Перевод: с английского на все языки

со всех языков на английский

устройство+синхронизации

  • 101 DSU

    1. цифровой служебный модуль
    2. цифровой сервисный блок
    3. модуль цифрового сервиса
    4. блок синхронизации данных
    5. Блок DSU

     

    Блок DSU
    Пользовательское устройство, взаимодействующее с цифровым устройством (таким как DDS или T1 в комбинации с CSU). DSU конвертирует пользовательские данные в биполярный формат для передачи.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    блок синхронизации данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    модуль цифрового сервиса
    Пользовательское устройство, взаимодействующее с цифровым устройством (таким как DDS или T1 в комбинации с CSU). DSU конвертирует пользовательские данные в биполярный формат для передачи. Пользовательское устройство, соединяющее терминальное оборудование (DTE) с цифровыми линиями передачи. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    цифровой сервисный блок

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    цифровой служебный модуль
    цифровой сервисный блок


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > DSU

  • 102 monitor

    ['mɒnɪtə]
    1) Общая лексика: ведущее радиоперехват лицо, вести дозиметрический контроль, вести радиоперехват, гидромонитор, дозиметр, контролёр радиопередачи, контролировать (качество передачи и т. п.), контроль, контрольное устройство, контрольный, контрольный прибор, мониторировать, наблюдать, наводить самолёт с помощью радиолокационной станции, наставлять, отслеживать, посоветовать, предупредительное устройство, предупредительный, прибор контроля, проконтролировать, регистратор, световой фонарь, следить, советник, советовать, советчик, староста, староста в классе, старший ученик, наблюдающий за порядком в младшем классе, управляющая программа, ученик, помогающий учителю (в чем-л.), индикатор состояния (Верещагин), староста класса (а не только монитор), следить (постоянно или время от времени), (smth) просматривать, проследить за (Ethical killing of seals is difficult to monitor.), следить за состоянием (monitor the patient - следить за состоянием пациента), быть постоянно в курсе, постоянно отслеживать, распорядитель
    2) Компьютерная техника: видеомонитор
    3) Биология: монитор (комплекс аппаратуры с системой сигнализации для слежения за состоянием организма)
    9) Религия: изучать
    17) Радио: проверять
    26) Глоссарий компании Сахалин Энерджи: лафетный ствол (Fire Safety)
    29) Солнечная энергия: установка контроля
    31) Робототехника: контрольный индикатор
    32) Сахалин Р: лафетный ствол (пож.)
    35) Герпентология: вараны (Varanidae), варан (Varanus)
    36) Табуированная лексика: наставник
    37) Военно-политический термин: вести наблюдение
    38) Подводное плавание: инструктор

    Универсальный англо-русский словарь > monitor

  • 103 interlock

    1. взаимно соединять
    2. взаимная блокировка
    3. блокирующее устройство
    4. блокировка электротехнического изделия
    5. блокировка (для защиты)
    6. блок-контакт

     

    блок-контакт

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    блокировка (для защиты)
    Устройство, объединяющее одно или несколько защитных устройств или аппаратов с системой управления и/или всей или частью электросети, питающей машину.
    [ ГОСТ Р МЭК 60204-1-2007]

    Тематики

    EN

     

    блокировка электротехнического изделия
    Ндп. блокирование
    Часть электротехнического изделия, предназначенная для предотвращения или ограничения выполнения операций одними частями изделия при определенных состояниях или положениях других частей изделия в целях предупреждения возникновения в нем недопустимых состояний или исключения доступа к его частям, находящимся под напряжением.
    [ ГОСТ 18311-80]
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    блокирующее устройство
    Устройство, обеспечивающее зависимость срабатывания коммутационного аппарата от положения или срабатывания одного или нескольких других аппаратов.
    МЭК 60050(441-16-49).
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    блокирующее устройство
    Механическое, электрическое или другое устройство, которое при определенных условиях препятствует функционированию элементов машины (обычно до тех пор, пока защитное ограждение не закрыто).
    [ГОСТ ЕН 1070-2003]

    блокировочное устройство
    -
    [IEV number 151-13-74]

    EN

    interlocking device
    device which makes the operation of a piece of equipment dependent upon the condition, position or operation of one or more other pieces of equipment
    Source: 441-16-49 MOD
    [IEV number 151-13-74]

    FR

    dispositif de verrouillage, m
    dispositif qui subordonne la possibilité de fonctionnement d'un élément d'équipement à l'état, à la position ou au fonctionnement d'un ou de plusieurs autres éléments
    Source: 441-16-49 MOD
    [IEV number 151-13-74]

     

    • блокировки для предотвращения ошибочных действий и операций

    [ ГОСТ 12.2.007.0-75]

    • Конструкция аппаратов выдвижного исполнения должна обеспечивать фиксацию аппаратов в рабочем и контрольном положении и иметь блокировку, не позволяющую вкатывать или выкатывать аппарат во включенном положении.

    [ ГОСТ 12.2.007.6-75]

    [ ГОСТ 12.2.007.3-75]

    • В шкафах КРУ,..., которые снабжены заземляющими разъединителями, должна быть предусмотрена возможность установки необходимых устройств для осуществления следующих блокировок:

      а) блокировки, не допускающей включения заземляющего разъединителя при условии, что в других шкафах КРУ, от которых возможна подача напряжения на участок главной цепи шкафа, где размещен заземляющий разъединитель, выдвижные элементы находятся в рабочем положении (или любые коммутационные аппараты во включенном положении);

      б) блокировки, не допускающей при включенном положении заземляющего разъединителя перемещения в рабочее положение выдвижных элементов (или включении любых коммутационных аппаратов) в других шкафах КРУ, от которых возможна подача напряжения на участок главной цепи шкафа, где размещен заземляющий
      разъединитель

    [ ГОСТ 12.2.007.4-75]

    [ ГОСТ 11206-77]

    • все другие защитные ограждения, как неподвижные (съемного типа), так и перемещаемые, должны быть оснащены устройствами блокировки.

    • блокировочное устройство для ограждений с функцией пуска должно проектироваться так, чтобы его повреждение не приводило к непреднамеренному/неожиданному пуску, например путем дублирования датчиков положения или использования автоматического контроля

    [ ГОСТ Р ИСО 12100-2-2007]

    Недопустимые, нерекомендуемые

    Тематики

    Близкие понятия

    Действия

    Синонимы

    EN

    DE

    FR

     

    блокирующее устройство
    блокировка

    Устройство механического, электрического или другого типа, препятствующее при определенных условиях функционированию элементов машины (обычно до тех пор, пока не закроется защитное ограждение).
    [ ГОСТ Р ИСО 12100-1:2007]

    Тематики

    Обобщающие термины

    Синонимы

    EN

     

    взаимная блокировка
    Средства синхронизации операций в интерфейсе, обеспечивающие непрерывное выполнение заданной последовательности операций в определенном режиме работы.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    взаимно соединять
    смыкать
    сращиваться


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > interlock

  • 104 Clock

    1) Сетевые технологии: часы, тактовый генератор (Устройство, генерирующее периодические сигналы, используемые для синхронизации других устройств или передачи данных)
    2) Интернет: тактовый генератор (Устройство, генерирующее периодические сигналы, используемые для синхронизации других устройств или передачи данных)

    Универсальный англо-русский словарь > Clock

  • 105 clock

    1) Сетевые технологии: часы, тактовый генератор (Устройство, генерирующее периодические сигналы, используемые для синхронизации других устройств или передачи данных)
    2) Интернет: тактовый генератор (Устройство, генерирующее периодические сигналы, используемые для синхронизации других устройств или передачи данных)

    Универсальный англо-русский словарь > clock

  • 106 clock

    1. текущее значение времени
    2. тактовый генератор
    3. тактирование
    4. синхронизировать
    5. датчик меток времени
    6. генератор тактовых импульсов
    7. генератор тактовой частоты
    8. генератор синхронизации

     

    генератор синхронизации
    таймер


    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    Синонимы

    EN

     

    генератор тактовой частоты
    (МСЭ-T G.705).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    генератор тактовых импульсов
    генератор синхроимпульсов


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    датчик меток времени

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    синхронизировать
    -
    [IEV number 151-15-32]

    синхронизировать
    тактировать

    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    EN

    synchronize, verb
    bring into synchronism
    [IEV number 151-15-32]

    FR

    oniser, verbe
    amener au synchronisme
    [IEV number 151-15-32]

    Синонимы

    EN

    DE

    FR

    • oniser, verbe

     

    тактирование
    синхронизация


    [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]

    Тематики

    Синонимы

    EN

     

    тактовый генератор
    Устройство, вырабатывающее тактовые синхросигналы.
    [ ГОСТ 22670-77]

    тактовый генератор
    Электронное устройство, генерирующее последовательность импульсов, повторяющихся через равные промежутки времени.
    [Гипертекстовый энциклопедический словарь по информатике Э. Якубайтиса]
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

     

    текущее значение времени
    Выводится на правый верхний угол экрана.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > clock

  • 107 pilot

    1. экспериментальный процессор для обработки данных
    2. экспериментальный
    3. центрирующее устройство (цапфа, стержень, выступ)
    4. сигнальная лампа
    5. сверловочная часть (центровочного сверла)
    6. регулируемое приспособление
    7. проблемный
    8. пилотная горелка
    9. пилот-сигнал
    10. пилот (в информационных технологиях)
    11. пилот
    12. первоначальный
    13. направляющий стержень (расширителя для разбуривания на следующий диаметр)
    14. направляющая цапфа
    15. контрольная частота
    16. канал связи на ЛЭП
    17. канал связи для комплектов защиты, находящихся на разных концах ЛЭП
    18. источник воспламенения
    19. вспомогательный клапан в гидравлических механизмах
    20. алмазный бескерновый наконечник с выступающей средней частью торца

     

    вспомогательный клапан в гидравлических механизмах
    серво-клапан в гидравлических механизмах
    сервозолотник в гидравлических механизмах


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    канал связи для комплектов защиты, находящихся на разных концах ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    канал связи на ЛЭП

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    контрольная частота

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    направляющая цапфа
    управляющее устройство


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    первоначальный

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    пилот
    Пилот первым садится в сани на старте. Он управляет санями и выбирает наиболее оптимальную траекторию движения по трассе.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    pilot
    First person to enter the sled at the start. This athlete steers the sled and seeks the ideal trajectory along the course.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    • санный спорт, бобслей, скелетон

    EN

     

    пилот (в информационных технологиях)
    (ITIL Service Transition)
    Ограниченное развёртывание - ИТ-услуги, релиза или процесса в среде промышленной эксплуатации. Пилот используется для сокращения рисков, проведения пользовательской приёмки и получения обратной связи от пользователей.
    См. тж. оценка изменения; тестирование.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    pilot
    (ITIL Service Transition)
    A limited deployment of an IT service, a release or a process to the live environment. A pilot is used to reduce risk and to gain user feedback and acceptance.
    See also change evaluation; test.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    пилот-сигнал
    ПС

    1. Немодулированный сигнал, излучаемый на несущей частоте и обычно используемый для синхронизации. Для контроля условий распространения радиоволн, как правило, применяется несколько ПС, излучаемых на одной или разных несущих частотах.
    2. В системах с частотным уплотнением контрольный тональный сигнал с эталонным уровнем, вводимый в групповой сигнал с целью контроля работоспособности или автоматической регулировки усиления. В каждой группе (вторичной, третичной и т.д.) используется индивидуальный ПС, размещенный в рабочей полосе или в защитных промежутках между канальными группами. Если уровень ПС отличается от эталонного (обычно на 4 дБ ниже или выше), то выдается сигнал аварии.
    3. В системах с расширенным спектром - кодовая последовательность, передаваемая вместе с другими полезными сигналами в общей полосе частот. Излучение ПС осуществляется непрерывно и в широковещательном режиме, чтобы его могли принять все мобильные станции, расположенные в зоне обслуживания данной БС. С помощью пилот-сигнала обеспечивается кадровая синхронизация и когерентное восстановление несущей. Пилот-сигнал может также содержать дополнительную информацию, необходимую для ускоренного поиска станции.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    Синонимы

    • ПС

    EN

     

    проблемный

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    регулируемое приспособление
    управляющее устройство


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    сверловочная часть (центровочного сверла) (2.9.2)
    Часть центровочного сверла, которая образует резанием отверстие в заготовке по целому до начала угла в плане.
    3884
    [ ГОСТ 14952-75] [ ГОСТ Р 50427-92( ИСО 5419-82)]

    Тематики

    EN

    DE

    FR

     

    сигнальная лампа
    -

    FR


    Для коммутационных аппаратов силовой цепи КТП должна быть предусмотрена сигнализация состояния при помощи сигнальных ламп или указателей положения: "Выключено" - красный цвет, "Отключено" - зеленый цвет.
    [ ГОСТ 12.2.007.4-75]

    Сигнальные лампы и другие светосигнальные аппараты должны иметь знаки или надписи, указывающие значение сигналов (например, "Включено", "Отключено", "Нагрев").

    [ ГОСТ 12.2.007.0-75]

    Каждая медицинская система IT должна иметь устройство для звуковой и световой аварийной сигнализации, которое устанавливают так, чтобы оно находилось под постоянным контролем медицинского персонала и было оборудовано:
    - зеленой сигнальной лампой (лампами) для индикации нормальной работы;
    - желтой сигнальной лампой, которая загорается, когда сопротивление изоляции достигает минимально допустимого значения.

    [ ГОСТ Р 50571.28-2006]

    Тематики

    EN

     

    центрирующее устройство (цапфа, стержень, выступ)

    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

     

    экспериментальный
    опытный


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    экспериментальный процессор для обработки данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    3.54 источник воспламенения (pilot): Источник пламени меньшего размера по сравнению с основным пламенем, используемый для воспламенения основной горелки или горелок.

    Источник: ГОСТ Р 54110-2010: Водородные генераторы на основе технологий переработки топлива. Часть 1. Безопасность оригинал документа

    Англо-русский словарь нормативно-технической терминологии > pilot

  • 108 hub

    1. центровик (локальной вычислительной сети)
    2. центральный кросс (в структурированных кабельных системах)
    3. транспортный узел/хаб
    4. сетевой концентратор
    5. раструб (для соединения труб)
    6. распределитель каналов
    7. концентратор линий связи
    8. концентратор каналов
    9. концентратор (сети и системы связи)
    10. концентратор (в локальной вычислительной сети)
    11. концентратор
    12. гнездо (монтажное)
    13. втулка ВК
    14. башмак

     

    башмак
    втулка


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    втулка ВК
    втулка ветроколеса

    Элемент ВК, предназначенный для крепления лопастей и передачи момента вращения к СПМ ветроагрегата.
    [ ГОСТ Р 51237-98]

    Тематики

    Синонимы

    EN

     

    гнездо (монтажное)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    концентратор
    Сетевой концентратор ЛВС, через который к сети подключаются узлы в топологии "звезда".
    [ http://www.morepc.ru/dict/]

    концентратор
    Устройство, осуществляющее прием сообщений с нескольких медленных линий и передачу их по одному высокоскоростному каналу.
    [ http://www.morepc.ru/dict/]

    концентратор

    Концентратор это сетевое устройство, соединяющее несколько компьютеров локальной вычислительной сети и обеспечивающее их взаимодействие друг с другом, с остальной сетью и Интернетом. Все пользователи, подключенные к концентратору, совместно используют доступную полосу пропускания сети (в отличие от коммутаторов, которые обеспечивают полную полосу пропускания для каждого ПК).
    [ http://www.sotovik.ru/lib/news_article/news_26322.html]

    Концентратор (англ. Hub) -
    разветвительное устройство, служащее центральным звеном в локальных сетях, имеющих топологию "звезда". Концентратор имеет несколько портов для подключения отдельных компьютеров и для соединения с другими хабами.

    Фактически хаб представляет собой мультипортовый репитер, т.е. его основная задача - получение данных от подключенных к портам концентратора компьютеров или других хабов, реформирование сигнала одновременно с его усилением, и его дальнейшая ретрансляция на другие порты. На переднюю панель концентратора выводится информация о состоянии сети (перегрузка сети или отдельного порта, включение питания, коллизии).

    Функции данных устройств различны: от простых концентраторов проводных линий до крупных устройств, являющихся центральным узлом сети, поддерживающих функции управления и целый ряд стандартов (Ethernet, Fast Ethernet, Gigabit Ethernet, FDDI и т.д.). Существует также концентраторы, играющие важную роль в системе защиты сети. Кроме того, концентраторы служат центральной точкой для подключения кабелей, изменения конфигурации, поиска неисправностей и централизованного управления, упрощая выполнение всех этих операций. В основном же функция концентратора состоит в объединении пользователей в один сетевой сегмент.

    Концентраторы подразделяются на 10-, 100- и 10/100-Мбит, активные и пассивные. Многие 10-Мбит хабы имеют разъемы и под витую пару (RJ-45), и под коаксиальный кабель (BNC или AUI).

    В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют пассивные и активные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения 4, 8, 16 или 32 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Максимальное расстояние от концентратора до рабочей станции составляет 100 метров.

    Традиционные концентраторы поддерживают только один сетевой сегмент, предоставляя всем подключаемым к ним пользователям одну и ту же полосу пропускания. При небольшом числе пользователей такая система превосходно работает. В случае увеличения числа пользователей начинает сказываться конкуренция за полосу пропускания, что замедляет трафик в локальной сети.

    Как правило, один из разъемов RJ-45 концентратора имеет разводку, позволяющую присоединять его к другим хабам. Наращиваемые (стековые) концентраторы позволяют постепенно увеличивать размер сети. Такие концентраторы соединяются друг с другом гибкими кабелями расширения, ставятся один на другой и функционируют как один концентратор. Такое "многоэтажное" подключение концентраторов друг к другу называют каскадированием. Соответствующий порт обычно обозначается надписью "In", "Uplink", "Cascading" или "Cross-Over".

    Двухскоростные концентраторы (dual-speed) можно использовать для создания современных сетей с совместно используемыми сетевыми сегментами. Они поддерживают существующие каналы Ethernet 10 Мбит/с и сети Fast Ethernet 100 Мбит/с, автоматически опознавая скорость соединения, что позволяет не настраивать конфигурацию вручную. Это упрощает модернизацию соединений, переход от сети Ethernet к Fast Ethernet, когда необходима поддержка новых приложений, интенсивно использующих полосу пропускания сети, или сегментов с большим числом пользователей.

    Ценовой диапазон концентраторов колеблется в широких пределах. Существует множество различных моделей концентраторов, все они различаются количеством портов, пропускной способностью и другими техническими характеристиками. Самые недорогие варианты для малых локальных сетей стоят $30-70, более совершенные концентраторы - несколько сотен долларов США.

    [ http://sharovt.narod.ru/l10.htm]

    Тематики

    EN

     

    концентратор (сети и системы связи)
    Активный компонент, порты которого связывают вместе отдельные сегменты среды, создавая более крупную сеть, которая действует как единая вычислительная сеть.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    hub
    active network component. Each port of a hub links individual media segments together to create a larger network that operates as a single LAN. Collisions in the network are possible
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    концентратор каналов

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    концентратор линий связи

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    распределитель каналов
    сетевой концентратор
    коммутационный центр в сетях типа "звезда"
    центральный кросс (в кабельных системах)
    ядро (сети)


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    сетевой концентратор
    Устройство, используемое в локальных сетях для физического объединения сегментов этой сети. С помощью концентраторов формируется требуемая топология локальной сети.
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    транспортный узел/хаб
    Точка транспортной системы, где начинаются и заканчиваются различные транспортные линии и транспортные услуги. Транспортный узел не обязательно предназначен для обслуживания только одной категории клиентов Игр или использования только одного вида транспортных средств. Например, пересадочный узел может быть местом пересадки с автомобилей (которые остаются на стоянке) на автобусы.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    hub
    Point in the transport system that has multiple lines or services starting and finishing. A hub may not serve a single Games client or mode of vehicle. For example, an interchange hub may be where vehicles are parked and bus services commence.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    центральный кросс (в структурированных кабельных системах)
    См. chassis ~, segmented ~, shared-, stackable ~,
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    центровик (локальной вычислительной сети)
    Устройство, используемое для взаимосвязи нескольких устройств оконечного оборудования данных и выполняющее функции восстановления амплитуды сигналов, синхронизации сигналов, обнаружения конфликтов в локальной вычислительной сети и оповещения о них, а также распространения сигналов по центровикам нижних уровней и оконечному оборудованию данных.
    [ ГОСТ 29099-91]

    Тематики

    Обобщающие термины

    EN

    3.13 концентратор (hub): Сетевое устройство, которое функционирует на первом уровне эталонной модели взаимодействия открытых систем.

    Примечание - Сетевые концентраторы нельзя считать интеллектуальными устройствами в общепринятом смысле, они обеспечивают только точки физического соединения для сетевых систем или ресурсов.

    Источник: ГОСТ Р ИСО/МЭК 18028-1-2008: Информационная технология. Методы и средства обеспечения безопасности. Сетевая безопасность информационных технологий. Часть 1. Менеджмент сетевой безопасности оригинал документа

    3.13 концентратор (hub): Сетевое устройство, которое функционирует на первом уровне эталонной модели взаимодействия открытых систем.

    Примечание - Сетевые концентраторы не являются интеллектуальными устройствами, они обеспечивают только точки физического соединения для сетевых систем или ресурсов.

    Источник: ГОСТ Р ИСО/МЭК 27033-1-2011: Информационная технология. Методы и средства обеспечения безопасности. Безопасность сетей. Часть 1. Обзор и концепции оригинал документа

    Англо-русский словарь нормативно-технической терминологии > hub

  • 109 timing device

    Универсальный англо-русский словарь > timing device

  • 110 timing unit

    реле времени; программное устройство; блок синхронизации; синхронизатор

    display unit — устройство отображения; дисплей

    feeder unit — подающее устройство, самонаклад

    English-Russian base dictionary > timing unit

  • 111 plc

    1. связь по ЛЭП
    2. программируемый логический контроллер
    3. несущая в канале ВЧ-связи по ЛЭП
    4. маскирование потери пакета
    5. контроллер с программируемой логикой
    6. акционерная компания с ограниченной ответственностью

     

    акционерная компания с ограниченной ответственностью
    AG - аббревиатура для обозначения AKTIENGESELLSCHAFT (акционерное общество). Оно пишется после названия немецких, австрийских или швейцарских компаний и является эквивалентом английской аббревиатуры plc (public limited company-акционерная компания с ограниченной ответственностью). Сравни: GmbH.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

    DE

    • AG

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    маскирование потери пакета
    Метод сокрытия факта потери медиапакетов путем генерирования синтезируемых пакетов (МСЭ-T G.1050).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    несущая в канале ВЧ-связи по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

     

    связь по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > plc

  • 112 sb

    1. устойчивый пробой
    2. симплексный канал
    3. селекторный пульт
    4. режим готовности к работе
    5. распределительный щит
    6. прямой двоичный (код)
    7. последовательный двоичный
    8. Отделение по вопросам источников выбросов
    9. обесточивание электростанции
    10. обдувочный аппарат
    11. медленное горение
    12. медленно горящий
    13. запасное оборудование
    14. вспомогательное здание (ТЭС, АЭС)
    15. биты заполнения

     

    биты заполнения
    Биты, добавляемые для синхронизации независимых потоков данных (МСЭ-Т G.991.2).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    вспомогательное здание (ТЭС, АЭС)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    запасное оборудование

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    медленно горящий

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    медленное горение

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    Отделение по вопросам источников выбросов
    (Агентства по защите окружающей среды США)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    обдувочный аппарат
    Устройство, образующее струю или струи воздуха, пара или воды, для удаления отложения шлака или золы с загрязнённых поверхностей нагрева топки котла
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    обесточивание электростанции

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    последовательный двоичный

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    прямой двоичный (код)

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    распределительный щит
    Комплектное устройство, содержащее различную коммутационную аппаратуру, соединенное с одной или более отходящими электрическими цепями, питающееся от одной или более входящих цепей, вместе с зажимами для присоединения нейтральных и защитных проводников.
    [ ГОСТ Р МЭК 60050-826-2009]

    щит распределительный
    Электротехническое устройство, объединяющее коммутационную, регулирующую и защитную аппаратуру, а также контрольно-измерительные и сигнальные приборы
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    распределительный щит

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    EN

    distribution board
    assembly containing different types of switchgear and controlgear associated with one or more outgoing electric circuits fed from one or more incoming electric circuits, together with terminals for the neutral and protective conductors.
    [IEV number 826-16-08]

    FR

    tableau de répartition, m
    ensemble comportant différents types d'appareillage associés à un ou plusieurs circuits électriques de départ alimentés par un ou plusieurs circuits électriques d'arrivée, ainsi que des bornes pour les conducteurs neutre et de protection.
    [IEV number 826-16-08]

    Параллельные тексты EN-RU

    Distribution switchboards, including the Main LV Switchboard (MLVS), are critical to the dependability of an electrical installation. They must comply with well-defined standards governing the design and construction of LV switchgear assemblies

    A distribution switchboard is the point at which an incoming-power supply divides into separate circuits, each of which is controlled and protected by the fuses or switchgear of the switchboard. A distribution switchboard is divided into a number of functional units, each comprising all the electrical and mechanical elements that contribute to the fulfilment of a given function. It represents a key link in the dependability chain.

    Consequently, the type of distribution switchboard must be perfectly adapted to its application. Its design and construction must comply with applicable standards and working practises.

    [Schneider Electric]

    Распределительные щиты, включая главный распределительный щит низкого напряжения (ГРЩ), играют решающую роль в обеспечении надежности электроустановки. Они должны отвечать требованиям соответствующих стандартов, определяющих конструкцию и порядок изготовления НКУ распределения электроэнергии.

    В распределительном щите выполняется прием электроэнергии и ее распределение по отдельным цепям, каждая из которых контролируется и защищается плавкими предохранителями или автоматическими выключателями.
    Распределительный щит состоит из функциональных блоков, включающих в себя все электрические и механические элементы, необходимые для выполнения требуемой функции. Распределительный щит представляет собой ключевое звено в цепи обеспечения надежности.

    Тип распределительного щита должен соответствовать области применения. Конструкция и изготовление распределительного щита должны удовлетворять требованиям применимых стандартов и учитывать накопленную практику применения.

    [Перевод Интент]

     

    5654

    Рис. Schneider Electric

    With Prisma Plus G you can be sure to build 100% Schneider Electric switchboards that are safe, optimised:

    > All components (switchgear, distribution blocks, prefabricated connections, etc.) are perfectly rated and coordinated to work together;

    > All switchboard configurations, even the most demanding ones, have been tested.

    You can prove that your switchboard meets the current standards, at any time.

    You can be sure to build a reliable electrical installation and give your customers full satisfaction in terms of dependability and safety for people and the installation.

    Prisma Plus G with its discreet design, blends harmoniously into all tertiary and industrial buildings, including in entrance halls and passageways.

    With Prisma Plus G you can build just the right switchboard for your customer, sized precisely to fit costs and needs.

    With this complete, prefabricated and tested system, it's easy to upgrade your installation and still maintain the performance levels.

    > The wall-mounted and floor-standing enclosures combine easily with switchboards already in service.

    > Devices can be replaced or added at any time.

    [Schneider Electric]

    С помощью оболочек Prisma Plus G можно создавать безопасные распределительные щиты, на 100 % состоящие из изделий Schneider Electric:

    > все изделия (коммутационная аппаратура, распределительные блоки, готовые заводские соединения и т. д.) полностью совместимы механически и электрически;

    > все варианты компоновки распределительных щитов, в том числе для наиболее ответственных применений, прошли испытания.

    В любое время вы можете доказать, что ваши распределительные щиты полностью соответствуют требованиям действующих стандартов.

    Вы можете быть полностью уверены в том, что создаете надежные электроустановки, удовлетворяющие всем требованиям безопасности для людей и оборудования

    Благодаря строгому дизайну, распределительные щиты Prisma Plus G гармонично сочетаются с интерьером любого общественного или промышленного здания. Они хорошо смотрятся и в вестибюле, и в коридоре.

    Применяя оболочки Prisma Plus G можно создавать распределительные щиты, точно соответствующие требованиям заказчика как с точки зрения технических характеристик, так и стоимости.

    С помощью данной испытанной системы, содержащей все необходимые компоненты заводского изготовления можно легко модернизировать существующую электроустановку и поддерживать её уровни производительности.

    > Навесные и напольные оболочки можно легко присоединить к уже эксплуатируемым распределительным щитам.

    > Аппаратуру можно заменять или добавлять в любое время.

    [Перевод Интент]

     

    The switchboard, central to the electrical installation.

    Both the point of arrival of energy and a device for distribution to the site applications, the LV switchboard is the intelligence of the system, central to the electrical installation.

    [Schneider Electric]

    Распределительный щит – «сердце» электроустановки.

    Низковольтное комплектное устройство распределения является «сердцем» электроустановки, поскольку именно оно принимает электроэнергию из сети и распределяет её по территориально распределенным нагрузкам.

    [Перевод Интент]

    Тематики

    EN

    DE

    FR

     

    режим готовности к работе

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    селекторный пульт

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    симплексный канал
    Тип физического канала передачи данных.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    устойчивый пробой

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > sb

  • 113 frame synchronizer

    1. кадровый синхронизатор

     

    кадровый синхронизатор
    синхронизатор
    Устройство, осуществляющее синхронизацию и фазирование несинхронного полного видеосигнала или полного цветового видеосигнала, поступившего от внешнего источника, путем записи его в запоминающее устройство и последующего считывания синхронно с местными сигналами.
    [ ГОСТ 21879-88]

    кадровый синхронизатор

    Цифровой буфер, который хранит и сравнивает синхронизирующую информацию с синхроимпульсами видеосигнала, тем самым непрерывно корректируя сигнал во избежание ошибок синхронизации.
    [ http://www.vidimost.com/glossary.html]

    Тематики

    • телевидение, радиовещание, видео

    Обобщающие термины

    Синонимы

    EN

    123. Кадровый синхронизатор

    Синхронизатор

    E. Frame synchronizer

    Устройство, осуществляющее синхронизацию и фазирование несинхронного полного видеосигнала или полного цветового видеосигнала, поступившего от внешнего источника, путем записи его в запоминающее устройство и последующего считывания синхронно с местными сигналами

    Источник: ГОСТ 21879-88: Телевидение вещательное. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > frame synchronizer

  • 114 programmable logic controller

    1. программируемый логический контроллер
    2. контроллер с программируемой логикой

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable logic controller

  • 115 programmable controller

    1. программируемый логический контроллер
    2. программируемый контроллер

     

    программируемый контроллер

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable controller

  • 116 storage-programmable logic controller

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > storage-programmable logic controller

  • 117 time-pulse distributor

    Универсальный англо-русский словарь > time-pulse distributor

  • 118 timing circuit

    Универсальный англо-русский словарь > timing circuit

  • 119 CD

    1. cable duct - кабельный канал; кабелепровод;
    2. cadmium - кадмий;
    3. calendar day - календарный день;
    4. calibration device - эталонный прибор; градуировочная аппаратура;
    5. calling device - вызывное устройство;
    6. candela - кандела; кд;
    7. candle - свеча; св;
    8. capacitance divider - емкостный делитель;
    9. capacitive discharge - разряд емкости;
    10. capacitor diode - варикап; ёмкостный диод;
    11. carrier detect - обнаружение несущей; обнаружение несущей частоты; сигнал "несущая частота обнаружена";
    12. certificate of deposit - депозитный сертификат;
    13. chain data - цепочка данных;
    14. charge displacement - смещение заряда;
    15. chip density - плотность упаковки на кристалле;
    16. circuit description - описание схемы;
    17. clamping diode - фиксирующий диод;
    18. classification of defects - классификация дефектов; классификация неисправностей;
    19. clock delay mechanism - часовой неконтактный взрыватель;
    20. clock driver - блок синхронизации; синхронизирующее устройство; формирователь тактовых или синхронизирующих импульсов; формирователь тактовых импульсов;
    21. coastal defense radar - береговая РЛС; РЛС береговой обороны;
    22. code - код;
    23. cold-drawn - холоднотянутый;
    24. commencement date - дата вступления контракта в силу; дата начала работ;
    25. communications device - устройство связи;
    26. compact disk - компакт-диск; лазерный диск;
    27. complementary distribution - дополнительное распределение;
    28. component development - разработка компонентов;
    29. condensate demineralizer - обессоливающий фильтр конденсатоочистки;
    30. configuration-dependent - определяемый конфигурацией;
    31. console display - консольный дисплей;
    32. contagious disease - заразная болезнь;
    33. contract depth - глубина скважины по контракту;
    34. controls and displays - средства управления и индикации;
    35. controls and displays computer - ЭВМ управления и индикации;
    36. copper dish - определение содержания смол испарением из медной чашки; содержание смол в бензине, найденное испарением из медной чашки;
    37. corrected depth - уточненная глубина;
    38. critical defect - критический дефект;
    39. crystal diode - полупроводниковый диод;
    40. current density - плотность тока; плотность электрического тока;
    41. cash discount - скидка при срочной оплате;
    42. cold-drawn - холоднотянутый

    Англо-русский словарь технических аббревиатур > CD

  • 120 DSU

    1. data service unit - блок обработки данных, сервисный блок; устройство обработки данных;
    2. data storage unit - блок хранения данных;
    3. data synchronization unit - блок синхронизации данных;
    4. data synchronizer unit - блок синхронизатора данных;
    5. decoder switching unit - коммутационный блок декодера;
    6. development well, sulfur - добывающая скважина с серосодержащей продукцией;
    7. device switching unit - блок коммутации приборов;
    8. digital service unit - пользовательское устройство, взаимодействующее с цифровым устройством;
    9. digital storage unit - блок цифрового ЗУ; цифровое запоминающее устройство; цифровое ЗУ;
    10. digital switching unit - блок коммутации цифровых сигналов;
    11. disk storage unit - блок дискового запоминающего устройства;
    12. drum storage unit - блок барабанного запоминающего устройства

    Англо-русский словарь технических аббревиатур > DSU

См. также в других словарях:

  • устройство синхронизации — механизм синхронизации — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы механизм синхронизации EN timing mechanism …   Справочник технического переводчика

  • устройство синхронизации — sinchronizatorius statusas T sritis automatika atitikmenys: angl. lock unit; synchronizer; timer; timing device; timing mechanism; timing unit vok. Synchronisator, m; Synchronisiereinrichtung, f; Synchronisiergerät, n rus. синхронизатор, m;… …   Automatikos terminų žodynas

  • Устройство синхронизации развертки факсимильного изображения — 50. Устройство синхронизации развертки факсимильного изображения Устройство, обеспечивающее равенство скоростей развертки факсимильного изображения передающего и приемного факсимильных аппаратов Источник: ГОСТ 23151 78: Аппараты факсимильные.… …   Словарь-справочник терминов нормативно-технической документации

  • устройство синхронизации мод — modų sinchronizatorius statusas T sritis radioelektronika atitikmenys: angl. mode synchronizer; mode locking means vok. Modensynchronisationsmittel, n rus. устройство синхронизации мод, n pranc. appareil de la synchronisation des modes, m …   Radioelektronikos terminų žodynas

  • устройство — 2.5 устройство: Элемент или блок элементов, который выполняет одну или более функцию. Источник: ГОСТ Р 52388 2005: Мототранспортны …   Словарь-справочник терминов нормативно-технической документации

  • устройство сбора и передачи данных (УСПД) — 3.1.13 устройство сбора и передачи данных (УСПД) : Специализированный промышленный контроллер, предназначенный для работы в составе ИВКЭ АИИС УЭ и обеспечивающий сбор, обработку и хранение данных от счетчиков электроэнергии, а также формирование… …   Словарь-справочник терминов нормативно-технической документации

  • устройство символьной синхронизации телеметрической системы — устройство символьной синхронизации Устройство поэлементной синхронизации, обеспечивающее формирование сигналов символьной синхронизации в приемно регистрирующем оборудовании цифровых телеметрических систем. [ГОСТ 19619 74] Тематики телемеханика …   Справочник технического переводчика

  • устройство групповой синхронизации телеметрической системы — устройство групповой синхронизации Устройство, обеспечивающее обработку принимаемых телеметрических сигналов с целью выделения маркеров и формирования соответствующих сигналов синхронизации, обслуживающих приемно регистрирующее оборудование… …   Справочник технического переводчика

  • устройство поэлементной синхронизации телеметрической системы — устройство поэлементной синхронизации Устройство, обеспечивающее обработку принимаемых телеметрических сигналов и формирование сигналов поэлементной синхронизации. [ГОСТ 19619 74] Тематики телемеханика, телеметрия Синонимы устройство поэлементной …   Справочник технического переводчика

  • устройство для синхронизации изображений — генлок С его помощью на экране монитора могут быть совмещены изображение, сгенерированное компьютером (анимированная или неподвижная графика, тексты, титры), и некомпьютерное видео. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по… …   Справочник технического переводчика

  • устройство обеспечения синхронизации — (МСЭ T G.707/ Y.1322, МСЭ T G.705, МСЭ T G.820/I.351/Y.1501). [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN synchronization supply unitSSU …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»