Перевод: с русского на все языки

со всех языков на русский

через+некоторое+время

  • 61 шуко-шагал жап гыч

    Шуко-шагал жап гыч контор имне военкомым Тойкансолаш наҥгайыш. М.-Азмекей. Через некоторое время конторская лошадь увезла военкома в Тойкансолу.

    Идиоматическое выражение. Основное слово:

    шуко-шагал

    Марийско-русский словарь > шуко-шагал жап гыч

  • 62 шуко-шагал лиймеке

    Шуко-шагал жап гыч контор имне военкомым Тойкансолаш наҥгайыш. М.-Азмекей. Через некоторое время конторская лошадь увезла военкома в Тойкансолу.

    Идиоматическое выражение. Основное слово:

    шуко-шагал

    Марийско-русский словарь > шуко-шагал лиймеке

  • 63 вибрация контакта

    1. Kontaktflattern, n

     

    вибрация контакта
    -
    [Интент]

    вибрация в контактах

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    вибрация контактов

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    EN

    contact chatter
    unintended momentary opening of closed contacts or closing of open contacts due to vibration, shock, etc
    [IEV ref 444-04-35]

    FR

    frémissement d'un contact, m
    ouverture momentanée et non intentionnelle de contacts fermés, ou fermeture momentanée de contacts ouverts, due à des vibrations, à des chocs, etc.
    [IEV ref 444-04-35]

    Вибрация контактов электрических аппаратов

    Вибрация контактов — явление периодического отскока и последующего замыкания контактов под действием различных причин. Вибрация может быть затухающей, когда амплитуды отскоков уменьшаются и через некоторое время она прекращается, и незатухающей, когда явление вибрации может продолжаться любое время.

    Вибрация контактов является чрезвычайно вредной, так как через контакты проходит ток и в момент отскоков между контактами появляется дуга, вызывающая усиленный износ, а иногда и сваривание контактов.

    Причиной затухающей вибрации, получающейся при включении контактов, является удар контакта о контакт и последующий отскок их друг от друга вследствие упругости материала контактов —механическая вибрация.

    Устранить полностью механическую вибрацию невозможно, но всегда желательно, чтобы как амплитуда первого отскока, так и полное время вибрации были наименьшими.

    Время вибрации характеризуется отношением массы контакта к начальному контактному нажатию. Эту величину во всех случаях желательно иметь наименьшей. Ее можно уменьшать за счет снижения массы подвижного контакта и увеличения начального контактного нажатия; однако уменьшение массы не должно влиять на нагрев контактов.

    Особенно большие значения времени вибрации при включении получаются, если в момент касания контактное нажатие не возрастает скачкообразно до своего действительного значения. Это бывает при неправильной конструкции и кинематической схеме подвижного контакта, когда после касания контактов начальное нажатие устанавливается лишь после выбора люфтов в шарнирах.

    Необходимо отметить, что увеличение процесса притирания, как правило, увеличивает время вибрации, так как контактные поверхности при перемещении относительно друг друга встречают неровности и шероховатости, способствующие отскоку подвижного контакта. Это означает, что величина притирания должна выбираться в оптимальных размерах, обычно определяемых опытным путем.

    Причиной незатухающей вибрации контактов
    , появляющейся при их замкнутом положении, являются электродинамические усилия. Так как вибрация под действием электродинамических усилий появляется при больших значениях тока, то образующаяся дуга весьма интенсивна и вследствие такой вибрации контактов, как правило, происходит их сваривание. Таким образом, этот вид вибрации контактов является совершенно недопустимым.

    Для уменьшении возможности возникновения вибрации под действием электродинамических усилий нередко токоподводы к контактам выполняются таким образом, чтобы электродинамические усилия, действующие на подвижный контакт, компенсировали электродинамические усилия, возникающие в контактных точках.

    При прохождении через контакты тока такой величины, при которой температура контактных точек достигает температуры плавления материала контактов, между ними появляются силы сцепления и происходит сваривание контактов. Сварившимися считаются такие контакты, когда сила, обеспечивающая их расхождение, не может преодолеть сил сцепления сварившихся контактов.

    Наиболее простым средством предотвращения сваривания контактов является применение соответствующих материалов, а также целесообразное увеличение контактного нажатия.

    [ Источник]

    Тематики

    Синонимы

    EN

    DE

    • Kontaktflattern, n

    FR

    • frémissement d'un contact, m

    IT

    SP

    Русско-немецкий словарь нормативно-технической терминологии > вибрация контакта

  • 64 вибрация контакта

    1. relay chatter
    2. contact vibration
    3. contact chatter
    4. chatter

     

    вибрация контакта
    -
    [Интент]

    вибрация в контактах

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    вибрация контактов

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    EN

    contact chatter
    unintended momentary opening of closed contacts or closing of open contacts due to vibration, shock, etc
    [IEV ref 444-04-35]

    FR

    frémissement d'un contact, m
    ouverture momentanée et non intentionnelle de contacts fermés, ou fermeture momentanée de contacts ouverts, due à des vibrations, à des chocs, etc.
    [IEV ref 444-04-35]

    Вибрация контактов электрических аппаратов

    Вибрация контактов — явление периодического отскока и последующего замыкания контактов под действием различных причин. Вибрация может быть затухающей, когда амплитуды отскоков уменьшаются и через некоторое время она прекращается, и незатухающей, когда явление вибрации может продолжаться любое время.

    Вибрация контактов является чрезвычайно вредной, так как через контакты проходит ток и в момент отскоков между контактами появляется дуга, вызывающая усиленный износ, а иногда и сваривание контактов.

    Причиной затухающей вибрации, получающейся при включении контактов, является удар контакта о контакт и последующий отскок их друг от друга вследствие упругости материала контактов —механическая вибрация.

    Устранить полностью механическую вибрацию невозможно, но всегда желательно, чтобы как амплитуда первого отскока, так и полное время вибрации были наименьшими.

    Время вибрации характеризуется отношением массы контакта к начальному контактному нажатию. Эту величину во всех случаях желательно иметь наименьшей. Ее можно уменьшать за счет снижения массы подвижного контакта и увеличения начального контактного нажатия; однако уменьшение массы не должно влиять на нагрев контактов.

    Особенно большие значения времени вибрации при включении получаются, если в момент касания контактное нажатие не возрастает скачкообразно до своего действительного значения. Это бывает при неправильной конструкции и кинематической схеме подвижного контакта, когда после касания контактов начальное нажатие устанавливается лишь после выбора люфтов в шарнирах.

    Необходимо отметить, что увеличение процесса притирания, как правило, увеличивает время вибрации, так как контактные поверхности при перемещении относительно друг друга встречают неровности и шероховатости, способствующие отскоку подвижного контакта. Это означает, что величина притирания должна выбираться в оптимальных размерах, обычно определяемых опытным путем.

    Причиной незатухающей вибрации контактов
    , появляющейся при их замкнутом положении, являются электродинамические усилия. Так как вибрация под действием электродинамических усилий появляется при больших значениях тока, то образующаяся дуга весьма интенсивна и вследствие такой вибрации контактов, как правило, происходит их сваривание. Таким образом, этот вид вибрации контактов является совершенно недопустимым.

    Для уменьшении возможности возникновения вибрации под действием электродинамических усилий нередко токоподводы к контактам выполняются таким образом, чтобы электродинамические усилия, действующие на подвижный контакт, компенсировали электродинамические усилия, возникающие в контактных точках.

    При прохождении через контакты тока такой величины, при которой температура контактных точек достигает температуры плавления материала контактов, между ними появляются силы сцепления и происходит сваривание контактов. Сварившимися считаются такие контакты, когда сила, обеспечивающая их расхождение, не может преодолеть сил сцепления сварившихся контактов.

    Наиболее простым средством предотвращения сваривания контактов является применение соответствующих материалов, а также целесообразное увеличение контактного нажатия.

    [ Источник]

    Тематики

    Синонимы

    EN

    DE

    • Kontaktflattern, n

    FR

    • frémissement d'un contact, m

    IT

    SP

    Русско-английский словарь нормативно-технической терминологии > вибрация контакта

  • 65 вибрация контакта

    1. frémissement d'un contact, m

     

    вибрация контакта
    -
    [Интент]

    вибрация в контактах

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    вибрация контактов

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    EN

    contact chatter
    unintended momentary opening of closed contacts or closing of open contacts due to vibration, shock, etc
    [IEV ref 444-04-35]

    FR

    frémissement d'un contact, m
    ouverture momentanée et non intentionnelle de contacts fermés, ou fermeture momentanée de contacts ouverts, due à des vibrations, à des chocs, etc.
    [IEV ref 444-04-35]

    Вибрация контактов электрических аппаратов

    Вибрация контактов — явление периодического отскока и последующего замыкания контактов под действием различных причин. Вибрация может быть затухающей, когда амплитуды отскоков уменьшаются и через некоторое время она прекращается, и незатухающей, когда явление вибрации может продолжаться любое время.

    Вибрация контактов является чрезвычайно вредной, так как через контакты проходит ток и в момент отскоков между контактами появляется дуга, вызывающая усиленный износ, а иногда и сваривание контактов.

    Причиной затухающей вибрации, получающейся при включении контактов, является удар контакта о контакт и последующий отскок их друг от друга вследствие упругости материала контактов —механическая вибрация.

    Устранить полностью механическую вибрацию невозможно, но всегда желательно, чтобы как амплитуда первого отскока, так и полное время вибрации были наименьшими.

    Время вибрации характеризуется отношением массы контакта к начальному контактному нажатию. Эту величину во всех случаях желательно иметь наименьшей. Ее можно уменьшать за счет снижения массы подвижного контакта и увеличения начального контактного нажатия; однако уменьшение массы не должно влиять на нагрев контактов.

    Особенно большие значения времени вибрации при включении получаются, если в момент касания контактное нажатие не возрастает скачкообразно до своего действительного значения. Это бывает при неправильной конструкции и кинематической схеме подвижного контакта, когда после касания контактов начальное нажатие устанавливается лишь после выбора люфтов в шарнирах.

    Необходимо отметить, что увеличение процесса притирания, как правило, увеличивает время вибрации, так как контактные поверхности при перемещении относительно друг друга встречают неровности и шероховатости, способствующие отскоку подвижного контакта. Это означает, что величина притирания должна выбираться в оптимальных размерах, обычно определяемых опытным путем.

    Причиной незатухающей вибрации контактов
    , появляющейся при их замкнутом положении, являются электродинамические усилия. Так как вибрация под действием электродинамических усилий появляется при больших значениях тока, то образующаяся дуга весьма интенсивна и вследствие такой вибрации контактов, как правило, происходит их сваривание. Таким образом, этот вид вибрации контактов является совершенно недопустимым.

    Для уменьшении возможности возникновения вибрации под действием электродинамических усилий нередко токоподводы к контактам выполняются таким образом, чтобы электродинамические усилия, действующие на подвижный контакт, компенсировали электродинамические усилия, возникающие в контактных точках.

    При прохождении через контакты тока такой величины, при которой температура контактных точек достигает температуры плавления материала контактов, между ними появляются силы сцепления и происходит сваривание контактов. Сварившимися считаются такие контакты, когда сила, обеспечивающая их расхождение, не может преодолеть сил сцепления сварившихся контактов.

    Наиболее простым средством предотвращения сваривания контактов является применение соответствующих материалов, а также целесообразное увеличение контактного нажатия.

    [ Источник]

    Тематики

    Синонимы

    EN

    DE

    • Kontaktflattern, n

    FR

    • frémissement d'un contact, m

    IT

    SP

    Русско-французский словарь нормативно-технической терминологии > вибрация контакта

  • 66 расходомер жидкости (газа)

    1. Durchflußmeßgerät

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 67 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 68 расходомер жидкости (газа)

    1. débitmètre

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 69 отравление реактора

    1. reactor poisoning

     

    отравление реактора
    йодная яма

    Поглощение нейтронов частью ядер, у которых сечения поглощения в области энергии тепловых нейтронов велики (образующихся при делении урана и плутония) концентрация которых относительно быстро достигает равновесного значения. Отравление реактора практически полностью определяется ядрами Xe-135 и Sm-149.
    Рассмотрим отравление Xe-135. Вероятность поглощения тепловых нейтронов этим нуклидом очень велика. Поэтому отравление наиболее существенно в реакторах на тепловых нейтронах и практически отсутствует в реакторах на быстрых нейтронах. Можно предположить, что Xe-135 возникает лишь при делении U-235, потому что выход Xe-135 слабо меняется из-за присутствия других делящих ядер.
    После пуска реактора количество Xe-135 вначале довольно резко возрастает, а затем, через некоторое время из-за ряда процессов достигает стационарного уровня (при работе реактора на стационарном уровне мощности). После остановки реактора количество ядер Xe-135 увеличивается и проходит через максимум. При уменьшении потока нейтронов до нуля прекращается убыль ядер Xe-135 вследствие поглощения нейтронов, которая является преобладающей при достаточно больших мощностях. В то же время скорость образования ядер Xe-135 уменьшается гораздо медленнее, так как время жизни I-135 достаточно велико. Таким образом, после остановки реактора происходит уменьшение реактивности (обусловленное увеличением отравления ксеноном), которое принято называть йодной ямой. Поэтому при пуске реактора после кратковременной остановки требуется запас реактивности для компенсации йодной ямы.
    С помощью специальных режимов остановки реактора удается заметно уменьшить глубину йодной ямы, а значит, и запас реактивности, необходимый для пуска реактора после кратковременной остановки. Нестационарное отравление реактора происходит не только при остановке реактора, но и при любом изменении его мощности. Если мощность реактора снижается, то имеет место травление аналогичное йодной яме, но меньшем в масштабе. Увеличение мощности сопровождается обратным эффектом - количество ксенона сначала уменьшается, а спустя некоторый промежуток времени увеличивается.
    Теперь рассмотрим отравление реактора Sm-149. Потеря нейтронов за счет отравления самарием значительно меньше, чем за счет отравления ксеноном. Аналогично Xe-135, после пуска реактора для Sm-149 наблюдается сначала рост концентрации самария, а потом насыщение. Время насыщения определяется мощностью реактора. При остановке реактора происходит возрастание количества ядер Sm-149 вследствие радиоактивного распада Рm-149 и наблюдается явление, аналогичное йодной яме, с тем, однако, отличием, что число ядер Sm-149 монотонно возрастает во времени (практически приближается к насыщению). Последнее связано со стабильностью Sm-149. Количество самария при насыщении тем больше, чем на большей мощности работал реактор до остановки. Уменьшение реактивности при остановке реактора, обусловленное отравлением Sm-149, значительно меньше глубины йодной ямы, зато в отличие от последней оно сохраняется во времени. Т.е. снижение реактивности вследствие поглощения нейтронов в активной зоне реактора образующимися продуктами деления (главным образом, Xe-135 и Sm-149).
    [ http://pripyat.forumbb.ru/viewtopic.php?id=25]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > отравление реактора

  • 70 шӱлалташ

    шӱлалташ
    Г.: шӱлӓлтӓш
    -ем
    1. дохнуть; дыхнуть; сделать вдох и выдох, сделать выдох

    «А ну, шӱлалте!» – командир ок чакне. «Мый чечас туге шӱлалтем, мардеж гай чоҥештен йомат!» – Ефрем Ильич тудым пырт гына шӱкал ок колто. «Ончыко» «А ну, дыхни!» – командир не отстаёт. «Я сейчас так дыхну, исчезнешь как ветер!» – Ефрем Ильич его чуть-чуть не толкнул.

    2. вздыхать, вздохнуть; делать (сделать) вздох, выражая какое-л. чувство

    Ласкан шӱлалташ свободно вздохнуть;

    нелын шӱлалташ тяжело вздохнуть.

    Маюк ала-молан ойгыра. Коклан келгын шӱлалта. Н. Лекайн. Маюк почему-то горюет. Иногда глубоко вздыхает.

    Изам ончале, ала-мом каласынеже ыле, но кугун веле шӱлалтыш. В. Исенеков. Мой старший брат посмотрел, хотел что-то сказать, но лишь глубоко вздохнул.

    3. дохнуть, подышать; дышать некоторое время

    Мичу госпиталь кудывечыш яндар южым шӱлалташ лекте. В. Иванов. Мичу вышел во двор госпиталя подышать свежим воздухом.

    4. выдохнуть; дыханием вытолкнуть из лёгких

    Шӱлалтет – шӱлыш ош шикшла оварген шалана. В. Юксерн. Выдохнешь – дыхание, как белый дым, рассеивается, клубясь.

    5. отдышаться; восстановить равномерность дыхания, нарушенную резкими физическими усилиями

    Куржмо деч вара шӱлалташ отдышаться после бега.

    Изиш лиймеке, ӱдыр шӱлалта: «Ну, марий, тый мыйым сеҥышыч. Мый ынде тыйын ватет лиям». С. Чавайн. Через некоторое время девушка отдышалась: «Ну, мужик, ты меня осилил. Теперь я стану твоей женой».

    6. перен. отдохнуть, передохнуть; сделать короткий перерыв для отдыха

    Паша деч вара шӱлалташ отдохнуть после работы.

    Самырык-влакланат таче шӱлалташ амал лекте. П. Корнилов. И для молодых сегодня представился случай отдохнуть.

    Кумшо атакым чактарымек, изиш шӱлалтена, шонышна. И. Васильев. Мы думали, что после отражения третьей атаки немного передохнём.

    Сравни с:

    каналташ
    7. перен. испарять, парить; выделять пар, влагу

    Лум кайыде, мланде шӱлалта – кинде удан шочеш. Пале. Земля парит до схода снегов – урожай будет плохой.

    Мланде шӱлалтыде, пӱям петыраш ок йӧрӧ – пӱчкын кая. Пале. Без испарения земли нельзя закрывать пруд – прорвёт.

    8. перен. поостыть, немного остыть

    Шешкыже ачажым мелна кочкаш шында. «Шӱрем шӱлалтышат дыр? – манын, подшым почын ончалеш. – О-ой, эше шокшо, шӱлалтенак огыл». Д. Орай. Сноха сажает свёкра есть блины. «Суп-то у меня, наверное, уже поостыл? – сказав, посмотрела в котёл. – Ой, ещё горячий, не остыл».

    9. перен. дохнуть; повеять, подуть, обдать чем-л.

    Пӱртӱс, уэмын, теле жап гыч лектын, шӱлалтыш леве южым оҥышкем. М. Большаков. Природа, обновившись, пережив зиму (букв. выйдя из зимнего периода), обдала тёплым воздухом мою грудь.

    Составные глаголы:

    Идиоматические выражения:

    Марийско-русский словарь > шӱлалташ

  • 71 несколько

    числит.
    1. several; 2. a few; 3. couple; 4. some
    Как русское числительное несколько, так и его английские эквиваленты обозначают неопределенное количество чего-либо. Русское числительное несколько относится как к одинаковым предметам, так и к разным, а английские эквиваленты избирательны в этом отношении.
    1. several — несколько ( разных объектов), небольшое количество ( чаще разных объектов): I have several reasons to object to your plan. — Я по нескольким причинам возражаю против вашего плана. At the crossroads they said goodbye and wenl their several ways. — На перекрестке они попрощались и пошли каждый своей дорогой.
    2. a few — несколько, немного; They met in a few days. — Они встретились через несколько дней. Can I borrow your dictionary for a few days? — Можно я возьму ваш словарь на несколько дней? Не said he had quite a few friends there. — Он сказал, что у него мало друзей там. Do you have any questions? — Oh, yes quite a few. — У Вас есть вопросы? — О, да, несколько.
    3. couple — несколько, немного, неопределенное количеThere were a couple of dancing pairs in the hall. — В зале было несколько танцующих пар. I saw him a couple of days ago. — Я его видел пару дней тому назад./Я его видел несколько дней тому назад. Не is away at the moment, but we expect him in a couple of hours. — Его сейчас нет, но мы ждем его через два-три часа./Его сейчас нет, но мы ждем его через некоторое время.
    4. some — несколько ( обычно не переводится): 1 have some books in Polish, but not many. — У меня есть книги (несколько) на польском языке, но немного. There arc some slight mistakes in your essay, but on the whole it is quite good. — В вашем очерке есть мелкие ошибки, но в целом он совсем/ весьма неплох.

    Русско-английский объяснительный словарь > несколько

  • 72 В-325

    ВСЁ ЖЕ (Particle often after contrastive Conj «но» or «a» or Conj «и») notwithstanding or in contrast to some expressed or implied circumstance, fact, event etc
    all the same
    still (and) yet nevertheless nonetheless even so (in limited contexts) X did do sth. (has done sth. etc) at any rate.
    (Маша:) Я вам по совести: если бы он (Константин) ранил себя серьёзно, то я не стала бы жить ни одной минуты. А всё же я храбрая. Вот взяла и решила: вырву эту любовь из своего сердца, с корнем вырву (Чехов 6). (М.:) I'll tell you honestly: if he'd (Konstantin had) hurt himself seriously, I wouldn't have gone on living, not for one minute. But all the same I've got courage. So I up and decided: I'll rip this love right out of my heart, rip it out by the roots (6c).
    Если в рассказе Петра Александровича могло быть преувеличение, то всё же должно было быть и нечто похожее на правду (Достоевский 1). Though Pyotr Alexandrovich may have exaggerated, still there must have been some semblance of truth in his story (1a).
    По рассказу дяди Сандро, это самое должностное лицо, к которому он обращался со своим предложением, не встало с места при его появлении в кабинете, а также не встало с места, когда он уходил. Возможно, говорил дядя Сандро, он этим хотел показать, что очень прочно сидит на своем месте. Всё же через некоторое время это самое должностное лицо вынуждено было покинуть своё место, якобы в связи с переходом на другую работу... (Искандер 3)....According to Uncle Sandro, the official to whom he took this suggestion did not stand up when he came into the office and did not stand up when he left, either. Possibly, Uncle Sandro said, he meant to imply that he sat as solidly in his job as in his chair. Nevertheless, after a while this same official was forced to leave his job, supposedly in connection with a transfer to another one... (3a).
    «Она (Цветаева) так говорила (, что не любит театр и не тянется к театру,) и всё же написала несколько пьес. Вы сами свидетельствуете, что это превосходная пьеса» (Гладков 1). "She (Tsvetayeva) may have said this (that she does not herself like the theatre and is not drawn to it), yet even so she wrote several plays-and you yourself say this is an excellent one" (1a).
    Он (дядя Сандро) стал просить помочь ему выхлопотать пенсию... «Дядя Сандро, - сказал я, - но ведь у вас нет трудового стажа»... Между прочим, пенсию он всё же получил той же зимой (Искандер 3)....He (Uncle Sandro) began asking for help in wangling a pension...."Uncle Sandro," I said, "you don't have any work record."...By the way, he did receive a pension, that very winter (3a).
    ...Этот Дмитрий Федорович был один только из трёх сыновей Фёдора Павловича, который рос в убеждении, что он все же имеет некоторое состояние и когда достигнет совершенных лет, то будет независим (Достоевский 1)....This Dmitri Fyodorovich was the only one of Fyodor Pav-lovich's three sons who grew up in the conviction that he, at any rate, had some property and would be independent when he came of age (1a).

    Большой русско-английский фразеологический словарь > В-325

  • 73 все же

    [Particle; often after contrastive Conj "но" or " а" or Conj "и"]
    =====
    notwithstanding or in contrast to some expressed or implied circumstance, fact, event etc:
    - [in limited contexts] X did do sth. (has done sth. etc);
    - at any rate.
         ♦ [Маша:] Я вам по совести: если бы он [Константин] ранил себя серьёзно, то я не стала бы жить ни одной минуты. А всё же я храбрая. Вот взяла и решила: вырву эту любовь из своего сердца, с корнем вырву (Чехов 6). [М.:] I'll tell you honestly: if he'd [Konstantin had] hurt himself seriously, I wouldn't have gone on living, not for one minute. But all the same I've got courage. So I up and decided: I'll rip this love right out of my heart, rip it out by the roots (6c).
         ♦ Если в рассказе Петра Александровича могло быть преувеличение, то всё же должно было быть и нечто похожее на правду (Достоевский 1). Though Pyotr Alexandrovich may have exaggerated, still there must have been some semblance of truth in his story (1a).
         ♦...По рассказу дяди Сандро, это самое должностное лицо, к которому он обращался со своим предложением, не встало с места при его появлении в кабинете, а также не встало с места, когда он уходил. Возможно, говорил дядя Сандро, он этим хотел показать, что очень прочно сидит на своем месте. Всё же через некоторое время это самое должностное лицо вынуждено было покинуть своё место, якобы в связи с переходом на другую работу... (Искандер 3)....According to Uncle Sandro, the official to whom he took this suggestion did not stand up when he came into the office and did not stand up when he left, either. Possibly, Uncle Sandro said, he meant to imply that he sat as solidly in his job as in his chair. Nevertheless, after a while this same official was forced to leave his job, supposedly in connection with a transfer to another one... (3a).
         ♦ "Она [Цветаева] так говорила [, что не любит театр и не тянется к театру,] и всё же написала несколько пьес. Вы сами свидетельствуете, что это превосходная пьеса" (Гладков 1). "She [Tsvetayeva] may have said this [that she does not herself like the theatre and is not drawn to it], yet even so she wrote several plays-and you yourself say this is an excellent one" (1a).
         ♦...Он [дядя Сандро] стал просить помочь ему выхлопотать пенсию... "Дядя Сандро, - сказал я, - но ведь у вас нет трудового стажа"... Между прочим, пенсию он всё же получил той же зимой (Искандер 3).... Не [Uncle Sandro] began asking for help in wangling a pens ion.... "Uncle Sandro," I said, "you don't have any work record."...By the way, he did receive a pension, that very winter (3a).
         ♦...Этот Дмитрий Федорович был один только из трёх сыновей Фёдора Павловича, который рос в убеждении, что он все же имеет некоторое состояние и когда достигнет совершенных лет, то будет независим (Достоевский 1)....This Dmitri Fyodorovich was the only one of Fyodor Pavlovich's three sons who grew up in the conviction that he, at any rate, had some property and would be independent when he came of age (1a).

    Большой русско-английский фразеологический словарь > все же

  • 74 ыштымаш

    ыштымаш
    Г.: ӹштӹмӓш
    сущ. от ышташ
    1. делание, выработка, производство, изготовление, заготовка

    Ковыж ыштымаште моло усталыкат кӱлеш. А. Бик. При изготовлении скрипки-долблёнки нужны и другие способности.

    Изиш лиймеке, мыят силос ыштымашке ошкыльым. «Мар. ӱдыр.» Через некоторое время и я пошёл на заготовку силоса.

    2. работа; деятельность, труд, осуществление какой-л. деятельности

    Кадр дене ыштымаштат ситыдымаш уло. «Мар. ком.» Есть недостатки и в работе с кадрами.

    Валерийын бригадыште улшо Майра сыренрак ойла: – Валерий шкак мемнан ыштымашым чаракла. М. Шкетан. Майра из бригады Валерия говорит немного сердито: – Валерий сам препятствует нашей работе.

    3. строительство, создание, сооружение, воздвижение

    Пытартыш жапыште мемнан республикысе колхоз-влак общественный оралтым, хранилищым да колхозник-влаклан пӧртым ыштымашлан вниманийым утларак ойыраш тӱҥалыныт. «Мар. ком.» В последнее время колхозы нашей республики стали больше внимания уделять строительству общественных сооружений, хранилищ и домов для колхозников.

    4. в сочет. с нар., деепр. и сущ. с послелогами в наречном значении называет действие по данному нар., деепр. или сущ.

    Ойым лугыч ыштымаш прерывание рассказа;

    калык озанлыкым пужен ыштымаш перестройка народного хозяйства.

    Ваш таҥасен ыштымашын саскаже паша дисциплин пеҥгыдемме гычат раш коеш. «Мар. ком.» Плоды соревнования (букв. делания взаимно соревнуясь) чётко видны и в укреплении трудовой дисциплины.

    5. строительство, производство, основание, образование, создание чего-л.; делание чего-л. существующим

    Коммунизмым ыштымаште рвезештат уэш-уэш! Й. Осмин. В строительстве коммунизма молодеешь вновь и вновь!

    Омоним-влак у мут ыштымаште икмыняр полшат. «Ончыко» Омонимы в какой-то степени способствуют образованию новых слов.

    Чыланат, чыланат, чыланат «Вӱдшӧ йога» йӱкан киносӱретым ыштымашке толза. Г. Зайниев. Все, все, все приходите на съёмку (букв. создание) звуковой кинокартины «Воды текут».

    6. в сочет. с сущ. в вин. п., указывающими род деятельности, называет какое-л. действие

    Чаракым ыштымаш препятствование (букв. делание препятствий);

    роскотым ыштымаш расходование (букв. делание расходов).

    7. совершение, оказание, осуществление, причинение кому-л. чего-л.

    Подвигым ыштымаш совершение подвига.

    Мыйын икте шонымаш: шочмо эллан поро пашам ыштымаш. Н. Арбан. У меня одно желание: совершение добрых дел для родной страны.

    8. организация (какого-л. общественного явления)

    Тудо неблагонадёжный еҥ. Озаҥ олаште бунтым ыштымаште лийын. Н. Лекайн. Он неблагонадёжный человек. В Казани участвовал (букв. был) в организации бунта.

    9. выполнение, решение, занятие чем-л., исполнение какого-л. действия

    – Тунемам икмардан, задачым ыштымаште ончычсо семынак кумытаным веле налам. Г. Пирогов. – Учусь средне, по решению задач, как и прежде, получаю только тройки.

    10. работа, место работы, должность, служба

    Тугульский фронтышто да милицийын органлаштыже ыштымаште ятыр колымашлык дене йыгыре ошкылын. М. Рыбаков. На фронте и во время работы в органах милиции Тугульский много раз шёл рядом со смертью.

    Марийско-русский словарь > ыштымаш

  • 75 овда

    овда
    Г.: овыда
    диал. овыча
    1. миф. существо женского пола с длинными волосами, большими грудями, любившее ночью кататься на лошади

    Кужу ӱпан овда длинноволосая овда.

    Ожно тиде коремыште овда илен, маныт. В. Сапаев. Говорят, что в этом овраге раньше жили овда.

    Изиш лиешат, овда чызыжым ваче гоч тупышкыжо лупшалеш. Я. Элексейн. Через некоторое время овда перекидывает свои груди через плечо на спину.

    2. диал. филин

    Овда кычкыра – шошо лишемеш. Пале. Кричит филин – приближается весна.

    3. бран. неряха, растяпа

    (Офицер:) Ах, тый шоҥго овда, каварымет деч ончыч юмылан кумал код. Н. Потапов. (Офицер:) Ах, ты старая неряха, перед смертью хоть досыта помолись богу.

    (Сардай:) Эй, овда! Чарне! Имнетым мӧҥгеш ом пу: суралымаште. М. Шкетан. (Сардай:) Эй, ты, растяпа! Перестань! Лошадь обратно не отдам, она находится взаперти.

    4. Г.
    уст. обезьяна

    Овыдавлӓ пушӓнгӹ вуйышты ӹлӓш яратат. Обезьяны любят лазить по деревьям.

    Марийско-русский словарь > овда

  • 76 ӧрача

    ӧрача
    этн. поперечный брус на санях или телеге

    Изиш лиймеке, орва ӧрача гыч кидшым шуен, Пайзет кӱртньӧ шаньыкым налын, воктекше пыштыш. «У вий» Через некоторое время, протянув руку через поперечину телеги, Пайзет взял железные вилы, положил их возле себя.

    Коклан-коклан, мардеж пуалме дене орва ӧрачаш логалын, йӱр орва йымакат сайынак шыжыкта. «У вий» От порыва ветра дождь, попадая на брус телеги, изрядно брызжет и под телегу.

    Марийско-русский словарь > ӧрача

  • 77 чоҥышо

    чоҥышо
    Г.: чангышы
    1. прич. от чоҥаш
    2. в знач. сущ. строитель; тот, кто строит что-л.

    Теве икмагал гыч Звенигово олаште Юл гоч пуч корным чоҥышо-влак лӱмеш кугу монумент нӧлталалтеш. А. Юзыкайн. Вот через некоторое время в городе Звенигово в честь строителей трубопровода через Волгу поднимется большой монумент.

    Морко ПМК мыланна техникым пуэн, специалистым ойырен, а чоҥышо – шкенан. «Ончыко» Моркинская ПМК предоставила нам технику, выделила специалиста, а строители – свои.

    Марийско-русский словарь > чоҥышо

  • 78 предел длительной прочности

    1. Langzeitfestigkeit

     

    предел длительной прочности
    Характеристика деформационных свойств упругих материалов при повышенных температурах, выражаемая через наибольшее главное растягивающее напряжение, при котором при данной температуре через некоторое время после приложения нагрузки происходит разрушение материала
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > предел длительной прочности

  • 79 предел длительной прочности

    1. long-term ultimate strength

     

    предел длительной прочности
    Характеристика деформационных свойств упругих материалов при повышенных температурах, выражаемая через наибольшее главное растягивающее напряжение, при котором при данной температуре через некоторое время после приложения нагрузки происходит разрушение материала
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > предел длительной прочности

  • 80 предел длительной прочности

    1. limite de résistance au temps

     

    предел длительной прочности
    Характеристика деформационных свойств упругих материалов при повышенных температурах, выражаемая через наибольшее главное растягивающее напряжение, при котором при данной температуре через некоторое время после приложения нагрузки происходит разрушение материала
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > предел длительной прочности

См. также в других словарях:

  • через некоторое время — с течением времени, со временем, позднее, позже, опосля, далее, после этого, вслед за тем, спустя некоторое время, а там, затем, после, спустя время, впоследствии времени, по прошествии времени, потом, по времени, в дальнейшем, там, дальше,… …   Словарь синонимов

  • спустя некоторое время — нареч, кол во синонимов: 23 • а там (18) • в дальнейшем (27) • в другое время (3) …   Словарь синонимов

  • Время относительно момента речи — Имена существительные     БУ/ДУЩЕЕ, за/втра, высок. гряду/щее.     Время, не совпадающее с моментом речи, такое, которое еще не наступило и отдалено от того, что происходит сейчас; период времени, который последует за настоящим; предстоящие… …   Словарь синонимов русского языка

  • через год со днем — (иноск.) когда нибудь, через некоторое время Ср. Задумал ты худое дело сделать, бежать из службы царской, не схоронишь ты концов в воду, выйдет через год со днем наружу грех твой... Даль. Сказка о Иване, молодом сержанте. Ср. Ueber Jahr und Tag.… …   Большой толково-фразеологический словарь Михельсона

  • Время (телепрограмма) — Время Жанр информационная телепрограмма Автор(ы) Юрий Летунов Режиссёр(ы) Николай Королёв, Алексей Молочков, Дмитрий Бышов, Татьяна Петровская, Михаил Куницын, Михаил Личагин, Илья Малинин, Сергей Корецкий, Дмитрий Бобков, Павел Андреев,… …   Википедия

  • ВРЕМЯ ПЕЧАЛИ ЕЩЕ НЕ ПРИШЛО — ВРЕМЯ ПЕЧАЛИ ЕЩЕ НЕ ПРИШЛО, Россия, Ленфильм СТВ, 1995, цв., 97 мин. Ироническая исповедь, философская притча. В поселке, где живут русский, немец, татарин, цыган и еврей, однажды появляется неизвестный, называющий себя Землемером. После его… …   Энциклопедия кино

  • ВРЕМЯ ПЕЧАЛИ ЕЩЕ НЕ ПРИШЛО —   1995, 97 мин., цв., студия СТВ, “Ленфильм”, Роскомкино. жанр: ироническая притча.   реж. Сергей Сельянов, сц. Михаил Коновальчук, Сергей Сельянов, опер. Денис Щегловский, худ. Вера Зелинская, комп. Владимир Радченков, зв. Кирилл Кузьмин.   В… …   Ленфильм. Аннотированный каталог фильмов (1918-2003)

  • Через немножко — Кар. Спустя некоторое время. СРГК 3, 412 …   Большой словарь русских поговорок

  • ВРЕМЯ —     ВРЕМЯ как проблема античной философской мысли оставалась в числе важнейших на протяжении всей ее истории, занимая ключевое место в системе космологических, физических и онтологических воззрений большинства философских школ, от досократиков до …   Античная философия

  • спустя время — немного погодя, позднее, затем, вскоре, впоследствии, после, по прошествии времени, спустя некоторое время, впоследствии времени, с течением времени, немного спустя, по времени, в дальнейшем, вскорости, через некоторое время, потом, со временем,… …   Словарь синонимов

  • Драка во время игры Детройт Пистонс — Детройт Пистонс против Индианы Пэйсерс 1 …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»