Перевод: со всех языков на все языки

со всех языков на все языки

сумма+расхода

  • 21 cash

    [kæʃ]
    balance the cash подсчитывать кассовую наличность cash деньги; in cash при деньгах; out of (или short of) cash не при деньгах cash касса cash кассовая наличность cash кассовый cash монеты и бумажные деньги cash наличная сделка cash наличные деньги, наличный расчет; звонкая монета cash наличные деньги, наличный расчет cash наличные деньги cash наличный cash наличный расчет cash получать деньги (по чеку, векселю) cash получать или платить деньги по чеку; to cash in (on smth.) разг. нажиться (на чем-л.) cash получать наличность cash превращать в наличные cash продавать cash реализовывать cash статья баланса, отражающая наличность cash against documents, CAD наличные против документов cash against documents, CAD получение платежа после предъявления документов cash at bank and in hand банковская и кассовая наличность cash attr.: cash crop товарная культура; cash payment наличный расчет cash before delivery оплата наличными до доставки товара cash attr.: cash crop товарная культура; cash payment наличный расчет crop: cash cash товарная культура cash dispensing bank teller вчт. автоматический кассир cash down за наличный расчет cash price цена при уплате наличными; cash down!, cash on the nail! = деньги на бочку! down: cash cash деньги на бочку; down with! долой! cash получать или платить деньги по чеку; to cash in (on smth.) разг. нажиться (на чем-л.) cash in превращать в наличные cash in производить окончательный расчет cash in реализовывать ценные бумаги cash in advance (CIA) оплата авансом cash in banks банковская наличность cash in hand денежная наличность в кассе cash in hand кассовая наличность cash in hand остаток наличности в кассе hand: cash in cash наличные деньги cash in on наживаться cash in on обращать в свою пользу cash in transit деньги в пути cash in transit отправленные деньги cash on delivery, COD наложенный платеж cash on delivery наложенным платежом; с уплатой при доставке cash on delivery, COD уплата при доставке delivery: cash on cash наложенный платеж cash on cash оплата по доставке cash on delivery amount почт. сумма, взимаемая за доставку cash on delivery charge сбор за доставку наложенным платежом cash on delivery collection fee сбор за доставку наложенным платежом cash on delivery collection fee сумма, взимаемая за доставку cash on delivery consignment партия товара, продаваемая с доставкой cash on delivery consignment партия товара, отправляемая наложенным платежом cash on delivery sale продажа товара наложенным платежом cash on delivery sale продажа товара с доставкой cash on receipt of invoice оплата наличными при получении счета-фактуры cash on shipment (COS) оплата наличными при отгрузке cash price цена при уплате наличными; cash down!, cash on the nail! = деньги на бочку! cash attr.: cash crop товарная культура; cash payment наличный расчет payment: cash cash наличный платеж cash cash уплата наличными cash price цена при уплате наличными; cash down!, cash on the nail! = деньги на бочку! price: cash cash котировка, полученная на наличном рынке cash cash курс по сделкам за наличные cash cash курс ценных бумаг по кассовым сделкам cash cash наличная цена cash cash цена при оплате наличными cash cash цена при продаже за наличные cash up снимать кассовую наличность check the cash рев. проверять кассовую наличность cheque made out to cash чек для оплаты наличными cash on delivery, COD наложенный платеж cash on delivery, COD уплата при доставке cod: cod разг. надувать, обманывать cash стручок, шелуха cash (pl без измен.) треска COD: COD: cash collection fee сбор за отправление наложенным платежом codfish: codfish =cod collect: cash on delivery, COD наложенным платежом conversion into cash обмен на наличные excess cash излишек наличности for cash за наличные hard cash наличные деньги hard: cash cash (амер. money) наличные (деньги); звонкая монета; hard of hearing тугой на ухо cash деньги; in cash при деньгах; out of (или short of) cash не при деньгах net cash наличными без скидки net: cash cash наличные деньги; наличный расчет без скидки; net cost себестоимость cash деньги; in cash при деньгах; out of (или short of) cash не при деньгах pay cash платить наличными ready cash наличные (деньги); sold for cash продан за наличный расчет; to pay cash расплатиться наличными petty cash небольшая наличная сумма petty: cash мелкий, незначительный, маловажный; petty cash мелкие статьи (прихода, расхода) ready cash наличность ready cash наличные (деньги); sold for cash продан за наличный расчет; to pay cash расплатиться наличными ready cash наличные деньги ready cash наличные (деньги); sold for cash продан за наличный расчет; to pay cash расплатиться наличными spare cash запас наличных денег spare cash свободная наличность spare: cash запасной, запасный; резервный; лишний, свободный; spare cash лишние деньги; spare parts запасные части spot cash немедленная уплата наличными spot: cash attr. наличный; имеющийся на складе; spot cash наличный расчет; spot goods наличный товар; товар с немедленной сдачей vault cash запас наличных денег в банковском хранилище vault cash наличность, хранимая в сейфе vault cash наличность в расходной кассе

    English-Russian short dictionary > cash

  • 22 expenditure

    сущ.
    1) общ. трата, расходование, затрачивание, расход (использования каких-л. ресурсов: денег, усилий и т. п.)
    Syn:
    expense 1), 7), spending
    2) учет, преим. мн. расходы ( денежные)

    to curb [curtail, cut down (on), reduce\] expenditures — сокращать расходы

    income exceeding expenditure — доход, превышающий объем расходов

    expenditure chargeable to the Capital Account — расходы, отражаемые на счете капитала

    expenditure chargeable to project [research\] — расходы, относящиеся к проекту [к исследованию\]

    education expenditures, expenditures on education — расходы на образование

    Syn:
    See:

    * * *
    расходы, затраты; расходная часть бюджета; статья расхода.
    * * *
    статья расходов (на приобретение активов); затраты; издержки; расход; расходование
    . . Словарь экономических терминов .
    * * *
    сумма, израсходованная для оплаты товаров или услуг

    Англо-русский экономический словарь > expenditure

  • 23 somma zero

    сущ.

    Итальяно-русский универсальный словарь > somma zero

  • 24 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 25 linear programming

    1. линейное программирование

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > linear programming

  • 26 deficit

    ['defɪsɪt]
    1) Общая лексика: дефицит, недочёт, нехватка, дефицит (дебетовое (отрицательное) сальдо на счёте накопленной нераспределённой чистой прибыли)
    4) Математика: дефицитный, обеднение
    6) Бухгалтерия: дебетовое сальдо счета нераспределённой прибыли, дефицит (дебетовое сальдо счета "реинвестированная прибыль" - retained earnings)
    7) Экология: недостаток
    8) Деловая лексика: недостача, недостающая сумма

    Универсальный англо-русский словарь > deficit

  • 27 utgiftspost

    Норвежско-русский словарь > utgiftspost

  • 28 expenditure appropriation

    English-Russian base dictionary > expenditure appropriation

  • 29 возмещение

    1. offset
    2. quittance
    3. amends
    4. indemnification
    5. recompense
    6. refund
    7. refunding
    8. reimbursement
    9. compensation; indemnification
    10. indemnity
    11. recovery
    12. redress
    13. reparation
    14. repayment
    Синонимический ряд:
    компенсирование (сущ.) восполнение; компенсацию; компенсация; компенсирование; покрытие

    Русско-английский большой базовый словарь > возмещение

  • 30 по

    1. according to

    по его словам, вы неправыaccording to him you are wrong

    2. after
    3. for

    тосковать по родине, томиться на чужбинеto yearn for home

    4. under
    5. up
    6. on; along; through; all over; in; by; according to; after; owing to; for

    усиление по напряжению — voltage amplification; voltage gain

    7. along
    8. from

    вычислять по …compute from

    определять по … — determine from …

    9. per
    10. through

    передвигаться по пласту — migrate through a stratum (refl.)

    Антонимический ряд:

    Русско-английский большой базовый словарь > по

  • 31 водный баланс почвы

    1. Bodenwasserbilanz

     

    водный баланс почвы
    Алгебраическая сумма прихода и расхода воды в почве за выбранный интервал времени и для определенного слоя почвы.
    [ ГОСТ 17713-89]

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > водный баланс почвы

  • 32 bilan hydrique du sol

    1. водный баланс почвы

     

    водный баланс почвы
    Алгебраическая сумма прихода и расхода воды в почве за выбранный интервал времени и для определенного слоя почвы.
    [ ГОСТ 17713-89]

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > bilan hydrique du sol

  • 33 Bodenwasserbilanz

    1. водный баланс почвы

     

    водный баланс почвы
    Алгебраическая сумма прихода и расхода воды в почве за выбранный интервал времени и для определенного слоя почвы.
    [ ГОСТ 17713-89]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Bodenwasserbilanz

  • 34 водный баланс почвы

    1. soil water balance

     

    водный баланс почвы
    Алгебраическая сумма прихода и расхода воды в почве за выбранный интервал времени и для определенного слоя почвы.
    [ ГОСТ 17713-89]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > водный баланс почвы

  • 35 водный баланс почвы

    1. bilan hydrique du sol

     

    водный баланс почвы
    Алгебраическая сумма прихода и расхода воды в почве за выбранный интервал времени и для определенного слоя почвы.
    [ ГОСТ 17713-89]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > водный баланс почвы

  • 36 soil water balance

    1. водный баланс почвы

     

    водный баланс почвы
    Алгебраическая сумма прихода и расхода воды в почве за выбранный интервал времени и для определенного слоя почвы.
    [ ГОСТ 17713-89]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > soil water balance

  • 37 pressure

    1. расчетное давление
    2. переэксплуатация (природных ресурсов)
    3. максимальное допустимое рабочее давление
    4. максимальное допустимое аварийное давление
    5. испытательное заводское давление
    6. испытательное давление системы
    7. испытательное давление
    8. интенсивная эксплуатация
    9. давление страгивания
    10. давление распространения лавинного смятия
    11. давление отключения
    12. давление коллапса
    13. давление гидро- или гидростатических испытаний
    14. давление (металлургия)
    15. давление (для жидких и газообразных сред)
    16. давление
    17. аварийное давление

     

    давление
    Физическая величина, характеризующая напряженное состояние сред - жидких и газообразных, подчиняющихся закону Паскаля, - в которых при равновесии касательные напряжения отсутствуют.
    [ГОСТ 8.271-77]

    давление

    Физическая величина, характеризующая интенсивность нормальных сил, с которыми одно тело действует на поверхность другого
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

    Смотри также

     

    давление (для жидких и газообразных сред)
    Производная вектора действующей в среде силы по площади выбранной поверхности. Является скаляром, так как только нормальная компонента вектора отлична от нуля.
    Единица измерения
    Па
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

     

    давление
    Физ. величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с которыми одно тело действует на поверхность другого. Если силы распределены вдоль поверхности равномерно, то давление на любую часть поверхности Р = F/S, где S - площадь этой части, F— сумма приложенных перпендикулярно к ней сил. При неравномерном распределении сил это равенство определяет среднее давление на данную поверхность, а в пределе: Р = lim dF/dS — д. в данной точ-J5-.0
    В широком смысле д. разделяют на низкое (< Рт) и высокое (> Рт). Длительно действующее д. называют статическим, кратковременно действующее — мгновенным или динамическим. В покоящихся газах и жидкостях д. является гидростатическим: на любую свободную поверхность, граничащую со сжатой средой, действуют только норм, напряжения, величина к-рых не зависит от ориентировки поверхности и одинакова во всем объеме. Напряж. состояние тв. тела от действия внешней силы определяется как норм., так и касат. напряжениями (напряжениями сдвига).
    Д. широко используется в металлургии, особенно в сочетании с вые. темп-рой, напр., вые. д. является основой прокатки, ковки, штамповки, прессования и др., а низкое д. — плавки, внепечной обработки (вакуумирования) жидких расплавов и др.
    При прокатке в расчетах энергосиловых параметров используют также понятия контактного, ср. уд. и общего давления металла. Контактное д., т.е. норм, напряжение на дуге контакта металла с валками, находится расч. или экспер. с использов. точечных месдоз. Ср. уд. д. — это контактное д., усредненное по площади контакта металла с валками; определяется экспер. по замер, усилиям прокатки. Общее д. металла, усилие прокатки, рассчитывается как произведение ср. уд. д. на горизонтальную проекцию контактной площади очага деформации. При прокатке прямоугольных сечений со свободным уширением контактную площадь определяют как произведение длины очага деформации на ср. ширину; при прокатке в калибрах ее находят графически или аналитич. методами как площадь привел, или соответственной полосы.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    интенсивная эксплуатация

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.75 расчетное давление (pressure, design): Максимальное внутреннее давление в течение обычной эксплуатации, отнесенное к указанной базисной высоте, по которому должен рассчитываться трубопровод или участок трубопровода.

    Примечание - Расчетное давление должно учитывать условия стационарного течения на всем диапазоне значений расхода, а также возможные условия засорения и отключения для всей длины трубопровода или участка трубопровода, который должен находиться под постоянным расчетным давлением.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.77 аварийное давление (pressure, incidental): Максимальное внутреннее давление, которое, согласно расчетам, выдержит трубопровод или участок трубопровода в течение каких-либо аварийных рабочих ситуаций, в привязке к той же базисной высоте, что и для расчетного давления.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.78 давление страгивания (pressure, initiation): Наружное избыточное давление, требующееся для начала процесса лавинного смятия от зоны существующей местной потери устойчивости (местного смятия) или вмятины.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.80 максимальное допустимое аварийное давление (Pressure, Maximum Allowable Incidental, MAIP): Максимальное давление, при котором трубопроводная система должна работать в ходе аварийной (т.е. кратковременной) эксплуатации.

    Примечание - Максимальное допустимое аварийное давление определяется как максимальное аварийное давление за вычетом положительного допуска системы защиты от превышения давления.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.81 максимальное допустимое рабочее давление (Pressure, Maximum Allowable Operating, MAOP): Максимальное давление, при котором трубопроводная система должна работать в режиме нормальной эксплуатации.

    Примечание - Максимальное допустимое рабочее давление определяется как расчетное давление за вычетом положительного допуска системы регулировки давления.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.82 испытательное заводское давление (pressure, mill test): Давление, при котором испытываются отдельные трубы и соединительные детали после завершения их изготовления в соответствии с положениями 8.2.2.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.83 давление распространения лавинного смятия (pressure, propagating): Минимальное давление, требующееся для того, чтобы лавинное смятие продолжало распространяться.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.84 давление отключения (pressure, shut-in): Максимальное давление, которое может быть достигнуто в устье скважины в течение времени закрытия запорной арматуры, располагающейся ближе всех к устью скважины (отключение устья скважины).

    Примечание - При этом подразумевается, что должны учитываться переходные режимы давления вследствие закрытия запорной арматуры.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.85 испытательное давление системы (pressure, system test): Внутреннее давление в трубопроводе или участке трубопровода в ходе испытаний по завершению работ по монтажу, подаваемое для испытания трубопроводной системы на герметичность (обычно проводится как гидростатическое испытание).

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > pressure

См. также в других словарях:

  • ГОСТ 8.586.1-2005: Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования — Терминология ГОСТ 8.586.1 2005: Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования оригинал… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 52517-2005: Двигатели внутреннего сгорания поршневые. Характеристики. Часть 1. Стандартные исходные условия, объявление мощности, расхода топлива и смазочного масла. Методы испытаний — Терминология ГОСТ Р 52517 2005: Двигатели внутреннего сгорания поршневые. Характеристики. Часть 1. Стандартные исходные условия, объявление мощности, расхода топлива и смазочного масла. Методы испытаний оригинал документа: 3.18 длительная… …   Словарь-справочник терминов нормативно-технической документации

  • НОРМЫ РАСХОДА — (RATE OF USE; USAGE RATE) макс, допустимое кол во сырья, материалов, топлива, расходуемое на изготовление ед. продукции установленного качества, выполнение технол. операций и т.д. Н.р. могут быть классифицированы, напр., по степени детализации… …   Глоссарий терминов по грузоперевозкам, логистике, таможенному оформлению

  • НОРМА РАСХОДА МАТЕРИАЛЬНЫХ РЕСУРСОВ — максимально допустимое количество сырья, материалов, топлива, расходуемое на изготовление единицы продукции установленного качества, выполнение технологических операций и т. д. Н.р.м.р. могут быть классифицированы, например, по степени… …   Большой бухгалтерский словарь

  • НОРМА РАСХОДА МАТЕРИАЛЬНЫХ РЕСУРСОВ — максимально допустимое количество сырья, материалов, топлива, расходуемое на изготовление единицы продукции установленного качества, выполнение технологических операций и т.д. Н.р. могут быть классифицированы, например, по степени детализации, по …   Большой экономический словарь

  • Железные дороги — I I. История развития железных дорог. Ж. дорога, в том виде, в каком она существует теперь, изобретена не сразу. Три элемента, ее составляющие, рельсовый путь, перевозочные средства и двигательная сила прошли каждый отдельную стадию развития,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Налоги — (общая теория). I. Историческое развитие Н. Налоги, ныне составляющие главный источник государственного дохода, возникали и развивались постепенно, заменяя собой прежние способы извлечения доходов. Существование стройной системы Н. есть, поэтому …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Отложенный налог на прибыль — Бухгалтерский учёт Ключевые понятия Бухгалтер • Бухгалтерия Главная бухгалтерская книга Оборотно сальдовая ведомость Отчётный период …   Википедия

  • ПБУ 10/99 — В редакции Приказа Минфина от 08.11.2010 N 144н ПОЛОЖЕНИЕ ПО БУХГАЛТЕРСКОМУ УЧЕТУ РАСХОДЫ ОРГАНИЗАЦИИ ПБУ 10/99 Содержание 1 I. Общие положения 2 II. Расходы по обычным видам деятельности 3 …   Бухгалтерская энциклопедия

  • Уральская область* — находится на ЮВ Европейской России, между 53° и 45,5° с. ш. и 49° и 59° в. д.; занимает пространство в 284412 кв. в., или 29626 тыс. дес., из коих 62068 кв. в. (6465 тыс. дес.) принадлежат У. казачьему войску на правах нераздельного общинного… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Уральская область — I находится на ЮВ Европейской России, между 53° и 45,5° с. ш. и 49° и 59° в. д.; занимает пространство в 284412 кв. в., или 29626 тыс. дес., из коих 62068 кв. в. (6465 тыс. дес.) принадлежат У. казачьему войску на правах нераздельного общинного… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»