. Действие устройств АПВ должно фиксироваться указательными реле, встроенными в реле указателями срабатывания, счетчиками числа срабатываний или другими устройствами аналогичного назначения.
    [ ПУЭ]

    Тематики

    Обобщающие термины

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > автоматическое повторное включение

  • 29 значительный дефект

    1. significant defect

     

    значительный дефект
    Дефект, который существенно влияет на использование продукции по назначению и (или) на ее долговечность, но не является критическим.
    Пояснения
    При разработке нормативной документации (главным образом, при установлении методов контроля изготовляемой или ремонтируемой продукции) все возможные дефекты могут подразделяться на критические, значительные и малозначительные. Такое разделение основано на оценке степени влияния каждого рассматриваемого дефекта на эффективность и безопасность использования продукции с учетом ее назначения, устройства, показателей ее качества, режимов и условий эксплуатации.
    Указанное разделение дефектов производится для последующего выбора вида контроля качества продукции (выборочный или сплошной) и для назначения такой характеристики выборочного контроля, как риск потребителя (заказчика).
    Чтобы не пропустить критический дефект, контроль продукции должен быть сплошным и в ряде случаев - неоднократным. Контроль отсутствия значительного дефекта допускается осуществлять выборочно только при достаточно низком значении риска потребителя. Отсутствие малозначительного дефекта может контролироваться выборочно при относительно высоком значении риска потребителя.
    Для некоторых видов продукции определенные совокупности дефектов, каждый из которых при отдельном его рассмотрении является малозначительным, могут быть эквивалентны значительному или даже критическому дефекту и должны относиться к соответствующей категории. Совокупности же значительных или значительных с малозначительными дефектов аналогичным образом могут быть эквивалентны критическому дефекту и должны относиться к категории критических.
    В отдельных отраслях промышленности может, при необходимости, производиться более детальная классификация дефектов по степени их влияния на эффективность использования продукции.
    В соответствии с приведенной классификацией дефектов иногда по результатам контроля продукции различают следующие ее единицы (в частности, изделия):
    - критически дефектные, т.е. имеющие хотя бы один критический дефект;
    - значительно дефектные, т.е. имеющие один или несколько значительных дефектов, но не имеющие критических дефектов;
    - малозначительно дефектные, т.е. имеющие один или несколько дефектов малозначительных по отдельности и в совокупности, но не имеющие значительных и критических дефектов.
    [ ГОСТ 15467-79]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > значительный дефект

  • 30 критический дефект

    1. critical defect

     

    критический дефект
    Дефект, при наличии которого использование продукции по назначению практически невозможно или недопустимо.
    Пояснения
    При разработке нормативной документации (главным образом, при установлении методов контроля изготовляемой или ремонтируемой продукции) все возможные дефекты могут подразделяться на критические, значительные и малозначительные. Такое разделение основано на оценке степени влияния каждого рассматриваемого дефекта на эффективность и безопасность использования продукции с учетом ее назначения, устройства, показателей ее качества, режимов и условий эксплуатации.
    Указанное разделение дефектов производится для последующего выбора вида контроля качества продукции (выборочный или сплошной) и для назначения такой характеристики выборочного контроля, как риск потребителя (заказчика).
    Чтобы не пропустить критический дефект, контроль продукции должен быть сплошным и в ряде случаев - неоднократным. Контроль отсутствия значительного дефекта допускается осуществлять выборочно только при достаточно низком значении риска потребителя. Отсутствие малозначительного дефекта может контролироваться выборочно при относительно высоком значении риска потребителя.
    Для некоторых видов продукции определенные совокупности дефектов, каждый из которых при отдельном его рассмотрении является малозначительным, могут быть эквивалентны значительному или даже критическому дефекту и должны относиться к соответствующей категории. Совокупности же значительных или значительных с малозначительными дефектов аналогичным образом могут быть эквивалентны критическому дефекту и должны относиться к категории критических.
    В отдельных отраслях промышленности может, при необходимости, производиться более детальная классификация дефектов по степени их влияния на эффективность использования продукции.
    В соответствии с приведенной классификацией дефектов иногда по результатам контроля продукции различают следующие ее единицы (в частности, изделия):
    - критически дефектные, т.е. имеющие хотя бы один критический дефект;
    - значительно дефектные, т.е. имеющие один или несколько значительных дефектов, но не имеющие критических дефектов;
    - малозначительно дефектные, т.е. имеющие один или несколько дефектов малозначительных по отдельности и в совокупности, но не имеющие значительных и критических дефектов.
    [ ГОСТ 15467-79]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > критический дефект

  • 31 малозначительный дефект

    1. insignificant defect

     

    малозначительный дефект
    Дефект, который существенно не влияет на использование продукции по назначению и ее долговечность.
    Пояснения
    При разработке нормативной документации (главным образом, при установлении методов контроля изготовляемой или ремонтируемой продукции) все возможные дефекты могут подразделяться на критические, значительные и малозначительные. Такое разделение основано на оценке степени влияния каждого рассматриваемого дефекта на эффективность и безопасность использования продукции с учетом ее назначения, устройства, показателей ее качества, режимов и условий эксплуатации.
    Указанное разделение дефектов производится для последующего выбора вида контроля качества продукции (выборочный или сплошной) и для назначения такой характеристики выборочного контроля, как риск потребителя (заказчика).
    Чтобы не пропустить критический дефект, контроль продукции должен быть сплошным и в ряде случаев - неоднократным. Контроль отсутствия значительного дефекта допускается осуществлять выборочно только при достаточно низком значении риска потребителя. Отсутствие малозначительного дефекта может контролироваться выборочно при относительно высоком значении риска потребителя.
    Для некоторых видов продукции определенные совокупности дефектов, каждый из которых при отдельном его рассмотрении является малозначительным, могут быть эквивалентны значительному или даже критическому дефекту и должны относиться к соответствующей категории. Совокупности же значительных или значительных с малозначительными дефектов аналогичным образом могут быть эквивалентны критическому дефекту и должны относиться к категории критических.
    В отдельных отраслях промышленности может, при необходимости, производиться более детальная классификация дефектов по степени их влияния на эффективность использования продукции.
    В соответствии с приведенной классификацией дефектов иногда по результатам контроля продукции различают следующие ее единицы (в частности, изделия):
    - критически дефектные, т.е. имеющие хотя бы один критический дефект;
    - значительно дефектные, т.е. имеющие один или несколько значительных дефектов, но не имеющие критических дефектов;
    - малозначительно дефектные, т.е. имеющие один или несколько дефектов малозначительных по отдельности и в совокупности, но не имеющие значительных и критических дефектов.
    [ ГОСТ 15467-79]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > малозначительный дефект

  • 32 теплоснабжение

    1. Wärmeversorgung
    2. Fernwärmeversorgung

     

    теплоснабжение
    Обеспечение потребителей теплом.
    [ ГОСТ 19431-84]

    теплоснабжение
    Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.
    [ ГОСТ Р 54860-2011]

    теплоснабжение
    Совокупность мероприятий по обеспечению систем отопления, вентиляции и горячего водоснабжения теплом с помощью теплоносителя
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Федеральный закон РФ N 190-ФЗ
    от 27 июля 2010 года

    О ТЕПЛОСНАБЖЕНИИ

    (в ред. Федеральных законов от 04.06.2011 N 123-ФЗ, от 18.07.2011 N 242-ФЗ, от 07.12.2011 N 417-ФЗ (ред. 30.12.2012), от 25.06.2012 N 93-ФЗ, от 30.12.2012 N 291-ФЗ, от 30.12.2012 N 318-ФЗ)

    Принят Государственной Думой 9 июля 2010 года

    Одобрен Советом Федерации 14 июля 2010 года

    Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ

    Статья 1. Предмет регулирования настоящего Федерального закона

    1. Настоящий Федеральный закон устанавливает правовые основы экономических отношений, возникающих в связи с производством, передачей, потреблением тепловой энергии, тепловой мощности, теплоносителя с использованием систем теплоснабжения, созданием, функционированием и развитием таких систем, а также определяет полномочия органов государственной власти, органов местного самоуправления поселений, городских округов по регулированию и контролю в сфере теплоснабжения, права и обязанности потребителей тепловой энергии, теплоснабжающих организаций, теплосетевых организаций.

    2. Отношения, связанные с горячим водоснабжением, осуществляемым с использованием открытых систем теплоснабжения (горячего водоснабжения), регулируются настоящим Федеральным законом, за исключением отношений, связанных с обеспечением качества и безопасности горячей воды.

    3. К отношениям, связанным с производством, передачей, потреблением горячей воды при осуществлении горячего водоснабжения с использованием открытых систем теплоснабжения (горячего водоснабжения), применяются положения настоящего Федерального закона, регулирующие производство, передачу, потребление теплоносителя, если иное не предусмотрено настоящим Федеральным законом.

    Статья 2. Основные понятия, используемые в настоящем Федеральном законе

    Для целей настоящего Федерального закона используются следующие основные понятия:

    1) тепловая энергия - энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);

    2) качество теплоснабжения - совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;

    3) источник тепловой энергии - устройство, предназначенное для производства тепловой энергии;

    4) теплопотребляющая установка - устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;

    4.1) теплоноситель - пар, вода, которые используются для передачи тепловой энергии. Теплоноситель в виде воды в открытых системах теплоснабжения (горячего водоснабжения) может использоваться для теплоснабжения и для горячего водоснабжения;

    5) тепловая сеть - совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;

    6) тепловая мощность (далее - мощность) - количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;

    7) тепловая нагрузка - количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;

    8) теплоснабжение - обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности;

    9) потребитель тепловой энергии (далее также - потребитель) - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;

    10) инвестиционная программа организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, - программа мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения (технологического присоединения) теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения;

    11) теплоснабжающая организация - организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    12) передача тепловой энергии, теплоносителя - совокупность организационно и технологически связанных действий, обеспечивающих поддержание тепловых сетей в состоянии, соответствующем установленным техническими регламентами требованиям, прием, преобразование и доставку тепловой энергии, теплоносителя;

    13) коммерческий учет тепловой энергии, теплоносителя (далее также - коммерческий учет) - установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя (далее - приборы учета) или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами;

    14) система теплоснабжения - совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями;

    15) режим потребления тепловой энергии - процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;

    16) теплосетевая организация - организация, оказывающая услуги по передаче тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    17) надежность теплоснабжения - характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;

    18) регулируемый вид деятельности в сфере теплоснабжения - вид деятельности в сфере теплоснабжения, при осуществлении которого расчеты за товары, услуги в сфере теплоснабжения осуществляются по ценам (тарифам), подлежащим в соответствии с настоящим Федеральным законом государственному регулированию, а именно:

    а) реализация тепловой энергии (мощности), теплоносителя, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены реализации по соглашению сторон договора;

    б) оказание услуг по передаче тепловой энергии, теплоносителя;

    в) оказание услуг по поддержанию резервной тепловой мощности, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены услуг по соглашению сторон договора;

    19) орган регулирования тарифов в сфере теплоснабжения (далее также - орган регулирования) - уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения (далее - федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения), уполномоченный орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) (далее - орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) либо орган местного самоуправления поселения или городского округа в случае наделения соответствующими полномочиями законом субъекта Российской Федерации, осуществляющие регулирование цен (тарифов) в сфере теплоснабжения;

    19.1) открытая система теплоснабжения (горячего водоснабжения) - технологически связанный комплекс инженерных сооружений, предназначенный для теплоснабжения и горячего водоснабжения путем отбора горячей воды из тепловой сети;

    20) схема теплоснабжения - документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;

    21) резервная тепловая мощность - тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя;

    22) топливно-энергетический баланс - документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию субъекта Российской Федерации или муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

    23) тарифы в сфере теплоснабжения - система ценовых ставок, по которым осуществляются расчеты за тепловую энергию (мощность), теплоноситель и за услуги по передаче тепловой энергии, теплоносителя;

    24) точка учета тепловой энергии, теплоносителя (далее также - точка учета) - место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета;

    25) комбинированная выработка электрической и тепловой энергии - режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии;

    26) б азовый режим работы источника тепловой энергии - режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;

    27) "пиковый" режим работы источника тепловой энергии - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

    28) единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    29) бездоговорное потребление тепловой энергии - потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных (технологически присоединенных) к системе теплоснабжения с нарушением установленного порядка подключения (технологического присоединения), либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем;

    30) радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение (технологическое присоединение) теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;

    31) плата за подключение (технологическое присоединение) к системе теплоснабжения - плата, которую вносят лица, осуществляющие строительство здания, строения, сооружения, подключаемых (технологически присоединяемых) к системе теплоснабжения, а также плата, которую вносят лица, осуществляющие реконструкцию здания, строения, сооружения в случае, если данная реконструкция влечет за собой увеличение тепловой нагрузки реконструируемых здания, строения, сооружения (далее также - плата за подключение (технологическое присоединение);

    32) живучесть - способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок.

    Статья 3. Общие принципы организации отношений и основы государственной политики в сфере теплоснабжения

    1. Общими принципами организации отношений в сфере теплоснабжения являются:

    1) обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов;

    2) обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами;

    3) обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения;

    4) развитие систем централизованного теплоснабжения;

    5) соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей;

    6) обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала;

    7) обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;

    8) обеспечение экологической безопасности теплоснабжения.

    2. Государственная политика в сфере теплоснабжения направлена на обеспечение соблюдения общих принципов организации отношений в сфере теплоснабжения, установленных настоящей статьей.

    Глава 2. ПОЛНОМОЧИЯ ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ, ОРГАНОВ МЕСТНОГО САМОУПРАВЛЕНИЯ ПОСЕЛЕНИЙ, ГОРОДСКИХ ОКРУГОВ В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 4. Полномочия Правительства Российской Федерации, федеральных органов исполнительной власти в сфере теплоснабжения

    1. К полномочиям Правительства Российской Федерации в сфере теплоснабжения относятся:

    1) разработка государственной политики в сфере теплоснабжения, являющейся частью энергетической стратегии России;

    2) утверждение правил организации теплоснабжения;

    3) утверждение правил подключения (технологического присоединения) к системам теплоснабжения;

    3.1) утверждение правил коммерческого учета тепловой энергии, теплоносителя;

    4) утверждение правил согласования и утверждения инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, а также требований к составу и содержанию таких программ (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике);

    5) утверждение стандартов раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, органами регулирования;

    6) утверждение основ ценообразования в сфере теплоснабжения, правил регулирования цен (тарифов) в сфере теплоснабжения, которые должны включать в себя сроки рассмотрения дел об установлении таких тарифов, исчерпывающий перечень представляемых организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, документов, определение условий и порядка принятия решений об отмене регулирования таких тарифов;

    7) утверждение порядка рассмотрения разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации в области государственного регулирования цен (тарифов), органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, потребителями тепловой энергии при установлении цен (тарифов) в сфере теплоснабжения, при разработке, утверждении и актуализации схем теплоснабжения;

    8) утверждение порядка определения системы мер по обеспечению надежности систем теплоснабжения;

    8.1) утверждение порядка определения целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    9) утверждение порядка вывода в ремонт и из эксплуатации источников тепловой энергии, тепловых сетей;

    10) утратил силу с 1 января 2013 года. - Федеральный закон от 07.12.2011 N 417-ФЗ;

    11) утверждение требований к схемам теплоснабжения, порядку их разработки и утверждения;

    12) утверждение порядка установления долгосрочных параметров регулирования деятельности организаций в отнесенной законодательством Российской Федерации к сферам деятельности субъектов естественных монополий сфере теплоснабжения и (или) цен (тарифов) в сфере теплоснабжения, которые подлежат регулированию в соответствии с перечнем, определенным в статье 8 настоящего Федерального закона;

    13) утверждение порядка заключения долгосрочных договоров теплоснабжения по ценам, определенным соглашением сторон, в целях обеспечения потребления тепловой энергии (мощности), теплоносителя объектами, потребляющими тепловую энергию (мощность), теплоноситель и введенными в эксплуатацию после 1 января 2010 года;

    14) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил определения стоимости активов и инвестированного капитала, правил ведения их раздельного учета, применяемых при осуществлении деятельности, регулируемой с использованием метода доходности инвестированного капитала;

    15) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии;

    15.1) установление порядка расчета размера возмещения организациям, осуществляющим регулируемые виды деятельности в сфере теплоснабжения, недополученных доходов от регулируемых видов деятельности в сфере теплоснабжения за счет средств бюджетов бюджетной системы Российской Федерации в связи с принятием уполномоченными органами решений об изменении установленных долгосрочных тарифов в сфере теплоснабжения, и (или) необходимой валовой выручки теплоснабжающих организаций, теплосетевых организаций, определенной в соответствии с основами ценообразования в сфере теплоснабжения на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, и (или) долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, а также решений об установлении долгосрочных тарифов на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, отличных от долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, установленных органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов или в пределах переданных полномочий органом местного самоуправления поселения или городского округа либо согласованных ими в соответствии с законодательством Российской Федерации о концессионных соглашениях, в установленных настоящим Федеральным законом случаях возмещения недополученных доходов;

    16) иные полномочия, установленные настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям федерального органа исполнительной власти, уполномоченного на реализацию государственной политики в сфере теплоснабжения, относятся:

    1) утратил силу с 1 апреля 2014 года. - Федеральный закон от 30.12.2012 N 291-ФЗ;

    2) утверждение правил оценки готовности к отопительному периоду;

    3) установление порядка расследования причин аварийных ситуаций при теплоснабжении;

    4) установление порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, нормативов удельного расхода топлива при производстве тепловой энергии, нормативов запасов топлива на источниках тепловой энергии (за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе в целях государственного регулирования цен (тарифов) в сфере теплоснабжения;

    5) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более, а также нормативов запасов топлива на источниках тепловой энергии при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    6) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, расположенным в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, а также в городах федерального значения Москве и Санкт-Петербурге;

    7) ведение государственного реестра саморегулируемых организаций в сфере теплоснабжения;

    8) осуществление государственного контроля и надзора за деятельностью саморегулируемых организаций в сфере теплоснабжения;

    9) обращение в суд с требованием об исключении некоммерческой организации из государственного реестра саморегулируемых организаций в случаях, предусмотренных настоящим Федеральным законом;

    10) утверждение порядка составления топливно-энергетических балансов субъектов Российской Федерации, муниципальных образований;

    11) утверждение схем теплоснабжения поселений, городских округов с численностью населения пятьсот тысяч человек и более, а также городов федерального значения Москвы и Санкт-Петербурга, в том числе определение единой теплоснабжающей организации;

    12) рассмотрение разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, и потребителями при разработке, утверждении и актуализации схем теплоснабжения;

    13) утверждение порядка осуществления мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    14) утверждение методики комплексного определения показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения, и порядка осуществления мониторинга таких показателей;

    15) утверждение порядка осуществления контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике).

    3. Федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения реализует предусмотренные частью 2 статьи 7 настоящего Федерального закона полномочия в области государственного регулирования цен (тарифов) в сфере теплоснабжения.

    4. К полномочиям федерального антимонопольного органа относятся:

    1) антимонопольное регулирование и контроль в сфере теплоснабжения;

    2) согласование решений органов исполнительной власти субъектов Российской Федерации об отмене регулирования тарифов в сфере теплоснабжения и о введении регулирования тарифов в сфере теплоснабжения после их отмены, выдача предписаний об отмене регулирования тарифов в сфере теплоснабжения.

    5. Федеральные органы исполнительной власти, указанные в частях 2 - 4 настоящей статьи, осуществляют контроль (надзор) за соблюдением органами исполнительной власти субъектов Российской Федерации и органами местного самоуправления поселений, городских округов требований законодательства Российской Федерации в сфере теплоснабжения.

    6. Правительство Российской Федерации или уполномоченный федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения устанавливает (в случаях и в порядке, которые определены основами ценообразования в сфере теплоснабжения) предельные (минимальные и (или) максимальные) индексы роста цен (тарифов), учитываемые при переходе к государственному регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы применяются в отношении цен (тарифов), рассчитываемых на каждый год долгосрочного периода регулирования в порядке, установленном основами ценообразования в сфере теплоснабжения, при переходе к регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы на второй долгосрочный период регулирования и последующие долгосрочные периоды регулирования определяются с учетом обеспечения возврата и доходности капитала, инвестированного в течение предыдущего долгосрочного периода регулирования или предыдущих долгосрочных периодов регулирования в соответствии с принятыми органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов либо в пределах переданных полномочий органом местного самоуправления поселения или городского округа решениями об установлении тарифов или долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения.

    Статья 5. Полномочия органов государственной власти субъектов Российской Федерации в сфере теплоснабжения

    1. Органы государственной власти субъектов Российской Федерации осуществляют полномочия по государственному регулированию и контролю в сфере теплоснабжения в соответствии с настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям органов исполнительной власти субъектов Российской Федерации в сфере теплоснабжения относятся:

    1) реализация предусмотренных частью 3 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    2) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, за исключением тепловых сетей, расположенных в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, в городах федерального значения Москве и Санкт-Петербурге;

    3) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    4) утверждение нормативов запасов топлива на источниках тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    5) утверждение инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, с применением установленных органами исполнительной власти субъекта Российской Федерации целевых показателей надежности и качества поставляемых товаров и оказываемых услуг такими организациями, по согласованию с органами местного самоуправления поселений, городских округов;

    6) определение системы мер по обеспечению надежности систем теплоснабжения поселений, городских округов в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    7) составление топливно-энергетического баланса субъекта Российской Федерации;

    7.1) осуществление мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    7.2) осуществление мониторинга показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения;

    7.3) осуществление контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, которые утверждаются в соответствии с законодательством Российской Федерации об электроэнергетике), в том числе за достижением этими организациями целевых показателей надежности и качества поставляемых товаров и оказываемых услуг в результате реализации мероприятий таких программ;

    7.4) определение целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    8) иные полномочия, предусмотренные другими федеральными законами.

    Статья 6. Полномочия органов местного самоуправления поселений, городских округов в сфере теплоснабжения

    1. К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся:

    1) организация обеспечения надежного теплоснабжения потребителей на территориях поселений, городских округов, в том числе принятие мер по организации обеспечения теплоснабжения потребителей в случае неисполнения теплоснабжающими организациями или теплосетевыми организациями своих обязательств либо отказа указанных организаций от исполнения своих обязательств;

    2) рассмотрение обращений потребителей по вопросам надежности теплоснабжения в порядке, установленном правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    3) реализация предусмотренных частями 5 - 7 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    4) выполнение требований, установленных правилами оценки готовности поселений, городских округов к отопительному периоду, и контроль за готовностью теплоснабжающих организаций, теплосетевых организаций, отдельных категорий потребителей к отопительному периоду;

    5) согласование вывода источников тепловой энергии, тепловых сетей в ремонт и из эксплуатации;

    6) утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации;

    7) согласование инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, за исключением таких программ, которые согласовываются в соответствии с законодательством Российской Федерации об электроэнергетике.

    2. Полномочия органов местного самоуправления городов федерального значения Москвы и Санкт-Петербурга по организации теплоснабжения на внутригородских территориях определяются законами указанных субъектов Российской Федерации исходя из необходимости сохранения единства городских хозяйств с учетом положений настоящего Федерального закона.

    Глава 3. ГОСУДАРСТВЕННАЯ ПОЛИТИКА ПРИ УСТАНОВЛЕНИИ РЕГУЛИРУЕМЫХ ЦЕН (ТАРИФОВ) В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 7. Принципы регулирования цен (тарифов) в сфере теплоснабжения и полномочия органов исполнительной власти, органов местного самоуправления поселений, городских округов в области регулирования цен (тарифов) в сфере теплоснабжения

    1. Регулирование цен (тарифов) в сфере теплоснабжения осуществляется в соответствии со следующими основными принципами:

    1) обеспечение доступности тепловой энергии (мощности), теплоносителя для потребителей;

    2) обеспечение экономической обоснованности расходов теплоснабжающих организаций, теплосетевых организаций на производство, передачу и сбыт тепловой энергии (мощности), теплоносителя;

    3) обеспечение достаточности средств для финансирования мероприятий по надежному функционированию и развитию систем теплоснабжения;

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > теплоснабжение

  • 33 теплоснабжение

    1. utilities
    2. space heating
    3. heating
    4. heat supply

     

    теплоснабжение
    Обеспечение потребителей теплом.
    [ ГОСТ 19431-84]

    теплоснабжение
    Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.
    [ ГОСТ Р 54860-2011]

    теплоснабжение
    Совокупность мероприятий по обеспечению систем отопления, вентиляции и горячего водоснабжения теплом с помощью теплоносителя
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Федеральный закон РФ N 190-ФЗ
    от 27 июля 2010 года

    О ТЕПЛОСНАБЖЕНИИ

    (в ред. Федеральных законов от 04.06.2011 N 123-ФЗ, от 18.07.2011 N 242-ФЗ, от 07.12.2011 N 417-ФЗ (ред. 30.12.2012), от 25.06.2012 N 93-ФЗ, от 30.12.2012 N 291-ФЗ, от 30.12.2012 N 318-ФЗ)

    Принят Государственной Думой 9 июля 2010 года

    Одобрен Советом Федерации 14 июля 2010 года

    Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ

    Статья 1. Предмет регулирования настоящего Федерального закона

    1. Настоящий Федеральный закон устанавливает правовые основы экономических отношений, возникающих в связи с производством, передачей, потреблением тепловой энергии, тепловой мощности, теплоносителя с использованием систем теплоснабжения, созданием, функционированием и развитием таких систем, а также определяет полномочия органов государственной власти, органов местного самоуправления поселений, городских округов по регулированию и контролю в сфере теплоснабжения, права и обязанности потребителей тепловой энергии, теплоснабжающих организаций, теплосетевых организаций.

    2. Отношения, связанные с горячим водоснабжением, осуществляемым с использованием открытых систем теплоснабжения (горячего водоснабжения), регулируются настоящим Федеральным законом, за исключением отношений, связанных с обеспечением качества и безопасности горячей воды.

    3. К отношениям, связанным с производством, передачей, потреблением горячей воды при осуществлении горячего водоснабжения с использованием открытых систем теплоснабжения (горячего водоснабжения), применяются положения настоящего Федерального закона, регулирующие производство, передачу, потребление теплоносителя, если иное не предусмотрено настоящим Федеральным законом.

    Статья 2. Основные понятия, используемые в настоящем Федеральном законе

    Для целей настоящего Федерального закона используются следующие основные понятия:

    1) тепловая энергия - энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);

    2) качество теплоснабжения - совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;

    3) источник тепловой энергии - устройство, предназначенное для производства тепловой энергии;

    4) теплопотребляющая установка - устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;

    4.1) теплоноситель - пар, вода, которые используются для передачи тепловой энергии. Теплоноситель в виде воды в открытых системах теплоснабжения (горячего водоснабжения) может использоваться для теплоснабжения и для горячего водоснабжения;

    5) тепловая сеть - совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;

    6) тепловая мощность (далее - мощность) - количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;

    7) тепловая нагрузка - количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;

    8) теплоснабжение - обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности;

    9) потребитель тепловой энергии (далее также - потребитель) - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;

    10) инвестиционная программа организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, - программа мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения (технологического присоединения) теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения;

    11) теплоснабжающая организация - организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    12) передача тепловой энергии, теплоносителя - совокупность организационно и технологически связанных действий, обеспечивающих поддержание тепловых сетей в состоянии, соответствующем установленным техническими регламентами требованиям, прием, преобразование и доставку тепловой энергии, теплоносителя;

    13) коммерческий учет тепловой энергии, теплоносителя (далее также - коммерческий учет) - установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя (далее - приборы учета) или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами;

    14) система теплоснабжения - совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями;

    15) режим потребления тепловой энергии - процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;

    16) теплосетевая организация - организация, оказывающая услуги по передаче тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    17) надежность теплоснабжения - характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;

    18) регулируемый вид деятельности в сфере теплоснабжения - вид деятельности в сфере теплоснабжения, при осуществлении которого расчеты за товары, услуги в сфере теплоснабжения осуществляются по ценам (тарифам), подлежащим в соответствии с настоящим Федеральным законом государственному регулированию, а именно:

    а) реализация тепловой энергии (мощности), теплоносителя, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены реализации по соглашению сторон договора;

    б) оказание услуг по передаче тепловой энергии, теплоносителя;

    в) оказание услуг по поддержанию резервной тепловой мощности, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены услуг по соглашению сторон договора;

    19) орган регулирования тарифов в сфере теплоснабжения (далее также - орган регулирования) - уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения (далее - федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения), уполномоченный орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) (далее - орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) либо орган местного самоуправления поселения или городского округа в случае наделения соответствующими полномочиями законом субъекта Российской Федерации, осуществляющие регулирование цен (тарифов) в сфере теплоснабжения;

    19.1) открытая система теплоснабжения (горячего водоснабжения) - технологически связанный комплекс инженерных сооружений, предназначенный для теплоснабжения и горячего водоснабжения путем отбора горячей воды из тепловой сети;

    20) схема теплоснабжения - документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;

    21) резервная тепловая мощность - тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя;

    22) топливно-энергетический баланс - документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию субъекта Российской Федерации или муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

    23) тарифы в сфере теплоснабжения - система ценовых ставок, по которым осуществляются расчеты за тепловую энергию (мощность), теплоноситель и за услуги по передаче тепловой энергии, теплоносителя;

    24) точка учета тепловой энергии, теплоносителя (далее также - точка учета) - место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета;

    25) комбинированная выработка электрической и тепловой энергии - режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии;

    26) б азовый режим работы источника тепловой энергии - режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;

    27) "пиковый" режим работы источника тепловой энергии - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

    28) единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    29) бездоговорное потребление тепловой энергии - потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных (технологически присоединенных) к системе теплоснабжения с нарушением установленного порядка подключения (технологического присоединения), либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем;

    30) радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение (технологическое присоединение) теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;

    31) плата за подключение (технологическое присоединение) к системе теплоснабжения - плата, которую вносят лица, осуществляющие строительство здания, строения, сооружения, подключаемых (технологически присоединяемых) к системе теплоснабжения, а также плата, которую вносят лица, осуществляющие реконструкцию здания, строения, сооружения в случае, если данная реконструкция влечет за собой увеличение тепловой нагрузки реконструируемых здания, строения, сооружения (далее также - плата за подключение (технологическое присоединение);

    32) живучесть - способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок.

    Статья 3. Общие принципы организации отношений и основы государственной политики в сфере теплоснабжения

    1. Общими принципами организации отношений в сфере теплоснабжения являются:

    1) обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов;

    2) обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами;

    3) обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения;

    4) развитие систем централизованного теплоснабжения;

    5) соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей;

    6) обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала;

    7) обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;

    8) обеспечение экологической безопасности теплоснабжения.

    2. Государственная политика в сфере теплоснабжения направлена на обеспечение соблюдения общих принципов организации отношений в сфере теплоснабжения, установленных настоящей статьей.

    Глава 2. ПОЛНОМОЧИЯ ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ, ОРГАНОВ МЕСТНОГО САМОУПРАВЛЕНИЯ ПОСЕЛЕНИЙ, ГОРОДСКИХ ОКРУГОВ В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 4. Полномочия Правительства Российской Федерации, федеральных органов исполнительной власти в сфере теплоснабжения

    1. К полномочиям Правительства Российской Федерации в сфере теплоснабжения относятся:

    1) разработка государственной политики в сфере теплоснабжения, являющейся частью энергетической стратегии России;

    2) утверждение правил организации теплоснабжения;

    3) утверждение правил подключения (технологического присоединения) к системам теплоснабжения;

    3.1) утверждение правил коммерческого учета тепловой энергии, теплоносителя;

    4) утверждение правил согласования и утверждения инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, а также требований к составу и содержанию таких программ (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике);

    5) утверждение стандартов раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, органами регулирования;

    6) утверждение основ ценообразования в сфере теплоснабжения, правил регулирования цен (тарифов) в сфере теплоснабжения, которые должны включать в себя сроки рассмотрения дел об установлении таких тарифов, исчерпывающий перечень представляемых организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, документов, определение условий и порядка принятия решений об отмене регулирования таких тарифов;

    7) утверждение порядка рассмотрения разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации в области государственного регулирования цен (тарифов), органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, потребителями тепловой энергии при установлении цен (тарифов) в сфере теплоснабжения, при разработке, утверждении и актуализации схем теплоснабжения;

    8) утверждение порядка определения системы мер по обеспечению надежности систем теплоснабжения;

    8.1) утверждение порядка определения целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    9) утверждение порядка вывода в ремонт и из эксплуатации источников тепловой энергии, тепловых сетей;

    10) утратил силу с 1 января 2013 года. - Федеральный закон от 07.12.2011 N 417-ФЗ;

    11) утверждение требований к схемам теплоснабжения, порядку их разработки и утверждения;

    12) утверждение порядка установления долгосрочных параметров регулирования деятельности организаций в отнесенной законодательством Российской Федерации к сферам деятельности субъектов естественных монополий сфере теплоснабжения и (или) цен (тарифов) в сфере теплоснабжения, которые подлежат регулированию в соответствии с перечнем, определенным в статье 8 настоящего Федерального закона;

    13) утверждение порядка заключения долгосрочных договоров теплоснабжения по ценам, определенным соглашением сторон, в целях обеспечения потребления тепловой энергии (мощности), теплоносителя объектами, потребляющими тепловую энергию (мощность), теплоноситель и введенными в эксплуатацию после 1 января 2010 года;

    14) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил определения стоимости активов и инвестированного капитала, правил ведения их раздельного учета, применяемых при осуществлении деятельности, регулируемой с использованием метода доходности инвестированного капитала;

    15) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии;

    15.1) установление порядка расчета размера возмещения организациям, осуществляющим регулируемые виды деятельности в сфере теплоснабжения, недополученных доходов от регулируемых видов деятельности в сфере теплоснабжения за счет средств бюджетов бюджетной системы Российской Федерации в связи с принятием уполномоченными органами решений об изменении установленных долгосрочных тарифов в сфере теплоснабжения, и (или) необходимой валовой выручки теплоснабжающих организаций, теплосетевых организаций, определенной в соответствии с основами ценообразования в сфере теплоснабжения на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, и (или) долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, а также решений об установлении долгосрочных тарифов на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, отличных от долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, установленных органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов или в пределах переданных полномочий органом местного самоуправления поселения или городского округа либо согласованных ими в соответствии с законодательством Российской Федерации о концессионных соглашениях, в установленных настоящим Федеральным законом случаях возмещения недополученных доходов;

    16) иные полномочия, установленные настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям федерального органа исполнительной власти, уполномоченного на реализацию государственной политики в сфере теплоснабжения, относятся:

    1) утратил силу с 1 апреля 2014 года. - Федеральный закон от 30.12.2012 N 291-ФЗ;

    2) утверждение правил оценки готовности к отопительному периоду;

    3) установление порядка расследования причин аварийных ситуаций при теплоснабжении;

    4) установление порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, нормативов удельного расхода топлива при производстве тепловой энергии, нормативов запасов топлива на источниках тепловой энергии (за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе в целях государственного регулирования цен (тарифов) в сфере теплоснабжения;

    5) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более, а также нормативов запасов топлива на источниках тепловой энергии при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    6) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, расположенным в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, а также в городах федерального значения Москве и Санкт-Петербурге;

    7) ведение государственного реестра саморегулируемых организаций в сфере теплоснабжения;

    8) осуществление государственного контроля и надзора за деятельностью саморегулируемых организаций в сфере теплоснабжения;

    9) обращение в суд с требованием об исключении некоммерческой организации из государственного реестра саморегулируемых организаций в случаях, предусмотренных настоящим Федеральным законом;

    10) утверждение порядка составления топливно-энергетических балансов субъектов Российской Федерации, муниципальных образований;

    11) утверждение схем теплоснабжения поселений, городских округов с численностью населения пятьсот тысяч человек и более, а также городов федерального значения Москвы и Санкт-Петербурга, в том числе определение единой теплоснабжающей организации;

    12) рассмотрение разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, и потребителями при разработке, утверждении и актуализации схем теплоснабжения;

    13) утверждение порядка осуществления мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    14) утверждение методики комплексного определения показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения, и порядка осуществления мониторинга таких показателей;

    15) утверждение порядка осуществления контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике).

    3. Федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения реализует предусмотренные частью 2 статьи 7 настоящего Федерального закона полномочия в области государственного регулирования цен (тарифов) в сфере теплоснабжения.

    4. К полномочиям федерального антимонопольного органа относятся:

    1) антимонопольное регулирование и контроль в сфере теплоснабжения;

    2) согласование решений органов исполнительной власти субъектов Российской Федерации об отмене регулирования тарифов в сфере теплоснабжения и о введении регулирования тарифов в сфере теплоснабжения после их отмены, выдача предписаний об отмене регулирования тарифов в сфере теплоснабжения.

    5. Федеральные органы исполнительной власти, указанные в частях 2 - 4 настоящей статьи, осуществляют контроль (надзор) за соблюдением органами исполнительной власти субъектов Российской Федерации и органами местного самоуправления поселений, городских округов требований законодательства Российской Федерации в сфере теплоснабжения.

    6. Правительство Российской Федерации или уполномоченный федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения устанавливает (в случаях и в порядке, которые определены основами ценообразования в сфере теплоснабжения) предельные (минимальные и (или) максимальные) индексы роста цен (тарифов), учитываемые при переходе к государственному регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы применяются в отношении цен (тарифов), рассчитываемых на каждый год долгосрочного периода регулирования в порядке, установленном основами ценообразования в сфере теплоснабжения, при переходе к регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы на второй долгосрочный период регулирования и последующие долгосрочные периоды регулирования определяются с учетом обеспечения возврата и доходности капитала, инвестированного в течение предыдущего долгосрочного периода регулирования или предыдущих долгосрочных периодов регулирования в соответствии с принятыми органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов либо в пределах переданных полномочий органом местного самоуправления поселения или городского округа решениями об установлении тарифов или долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения.

    Статья 5. Полномочия органов государственной власти субъектов Российской Федерации в сфере теплоснабжения

    1. Органы государственной власти субъектов Российской Федерации осуществляют полномочия по государственному регулированию и контролю в сфере теплоснабжения в соответствии с настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям органов исполнительной власти субъектов Российской Федерации в сфере теплоснабжения относятся:

    1) реализация предусмотренных частью 3 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    2) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, за исключением тепловых сетей, расположенных в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, в городах федерального значения Москве и Санкт-Петербурге;

    3) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    4) утверждение нормативов запасов топлива на источниках тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    5) утверждение инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, с применением установленных органами исполнительной власти субъекта Российской Федерации целевых показателей надежности и качества поставляемых товаров и оказываемых услуг такими организациями, по согласованию с органами местного самоуправления поселений, городских округов;

    6) определение системы мер по обеспечению надежности систем теплоснабжения поселений, городских округов в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    7) составление топливно-энергетического баланса субъекта Российской Федерации;

    7.1) осуществление мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    7.2) осуществление мониторинга показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения;

    7.3) осуществление контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, которые утверждаются в соответствии с законодательством Российской Федерации об электроэнергетике), в том числе за достижением этими организациями целевых показателей надежности и качества поставляемых товаров и оказываемых услуг в результате реализации мероприятий таких программ;

    7.4) определение целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    8) иные полномочия, предусмотренные другими федеральными законами.

    Статья 6. Полномочия органов местного самоуправления поселений, городских округов в сфере теплоснабжения

    1. К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся:

    1) организация обеспечения надежного теплоснабжения потребителей на территориях поселений, городских округов, в том числе принятие мер по организации обеспечения теплоснабжения потребителей в случае неисполнения теплоснабжающими организациями или теплосетевыми организациями своих обязательств либо отказа указанных организаций от исполнения своих обязательств;

    2) рассмотрение обращений потребителей по вопросам надежности теплоснабжения в порядке, установленном правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    3) реализация предусмотренных частями 5 - 7 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    4) выполнение требований, установленных правилами оценки готовности поселений, городских округов к отопительному периоду, и контроль за готовностью теплоснабжающих организаций, теплосетевых организаций, отдельных категорий потребителей к отопительному периоду;

    5) согласование вывода источников тепловой энергии, тепловых сетей в ремонт и из эксплуатации;

    6) утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации;

    7) согласование инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, за исключением таких программ, которые согласовываются в соответствии с законодательством Российской Федерации об электроэнергетике.

    2. Полномочия органов местного самоуправления городов федерального значения Москвы и Санкт-Петербурга по организации теплоснабжения на внутригородских территориях определяются законами указанных субъектов Российской Федерации исходя из необходимости сохранения единства городских хозяйств с учетом положений настоящего Федерального закона.

    Глава 3. ГОСУДАРСТВЕННАЯ ПОЛИТИКА ПРИ УСТАНОВЛЕНИИ РЕГУЛИРУЕМЫХ ЦЕН (ТАРИФОВ) В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 7. Принципы регулирования цен (тарифов) в сфере теплоснабжения и полномочия органов исполнительной власти, органов местного самоуправления поселений, городских округов в области регулирования цен (тарифов) в сфере теплоснабжения

    1. Регулирование цен (тарифов) в сфере теплоснабжения осуществляется в соответствии со следующими основными принципами:

    1) обеспечение доступности тепловой энергии (мощности), теплоносителя для потребителей;

    2) обеспечение экономической обоснованности расходов теплоснабжающих организаций, теплосетевых организаций на производство, передачу и сбыт тепловой энергии (мощности), теплоносителя;

    3) обеспечение достаточности средств для финансирования мероприятий по надежному функционированию и развитию систем теплоснабжения;

    Тематики

    EN

    DE

    FR

    3.1.42 теплоснабжение (space heating): Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.

    Источник: ГОСТ Р 54860-2011: Теплоснабжение зданий. Общие положения методики расчета энергопотребности и эффективности систем теплоснабжения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > теплоснабжение

  • 34 теплоснабжение

    1. distribution de chaleur

     

    теплоснабжение
    Обеспечение потребителей теплом.
    [ ГОСТ 19431-84]

    теплоснабжение
    Процесс подвода тепла к зданию с целью обеспечения тепловых потребностей на отопление, вентиляцию и горячее водоснабжение.
    [ ГОСТ Р 54860-2011]

    теплоснабжение
    Совокупность мероприятий по обеспечению систем отопления, вентиляции и горячего водоснабжения теплом с помощью теплоносителя
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Федеральный закон РФ N 190-ФЗ
    от 27 июля 2010 года

    О ТЕПЛОСНАБЖЕНИИ

    (в ред. Федеральных законов от 04.06.2011 N 123-ФЗ, от 18.07.2011 N 242-ФЗ, от 07.12.2011 N 417-ФЗ (ред. 30.12.2012), от 25.06.2012 N 93-ФЗ, от 30.12.2012 N 291-ФЗ, от 30.12.2012 N 318-ФЗ)

    Принят Государственной Думой 9 июля 2010 года

    Одобрен Советом Федерации 14 июля 2010 года

    Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ

    Статья 1. Предмет регулирования настоящего Федерального закона

    1. Настоящий Федеральный закон устанавливает правовые основы экономических отношений, возникающих в связи с производством, передачей, потреблением тепловой энергии, тепловой мощности, теплоносителя с использованием систем теплоснабжения, созданием, функционированием и развитием таких систем, а также определяет полномочия органов государственной власти, органов местного самоуправления поселений, городских округов по регулированию и контролю в сфере теплоснабжения, права и обязанности потребителей тепловой энергии, теплоснабжающих организаций, теплосетевых организаций.

    2. Отношения, связанные с горячим водоснабжением, осуществляемым с использованием открытых систем теплоснабжения (горячего водоснабжения), регулируются настоящим Федеральным законом, за исключением отношений, связанных с обеспечением качества и безопасности горячей воды.

    3. К отношениям, связанным с производством, передачей, потреблением горячей воды при осуществлении горячего водоснабжения с использованием открытых систем теплоснабжения (горячего водоснабжения), применяются положения настоящего Федерального закона, регулирующие производство, передачу, потребление теплоносителя, если иное не предусмотрено настоящим Федеральным законом.

    Статья 2. Основные понятия, используемые в настоящем Федеральном законе

    Для целей настоящего Федерального закона используются следующие основные понятия:

    1) тепловая энергия - энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);

    2) качество теплоснабжения - совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;

    3) источник тепловой энергии - устройство, предназначенное для производства тепловой энергии;

    4) теплопотребляющая установка - устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;

    4.1) теплоноситель - пар, вода, которые используются для передачи тепловой энергии. Теплоноситель в виде воды в открытых системах теплоснабжения (горячего водоснабжения) может использоваться для теплоснабжения и для горячего водоснабжения;

    5) тепловая сеть - совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;

    6) тепловая мощность (далее - мощность) - количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;

    7) тепловая нагрузка - количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;

    8) теплоснабжение - обеспечение потребителей тепловой энергии тепловой энергией, теплоносителем, в том числе поддержание мощности;

    9) потребитель тепловой энергии (далее также - потребитель) - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;

    10) инвестиционная программа организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, - программа мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения (технологического присоединения) теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения;

    11) теплоснабжающая организация - организация, осуществляющая продажу потребителям и (или) теплоснабжающим организациям произведенных или приобретенных тепловой энергии (мощности), теплоносителя и владеющая на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в системе теплоснабжения, посредством которой осуществляется теплоснабжение потребителей тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    12) передача тепловой энергии, теплоносителя - совокупность организационно и технологически связанных действий, обеспечивающих поддержание тепловых сетей в состоянии, соответствующем установленным техническими регламентами требованиям, прием, преобразование и доставку тепловой энергии, теплоносителя;

    13) коммерческий учет тепловой энергии, теплоносителя (далее также - коммерческий учет) - установление количества и качества тепловой энергии, теплоносителя, производимых, передаваемых или потребляемых за определенный период, с помощью приборов учета тепловой энергии, теплоносителя (далее - приборы учета) или расчетным путем в целях использования сторонами при расчетах в соответствии с договорами;

    14) система теплоснабжения - совокупность источников тепловой энергии и теплопотребляющих установок, технологически соединенных тепловыми сетями;

    15) режим потребления тепловой энергии - процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;

    16) теплосетевая организация - организация, оказывающая услуги по передаче тепловой энергии (данное положение применяется к регулированию сходных отношений с участием индивидуальных предпринимателей);

    17) надежность теплоснабжения - характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;

    18) регулируемый вид деятельности в сфере теплоснабжения - вид деятельности в сфере теплоснабжения, при осуществлении которого расчеты за товары, услуги в сфере теплоснабжения осуществляются по ценам (тарифам), подлежащим в соответствии с настоящим Федеральным законом государственному регулированию, а именно:

    а) реализация тепловой энергии (мощности), теплоносителя, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены реализации по соглашению сторон договора;

    б) оказание услуг по передаче тепловой энергии, теплоносителя;

    в) оказание услуг по поддержанию резервной тепловой мощности, за исключением установленных настоящим Федеральным законом случаев, при которых допускается установление цены услуг по соглашению сторон договора;

    19) орган регулирования тарифов в сфере теплоснабжения (далее также - орган регулирования) - уполномоченный Правительством Российской Федерации федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения (далее - федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения), уполномоченный орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) (далее - орган исполнительной власти субъекта Российской Федерации в области государственного регулирования цен (тарифов) либо орган местного самоуправления поселения или городского округа в случае наделения соответствующими полномочиями законом субъекта Российской Федерации, осуществляющие регулирование цен (тарифов) в сфере теплоснабжения;

    19.1) открытая система теплоснабжения (горячего водоснабжения) - технологически связанный комплекс инженерных сооружений, предназначенный для теплоснабжения и горячего водоснабжения путем отбора горячей воды из тепловой сети;

    20) схема теплоснабжения - документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;

    21) резервная тепловая мощность - тепловая мощность источников тепловой энергии и тепловых сетей, необходимая для обеспечения тепловой нагрузки теплопотребляющих установок, входящих в систему теплоснабжения, но не потребляющих тепловой энергии, теплоносителя;

    22) топливно-энергетический баланс - документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию субъекта Российской Федерации или муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

    23) тарифы в сфере теплоснабжения - система ценовых ставок, по которым осуществляются расчеты за тепловую энергию (мощность), теплоноситель и за услуги по передаче тепловой энергии, теплоносителя;

    24) точка учета тепловой энергии, теплоносителя (далее также - точка учета) - место в системе теплоснабжения, в котором с помощью приборов учета или расчетным путем устанавливаются количество и качество производимых, передаваемых или потребляемых тепловой энергии, теплоносителя для целей коммерческого учета;

    25) комбинированная выработка электрической и тепловой энергии - режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии;

    26) б азовый режим работы источника тепловой энергии - режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;

    27) "пиковый" режим работы источника тепловой энергии - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

    28) единая теплоснабжающая организация в системе теплоснабжения (далее - единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти, уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    29) бездоговорное потребление тепловой энергии - потребление тепловой энергии, теплоносителя без заключения в установленном порядке договора теплоснабжения, либо потребление тепловой энергии, теплоносителя с использованием теплопотребляющих установок, подключенных (технологически присоединенных) к системе теплоснабжения с нарушением установленного порядка подключения (технологического присоединения), либо потребление тепловой энергии, теплоносителя после введения ограничения подачи тепловой энергии в объеме, превышающем допустимый объем потребления, либо потребление тепловой энергии, теплоносителя после предъявления требования теплоснабжающей организации или теплосетевой организации о введении ограничения подачи тепловой энергии или прекращении потребления тепловой энергии, если введение такого ограничения или такое прекращение должно быть осуществлено потребителем;

    30) радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение (технологическое присоединение) теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;

    31) плата за подключение (технологическое присоединение) к системе теплоснабжения - плата, которую вносят лица, осуществляющие строительство здания, строения, сооружения, подключаемых (технологически присоединяемых) к системе теплоснабжения, а также плата, которую вносят лица, осуществляющие реконструкцию здания, строения, сооружения в случае, если данная реконструкция влечет за собой увеличение тепловой нагрузки реконструируемых здания, строения, сооружения (далее также - плата за подключение (технологическое присоединение);

    32) живучесть - способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок.

    Статья 3. Общие принципы организации отношений и основы государственной политики в сфере теплоснабжения

    1. Общими принципами организации отношений в сфере теплоснабжения являются:

    1) обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов;

    2) обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами;

    3) обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения;

    4) развитие систем централизованного теплоснабжения;

    5) соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей;

    6) обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала;

    7) обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;

    8) обеспечение экологической безопасности теплоснабжения.

    2. Государственная политика в сфере теплоснабжения направлена на обеспечение соблюдения общих принципов организации отношений в сфере теплоснабжения, установленных настоящей статьей.

    Глава 2. ПОЛНОМОЧИЯ ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ, ОРГАНОВ МЕСТНОГО САМОУПРАВЛЕНИЯ ПОСЕЛЕНИЙ, ГОРОДСКИХ ОКРУГОВ В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 4. Полномочия Правительства Российской Федерации, федеральных органов исполнительной власти в сфере теплоснабжения

    1. К полномочиям Правительства Российской Федерации в сфере теплоснабжения относятся:

    1) разработка государственной политики в сфере теплоснабжения, являющейся частью энергетической стратегии России;

    2) утверждение правил организации теплоснабжения;

    3) утверждение правил подключения (технологического присоединения) к системам теплоснабжения;

    3.1) утверждение правил коммерческого учета тепловой энергии, теплоносителя;

    4) утверждение правил согласования и утверждения инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, а также требований к составу и содержанию таких программ (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике);

    5) утверждение стандартов раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, органами регулирования;

    6) утверждение основ ценообразования в сфере теплоснабжения, правил регулирования цен (тарифов) в сфере теплоснабжения, которые должны включать в себя сроки рассмотрения дел об установлении таких тарифов, исчерпывающий перечень представляемых организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, документов, определение условий и порядка принятия решений об отмене регулирования таких тарифов;

    7) утверждение порядка рассмотрения разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации в области государственного регулирования цен (тарифов), органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, потребителями тепловой энергии при установлении цен (тарифов) в сфере теплоснабжения, при разработке, утверждении и актуализации схем теплоснабжения;

    8) утверждение порядка определения системы мер по обеспечению надежности систем теплоснабжения;

    8.1) утверждение порядка определения целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    9) утверждение порядка вывода в ремонт и из эксплуатации источников тепловой энергии, тепловых сетей;

    10) утратил силу с 1 января 2013 года. - Федеральный закон от 07.12.2011 N 417-ФЗ;

    11) утверждение требований к схемам теплоснабжения, порядку их разработки и утверждения;

    12) утверждение порядка установления долгосрочных параметров регулирования деятельности организаций в отнесенной законодательством Российской Федерации к сферам деятельности субъектов естественных монополий сфере теплоснабжения и (или) цен (тарифов) в сфере теплоснабжения, которые подлежат регулированию в соответствии с перечнем, определенным в статье 8 настоящего Федерального закона;

    13) утверждение порядка заключения долгосрочных договоров теплоснабжения по ценам, определенным соглашением сторон, в целях обеспечения потребления тепловой энергии (мощности), теплоносителя объектами, потребляющими тепловую энергию (мощность), теплоноситель и введенными в эксплуатацию после 1 января 2010 года;

    14) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил определения стоимости активов и инвестированного капитала, правил ведения их раздельного учета, применяемых при осуществлении деятельности, регулируемой с использованием метода доходности инвестированного капитала;

    15) утверждение для целей регулирования цен (тарифов) в сфере теплоснабжения правил распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии;

    15.1) установление порядка расчета размера возмещения организациям, осуществляющим регулируемые виды деятельности в сфере теплоснабжения, недополученных доходов от регулируемых видов деятельности в сфере теплоснабжения за счет средств бюджетов бюджетной системы Российской Федерации в связи с принятием уполномоченными органами решений об изменении установленных долгосрочных тарифов в сфере теплоснабжения, и (или) необходимой валовой выручки теплоснабжающих организаций, теплосетевых организаций, определенной в соответствии с основами ценообразования в сфере теплоснабжения на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, и (или) долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, а также решений об установлении долгосрочных тарифов на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, отличных от долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения, установленных органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов или в пределах переданных полномочий органом местного самоуправления поселения или городского округа либо согласованных ими в соответствии с законодательством Российской Федерации о концессионных соглашениях, в установленных настоящим Федеральным законом случаях возмещения недополученных доходов;

    16) иные полномочия, установленные настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям федерального органа исполнительной власти, уполномоченного на реализацию государственной политики в сфере теплоснабжения, относятся:

    1) утратил силу с 1 апреля 2014 года. - Федеральный закон от 30.12.2012 N 291-ФЗ;

    2) утверждение правил оценки готовности к отопительному периоду;

    3) установление порядка расследования причин аварийных ситуаций при теплоснабжении;

    4) установление порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя, нормативов удельного расхода топлива при производстве тепловой энергии, нормативов запасов топлива на источниках тепловой энергии (за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе в целях государственного регулирования цен (тарифов) в сфере теплоснабжения;

    5) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более, а также нормативов запасов топлива на источниках тепловой энергии при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    6) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, расположенным в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, а также в городах федерального значения Москве и Санкт-Петербурге;

    7) ведение государственного реестра саморегулируемых организаций в сфере теплоснабжения;

    8) осуществление государственного контроля и надзора за деятельностью саморегулируемых организаций в сфере теплоснабжения;

    9) обращение в суд с требованием об исключении некоммерческой организации из государственного реестра саморегулируемых организаций в случаях, предусмотренных настоящим Федеральным законом;

    10) утверждение порядка составления топливно-энергетических балансов субъектов Российской Федерации, муниципальных образований;

    11) утверждение схем теплоснабжения поселений, городских округов с численностью населения пятьсот тысяч человек и более, а также городов федерального значения Москвы и Санкт-Петербурга, в том числе определение единой теплоснабжающей организации;

    12) рассмотрение разногласий, возникающих между органами исполнительной власти субъектов Российской Федерации, органами местного самоуправления поселений, городских округов, организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения, и потребителями при разработке, утверждении и актуализации схем теплоснабжения;

    13) утверждение порядка осуществления мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    14) утверждение методики комплексного определения показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения, и порядка осуществления мониторинга таких показателей;

    15) утверждение порядка осуществления контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, утверждаемых в соответствии с законодательством Российской Федерации об электроэнергетике).

    3. Федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения реализует предусмотренные частью 2 статьи 7 настоящего Федерального закона полномочия в области государственного регулирования цен (тарифов) в сфере теплоснабжения.

    4. К полномочиям федерального антимонопольного органа относятся:

    1) антимонопольное регулирование и контроль в сфере теплоснабжения;

    2) согласование решений органов исполнительной власти субъектов Российской Федерации об отмене регулирования тарифов в сфере теплоснабжения и о введении регулирования тарифов в сфере теплоснабжения после их отмены, выдача предписаний об отмене регулирования тарифов в сфере теплоснабжения.

    5. Федеральные органы исполнительной власти, указанные в частях 2 - 4 настоящей статьи, осуществляют контроль (надзор) за соблюдением органами исполнительной власти субъектов Российской Федерации и органами местного самоуправления поселений, городских округов требований законодательства Российской Федерации в сфере теплоснабжения.

    6. Правительство Российской Федерации или уполномоченный федеральный орган исполнительной власти в области государственного регулирования тарифов в сфере теплоснабжения устанавливает (в случаях и в порядке, которые определены основами ценообразования в сфере теплоснабжения) предельные (минимальные и (или) максимальные) индексы роста цен (тарифов), учитываемые при переходе к государственному регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы применяются в отношении цен (тарифов), рассчитываемых на каждый год долгосрочного периода регулирования в порядке, установленном основами ценообразования в сфере теплоснабжения, при переходе к регулированию цен (тарифов) на основе долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения (при переходе к новому долгосрочному периоду регулирования). Указанные предельные (минимальные и (или) максимальные) индексы на второй долгосрочный период регулирования и последующие долгосрочные периоды регулирования определяются с учетом обеспечения возврата и доходности капитала, инвестированного в течение предыдущего долгосрочного периода регулирования или предыдущих долгосрочных периодов регулирования в соответствии с принятыми органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов либо в пределах переданных полномочий органом местного самоуправления поселения или городского округа решениями об установлении тарифов или долгосрочных параметров государственного регулирования цен (тарифов) в сфере теплоснабжения.

    Статья 5. Полномочия органов государственной власти субъектов Российской Федерации в сфере теплоснабжения

    1. Органы государственной власти субъектов Российской Федерации осуществляют полномочия по государственному регулированию и контролю в сфере теплоснабжения в соответствии с настоящим Федеральным законом и другими федеральными законами.

    2. К полномочиям органов исполнительной власти субъектов Российской Федерации в сфере теплоснабжения относятся:

    1) реализация предусмотренных частью 3 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    2) утверждение нормативов технологических потерь при передаче тепловой энергии, теплоносителя по тепловым сетям, за исключением тепловых сетей, расположенных в поселениях, городских округах с численностью населения пятьсот тысяч человек и более, в городах федерального значения Москве и Санкт-Петербурге;

    3) утверждение нормативов удельного расхода топлива при производстве тепловой энергии источниками тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    4) утверждение нормативов запасов топлива на источниках тепловой энергии, за исключением источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии с установленной мощностью производства электрической энергии 25 мегаватт и более;

    5) утверждение инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, с применением установленных органами исполнительной власти субъекта Российской Федерации целевых показателей надежности и качества поставляемых товаров и оказываемых услуг такими организациями, по согласованию с органами местного самоуправления поселений, городских округов;

    6) определение системы мер по обеспечению надежности систем теплоснабжения поселений, городских округов в соответствии с правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    7) составление топливно-энергетического баланса субъекта Российской Федерации;

    7.1) осуществление мониторинга разработки и утверждения схем теплоснабжения поселений, городских округов с численностью населения менее чем пятьсот тысяч человек;

    7.2) осуществление мониторинга показателей технико-экономического состояния систем теплоснабжения (за исключением теплопотребляющих установок потребителей тепловой энергии, теплоносителя, а также источников тепловой энергии, функционирующих в режиме комбинированной выработки электрической и тепловой энергии), в том числе показателей физического износа и энергетической эффективности объектов теплоснабжения;

    7.3) осуществление контроля за выполнением инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения (за исключением таких программ, которые утверждаются в соответствии с законодательством Российской Федерации об электроэнергетике), в том числе за достижением этими организациями целевых показателей надежности и качества поставляемых товаров и оказываемых услуг в результате реализации мероприятий таких программ;

    7.4) определение целевых и фактических показателей надежности и качества поставляемых товаров и оказываемых услуг организациями, осуществляющими регулируемые виды деятельности в сфере теплоснабжения;

    8) иные полномочия, предусмотренные другими федеральными законами.

    Статья 6. Полномочия органов местного самоуправления поселений, городских округов в сфере теплоснабжения

    1. К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относятся:

    1) организация обеспечения надежного теплоснабжения потребителей на территориях поселений, городских округов, в том числе принятие мер по организации обеспечения теплоснабжения потребителей в случае неисполнения теплоснабжающими организациями или теплосетевыми организациями своих обязательств либо отказа указанных организаций от исполнения своих обязательств;

    2) рассмотрение обращений потребителей по вопросам надежности теплоснабжения в порядке, установленном правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

    3) реализация предусмотренных частями 5 - 7 статьи 7 настоящего Федерального закона полномочий в области регулирования цен (тарифов) в сфере теплоснабжения;

    4) выполнение требований, установленных правилами оценки готовности поселений, городских округов к отопительному периоду, и контроль за готовностью теплоснабжающих организаций, теплосетевых организаций, отдельных категорий потребителей к отопительному периоду;

    5) согласование вывода источников тепловой энергии, тепловых сетей в ремонт и из эксплуатации;

    6) утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации;

    7) согласование инвестиционных программ организаций, осуществляющих регулируемые виды деятельности в сфере теплоснабжения, за исключением таких программ, которые согласовываются в соответствии с законодательством Российской Федерации об электроэнергетике.

    2. Полномочия органов местного самоуправления городов федерального значения Москвы и Санкт-Петербурга по организации теплоснабжения на внутригородских территориях определяются законами указанных субъектов Российской Федерации исходя из необходимости сохранения единства городских хозяйств с учетом положений настоящего Федерального закона.

    Глава 3. ГОСУДАРСТВЕННАЯ ПОЛИТИКА ПРИ УСТАНОВЛЕНИИ РЕГУЛИРУЕМЫХ ЦЕН (ТАРИФОВ) В СФЕРЕ ТЕПЛОСНАБЖЕНИЯ

    Статья 7. Принципы регулирования цен (тарифов) в сфере теплоснабжения и полномочия органов исполнительной власти, органов местного самоуправления поселений, городских округов в области регулирования цен (тарифов) в сфере теплоснабжения

    1. Регулирование цен (тарифов) в сфере теплоснабжения осуществляется в соответствии со следующими основными принципами:

    1) обеспечение доступности тепловой энергии (мощности), теплоносителя для потребителей;

    2) обеспечение экономической обоснованности расходов теплоснабжающих организаций, теплосетевых организаций на производство, передачу и сбыт тепловой энергии (мощности), теплоносителя;

    3) обеспечение достаточности средств для финансирования мероприятий по надежному функционированию и развитию систем теплоснабжения;

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > теплоснабжение

  • 35 правила

    с.; мн.; в соч.

    правила, регламентирующие конструкцию и эксплуатацию — construction-and-use laws

    правила, регламентирующие конструкцию и эффективность тормозов — braking laws

    - правила безопасности
    - правила движения
    - правила обслуживания
    - правила уличного движения
    - правила эксплуатации

    Русско-английский автомобильный словарь > правила

  • 36 дистанционное техническое обслуживание

    1. remote sevice
    2. remote maintenance

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > дистанционное техническое обслуживание

  • 37 управление аварийными сигналами

    1. alarm management

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление аварийными сигналами

См. также в других словарях:

  • ЭФФЕКТИВНОСТЬ ЭКСПЛУАТАЦИИ — относительная доля (в процентах) потенциальной жертвы или кормовых растений, поглощаемых хищниками или растительноядными животными; отношение количества заглатываемой пищи к продукции жертвы. Экологический энциклопедический словарь. Кишинев:… …   Экологический словарь

  • эффективность эксплуатации — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN running efficiency …   Справочник технического переводчика

  • эффективность функционирования — выгоды от эксплуатации — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы выгоды от эксплуатации EN operating benefits …   Справочник технического переводчика

  • ЭФФЕКТИВНОСТЬ ГЕОЛОГОРАЗВЕДОЧНЫХ РАБОТ — результативность геологоразведочных работ и стоимость разведки единицы запасов минер. сырья. Существуют следующие показатели ее оценки: 1. Отношение стоимости разведки 1 т запасов сырья к ценности (рентабельности) извлекаемой из нее продукции. 2 …   Геологическая энциклопедия

  • эффективность снижения загрязнения окружающей среды — (напр. на тонну сжигаемого угля за счёт новых технологий, улучшения режимов эксплуатации котельных установок и др.) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN environmental efficiency …   Справочник технического переводчика

  • эксплуатационная эффективность — оперативная эффективность эффективность эксплуатации — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы оперативная эффективностьэффективность… …   Справочник технического переводчика

  • Sukhoi Superjet100: передовые технологии, эффективность, комфорт — Sukhoi Superjet100 (SSJ100) главный российский проект по производству авиалайнеров. Проект создания семейства российских региональных самолетов Sukhoi Superjet 100 осуществляет ЗАО «Гражданские самолеты Сухого», образованное в 2000 г …   Энциклопедия ньюсмейкеров

  • Гарантийный срок эксплуатации — время, в течение которого гарантируется заданная огнезащитная эффективность покрытия, эксплуатируемого в соответствии с технической документацией. Источник: НПБ 236 …   Словарь-справочник терминов нормативно-технической документации

  • Производственная эффективность использования биоценозов — ежегодный доход от эксплуатации биоценозов. По Б. А. Быкову (1983), должна исчисляться исходя из среднегодовой продуктивности биоценозов и может измеряться нормой их рентабельности (Нр, в %): где В стоимость полученной продукции, С ее… …   Экологический словарь

  • ТСН ЭК 97: Технические правила и нормы строительства, эксплуатации и контроля работы сооружений систем водоотведения объектов малоэтажной застройки на территории Московской области — Терминология ТСН ЭК 97: Технические правила и нормы строительства, эксплуатации и контроля работы сооружений систем водоотведения объектов малоэтажной застройки на территории Московской области: 1.5.10. Должностные инструкции. Должностные… …   Словарь-справочник терминов нормативно-технической документации

  • ТСН ЭК 97 МО: Технические правила и нормы строительства, эксплуатации и контроля работы сооружений систем водоотведения объектов малоэтажной застройки на территории Московской области — Терминология ТСН ЭК 97 МО: Технические правила и нормы строительства, эксплуатации и контроля работы сооружений систем водоотведения объектов малоэтажной застройки на территории Московской области: 1.5.10. Должностные инструкции. Должностные… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»