Перевод: с русского на английский

с английского на русский

рабочий+момент

  • 1 рабочий момент

    Универсальный русско-английский словарь > рабочий момент

  • 2 момент

    момент сущ
    torque
    автоматическое флюгирование при падении крутящего момента
    positive torque drop autofeathering
    аэродинамический момент
    aerodynamic moment
    балансировка кабрирующего момента
    nose-up trim
    балансировка пикирующего момента
    nose-down trim
    вал для передачи крутящего момента
    torsion shaft
    восстанавливающий момент
    restoring moment
    географическое положение на данный момент
    current geographical position
    гироскопический момент
    gyroscopic torque
    датчик измерителя крутящего момента
    torque pressure transmitter
    датчик отрицательного крутящего момента
    negative torque pickup
    действия в момент касания ВПП
    touchdown operations
    изгибающий момент
    bending moment
    изгибающий момент крыла
    wing bending moment
    измеритель крутящего момента
    torque meter
    измеритель крутящего момента гидравлического типа
    oil pressure-type torquemeter
    измеритель момента
    torquemeter
    крутящий момент
    engine torque
    крутящий момент воздушного винта
    1. airscrew torque
    2. propeller torque крутящий момент воздушного винта в режиме авторотации
    propeller windmill torque
    крутящий момент крыла
    wing torsional moment
    крутящий момент несущего винта
    rotor torque
    механизм измерителя крутящего момента на валу двигателя
    engine torquemeter mechanism
    момент инерции
    moment of inertia
    момент количества движения
    moment of momentum
    момент крена
    rolling moment
    момент рыскания
    yawing moment
    момент тангажа
    pitching moment
    момент тяги
    thrust moment
    отрицательный крутящий момент
    negative torque
    прогноз на момент взлета
    takeoff forecast
    прогноз на момент посадки
    landing forecast
    пространственное положение в момент удара
    attitude at impact
    рабочий момент
    operating torque
    результирующий момент
    resultant moment
    сигнализатор появления отрицательного крутящего момента
    negative torque switch
    (на валу двигателя) с момента ввода в эксплуатацию
    since placed in service
    событие до момента касания ВПП
    occurrence to touchdown
    тормозной момент
    brake torque
    уравновешивать крутящий момент несущего винта
    counteract the rotor torque
    флюгирование по отрицательному крутящему моменту
    negative torque feathering
    шарнирный момент шасси
    gear hinge moment

    Русско-английский авиационный словарь > момент

  • 3 рабочий

    аэродинамическая труба с закрытой рабочей частью
    closed-throat wind tunnel
    в рабочем состоянии
    operational
    диапазон рабочих режимов
    normal operating range
    качество рабочей смеси
    mixture ratio
    обедненная рабочая смесь
    lean mixture
    обогащать рабочую смесь
    enrich mixture
    обогащенная рабочая смесь
    rich mixture
    образовывать рабочую смесь
    form mixture
    обучение на рабочем месте
    on-the-job training
    осмотр в конце рабочего дня
    daily inspection
    полетное рабочее время
    flight duty period
    приводить в рабочее состояние
    prepare for service
    промежуточное кольцо между рабочими колесами турбины
    turbine wheels spacer
    рабочая высота
    operating altitude
    Рабочая группа по разработке основных эксплуатационных требований
    Basic Operational Requirements Group
    рабочая лопатка турбины
    turbine rotor blade
    рабочая нагрузка
    1. service load
    2. workload рабочая площадка
    working platform
    рабочая топливная форсунка
    main fuel nozzle
    рабочая характеристика
    operating characteristic
    рабочая частота
    working frequency
    рабочая часть ВПП
    runway usable distance
    рабочая часть лопасти воздушного винта
    blade pressure side
    рабочее время пилота
    pilot duty time
    рабочее давление
    1. operating pressure
    2. working pressure рабочее колесо
    1. impeller
    2. blade wheel рабочее колесо двигателя
    engine impeller
    рабочее колесо компрессора
    compressor rotor wheel
    рабочее колесо турбины
    turbine wheel
    рабочее место
    duty station
    (экипажа) рабочее место бортинженера
    flight engineer station
    рабочее место командира
    captain's station
    (воздушного судна) рабочее место пилота
    pilot's station
    рабочий канал
    operating channel
    рабочий момент
    operating torque
    рабочий потолок
    operating ceiling
    рабочий режим
    operating mode
    рабочий ток
    operating current
    рабочий топливный бак
    service fuel tank
    рабочий ход
    1. power stroke
    (поршня) 2. working path рабочий цикл
    operating cycle
    рабочий чертеж
    workshop drawing
    рабочий экипаж
    operating crew
    рабочий эшелон полета
    usable flight level
    рабочий язык ИКАО
    working language of ICAO
    расширенная рабочая часть рулежной дорожки
    widened taxiway throat
    регулирование рабочей смеси
    mixture setting
    самовоспламеняющаяся рабочая смесь
    self-inflammable mixture
    тариф для рабочих
    worker fare

    Русско-английский авиационный словарь > рабочий

  • 4 рабочий крутящий момент

    Русско-английский словарь нормативно-технической терминологии > рабочий крутящий момент

  • 5 рабочий конденсатор двигателя

    1. motor running capacitor

    1.3.1 рабочий конденсатор двигателя (motor running capacitor): Мощный конденсатор, подключаемый к вспомогательной обмотке двигателя, помогающий защищать двигатель при запуске и увеличивающий момент вращения двигателя в условиях эксплуатации.

    Примечание - Рабочий конденсатор обычно присоединяют к обмотке двигателя и оставляют в схеме в течение периода эксплуатации двигателя. Рабочий конденсатор, подсоединенный параллельно пусковому конденсатору помогает запустить двигатель.

    Источник: ГОСТ Р МЭК 60252-2-2008: Конденсаторы для двигателей переменного тока. Часть 2. Пусковые конденсаторы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > рабочий конденсатор двигателя

  • 6 рабочий останов

    1. operational stop

    3.13 рабочий останов (operational stop): Останов движений станка в процессе производства. Функции управления между системой управления и приводами подачи станка сохраняются (вращающий момент, скорость вращения, положение).

    Источник: ГОСТ Р ЕН 13218-2006: Безопасность металлообрабатывающих станков. Станки шлифовальные стационарные

    3.8 рабочий останов (operational stop): Контролируемая функция останова при сохранении подвода питания, подаваемого на исполнительные органы станка, но при этом исключения дальнейших опасных перемещений узлов станка.

    Источник: ГОСТ Р ЕН 12840-2006: Безопасность металлообрабатывающих станков. Станки токарные с ручным управлением, оснащенные и не оснащенные автоматизированной системой управления

    Русско-английский словарь нормативно-технической терминологии > рабочий останов

  • 7 момент изменения дифферента на один дюйм

    Русско-английский военно-политический словарь > момент изменения дифферента на один дюйм

  • 8 рабочий крутящий момент

    Универсальный русско-английский словарь > рабочий крутящий момент

  • 9 рабочий крутящий момент

    Русско-английский исловарь по машиностроению и автоматизации производства > рабочий крутящий момент

  • 10 рабочий крутящий момент

    Русско-английский политехнический словарь > рабочий крутящий момент

  • 11 ни пуха ни пера

    разг.
    good luck < to you>! < every blessing and> success attend you!; break a leg! joc.

    Звонил Аристархов, сообщил, что всё готово к испытаниям. - Ни пуха, - сказал Чижегов. (Д. Гранин, Дождь в чужом городе) — It was Aristarkhov, telling him that everything was ready for the tests. 'Good luck to you,' Chizhegov said.

    - А нашего Севку в кино зовут, - сказала мама. - На главную роль. - Севка ожидал, что бабушка ответит то же, что и все: поздравляю, ни пуха ни пера... (В. Токарева, Рабочий момент) — 'Our Sevka has been chosen to take part in a film,' announced his mother' 'in the leading role!' Sevka expected his grandmother to say, 'Congratulations! Good luck!'

    Русско-английский фразеологический словарь > ни пуха ни пера

  • 12 по мелочам

    разг.
    1) (в небольшом количестве, небольшими суммами) by trifles (retail); in small quantities; in little things

    Молчун, хозяйственный мужичок-кулачок, Ефим частенько выручает меня по мелочам. (В. Тендряков, День, вытеснивший жизнь) — A silent, thrifty tight-fisted man, Yefim often helped me out in little things.

    2) (что-либо незначительное, не существенное) on trifles; about this and that

    Режиссёр разговаривал с Севкой по мелочам о том о сём... (В. Токарева, Рабочий момент) — The director chatted with Sevka about this and that...

    Русско-английский фразеологический словарь > по мелочам

  • 13 тормозной

    1) arrester

    2) brake
    3) braking
    башмак тормозной
    колесный тормозной
    парашют тормозной
    тормозной башмак
    тормозной вагон
    тормозной гак
    тормозной двигатель
    тормозной динамометр
    тормозной диск
    тормозной клапан
    тормозной контакт
    тормозной контактор
    тормозной конус
    тормозной магнит
    тормозной механизм
    тормозной момент
    тормозной насос
    тормозной парашют
    тормозной путь
    тормозной такелаж
    тормозной уравнитель
    тормозной храповик
    тормозной шток
    тормозной щиток
    щиток тормозной

    винт тормозной авторотирующий<aeron.> rotochute


    главный тормозной цилиндрbrake master cylinder


    клапан воздухораспределительный тормозной<engin.> air-brake governeor


    клин тормозной колодкиbrake shoe key


    колесный тормозной цилиндрwheel-braking cylinder


    прокачка тормозной системыbleeding air from brakes


    рабочий тормозной цилиндрwheel cylinder


    тормозной ракетный двигательretroengine

    Русско-английский технический словарь > тормозной

  • 14 помощник

    assistant имя существительное:
    aide (помощник, адъютант)
    сокращение:
    assoc (помощник, ассоциация)

    Русско-английский синонимический словарь > помощник

  • 15 помощница

    assistant имя существительное:

    Русско-английский синонимический словарь > помощница

  • 16 режим

    режим сущ
    behavior
    вертолет в режиме висения
    hovering helicopter
    взлет на режимах работы двигателей, составляющих наименьший шум
    noise abatement takeoff
    внезапно изменять режим
    chop the power
    воздушный винт на режиме малого газа
    idling propeller
    в режиме
    in mode
    в режиме большого шага
    in coarse pitch
    в режиме готовности
    in alert
    в режиме малого шага
    in fine pitch
    в режиме самоориентирования
    when castoring
    выбирать режим
    select the mode
    выбор режима работы двигателя
    selection of engine mode
    вывод из режима сваливания
    1. recovery from the stall
    2. stall recovery выводить двигатель из режима реверса
    unreverse an engine
    выводить на режим малого газа
    set idle power
    выполнять полет в режиме ожидания над аэродромом
    hold over the beacon
    выходить на взлетный режим
    come to takeoff power
    горизонтальный полет на крейсерском режиме
    level cruise
    дальность полета на режиме авторотации
    autorotation range
    двигатель на режиме малого газа
    idling engine
    диапазон взлетных режимов
    takeoff range
    диапазон рабочих режимов
    normal operating range
    диапазон режимов полета
    flight envelope
    заданный режим полета
    basic flight reference
    задатчик режима
    mode selector
    (полета) запуск в режиме авторотации
    windmill starting
    заход на посадку в режиме планирования
    gliding approach
    заход на посадку на установившемся режиме
    steady approach
    зона воздушного пространства с особым режимом полета
    airspace restricted area
    испытание в режиме висения
    hovering test
    крутящий момент воздушного винта в режиме авторотации
    propeller windmill torque
    летать в курсовом режиме
    fly heading mode
    летать в режиме бреющего полета
    fly at a low level
    максимальный режим
    full power conditions
    мощность на режиме полетного малого газа
    flight idle power
    мощность на чрезвычайном режиме
    contingency power
    набор высоты в крейсерском режиме
    cruise climb
    набор высоты до крейсерского режима
    climb to cruise operation
    на режиме малого газа
    at idle power
    нерасчетный ветровой режим
    anomalous wind conditions
    неустановившийся режим
    unsteady mode
    неустановившийся режим набора высоты
    nonsteady climb
    номинальный режим
    maximum continuous power
    обратная тяга на режиме малого газа
    reverse idle thrust
    оптимальный режим
    best economy power
    основной режим воздушного пространства
    dominant air mode
    переключатель выбора режима работы автопилота
    autopilot mode selector
    переключатель режимов работы
    mode selector switch
    переход в режим горизонтального полета
    puchover
    переходить в режим набора высоты
    entry into climb
    переход на режим висения
    reconversion hovering
    периодический режим
    periodic duty
    повторно-кратковременный режим
    intermittent duty
    повторный запуск на режиме авторотации
    windmilling restart
    полет в режиме висения
    hover flight
    полет в режиме ожидания
    holding operation
    полет в режиме ожидания на маршруте
    holding en-route operation
    полет на крейсерском режиме
    normal cruise operation
    полет на номинальном расчетном режиме
    with rated power flight
    полет на режиме авторотации
    autorotational flight
    порядок набора высоты на крейсерском режиме
    cruise climb technique
    посадка в режиме авторотации в выключенным двигателем
    power-off autorotative landing
    посадка на режиме малого газа
    idle-power
    потолок в режиме висения
    hovering ceiling
    предел скоростей на крейсерском режиме
    cruising speeds range
    продолжительность в режиме висения
    hovering endurance
    продолжительность работы двигателя на взлетном режиме
    full-thrust duration
    прямая тяга на режиме малого газа
    forward idle thrust
    работа в режиме запуска двигателя
    engine start mode
    работа двигателя на режиме малого газа
    idling engine operation
    работа на режиме холостого хода
    idle running
    работа только в режиме приема
    receiving only
    работать на режиме малого газа
    run at idle power
    работать на режиме холостого хода
    run idle
    рабочий режим
    operating mode
    радиус действия радиолокатора в режиме поиска
    radar search range
    разворот в режиме висения
    hovering turn
    расход на крейсерском режиме
    cruise consumption
    режим автоматической посадки
    autoland mode
    режим воздушного потока в заборнике воздуха
    inlet airflow schedule
    режим готовности
    standby mode
    режим закрытых тарифов
    closed-rate situation
    режим запроса
    interrogation mode
    режим земного малого газа
    ground idle
    режим малого газа
    1. idle
    2. idling 3. idle power rating режим малого газа в заданных пределах
    deadband idle
    режим малого газа при заходе на посадку
    approach idle
    режим обогрева
    heating mode
    режим ожидания
    holding mode
    режим ответа
    reply mode
    режим открытых тарифов
    open-rate situation
    режим поиска
    search mode
    режим полета
    1. flight mode
    2. mode of flight режим полетного малого газа
    flight idle
    режим работы
    rating
    режим работы автопилота по заданному курсу
    autopilot heading mode
    режим работы с полной нагрузкой
    full-load conditions
    режим равновесных оборотов
    on-speed conditions
    режим согласования
    synchronization mode
    режим стабилизации курса
    heading hold mode
    режим стабилизации на заданной высоте
    height-lock mode
    режим управления
    control mode
    режим холостого хода
    idle conditions
    сертификация по шуму на взлетном режиме
    take-off noise
    снижать режим работы двигателя
    slow down an engine
    снижение в режиме авторотации
    autorotative descent
    снижение в режиме планирования
    gliding descent
    снижение в режиме торможения
    braked descent
    снижение на крейсерском режиме
    cruise descent
    снижение на режиме авторотации
    autorotative descend operation
    снижение режима работы
    throttle retarding
    совмещенный режим
    coupled mode
    стартерный режим генератора
    generator motorizing mode
    табло режимов работы
    mode annunciator
    тепловой режим
    thermal behavior
    техника пилотирования на крейсерском режиме
    aeroplane cruising technique
    тормозной режим работы
    retardation mode
    тяга на взлетном режиме
    takeoff thrust
    тяга на максимально продолжительном режиме
    maximum continuous thrust
    тяга на режиме максимального газа
    full throttle thrust
    тяга на режиме малого газа
    idling thrust
    тяга на установившемся режиме
    steady thrust
    убрать режим
    power off
    угол начального участка установившегося режима набора высоты
    first constant climb angle
    угол установившегося режима набора высоты
    constant climb angle
    указатель режима работы
    mode indicator
    управление на переходном режиме
    control in transition
    устанавливать взлетный режим
    set takeoff power
    устанавливать режим набора высоты
    establish climb
    устанавливать режим полета
    establish the flight conditions
    устанавливать режим снижения
    establish descent
    установившийся режим
    steady mode
    установившийся режим набора высоты
    constant climb
    установка режима работы двигателя
    throttle setting
    форсажный режим
    reheat power
    форсированный режим
    augmented power
    цифровой электронный регулятор режимов работы двигателя
    digital engine control
    число оборотов двигателя на взлетном режиме
    engine takeoff speed
    чрезвычайный режим работы
    contingency rating
    шаг в режиме торможения
    braking pitch
    штурвальный режим
    manual mode
    эксплуатационный режим
    operation conditions
    элеронный режим работы
    aileron mode

    Русско-английский авиационный словарь > режим

  • 17 безработица

    1. unemployment

     

    безработица

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    безработица
    Неполное вовлечение трудовых ресурсов (экономически активного населения) в экономический процесс. По международно-признанному определению, безработным считается тот, кто не имеет работы, ищет работу и готов в любой момент начать работать. Официальная российская статистика считает безработными только тех, кто официально зарегистрирован на бирже труда (по мнению некоторых экспертов, это примерно половина действительно безработных). Несколько по-иному различаются открытая и скрытая Б. Открытая относится к трудоспособным лицам, действительно нигде не работающим и не получающим, таким образом, средств к существованию (в отличие, например, от занятых в теневом бизнесе). Скрытая – к тем, кто числится на работе, но находится в вынужденных отпусках, занят неполный рабочий день и т.п. (ситуация, которая была характерна для многих предприятий в начале 90-х гг.). В принципе, в плановой экономике, где цены и зарплаты контролируются, можно гарантировать рабочее место каждому, не подвергая экономику опасности высокой инфляции (хотя за это преимущество приходится платить существенно более низкой эффективностью экономической системы и, соответственно, более низким уровнем жизни населения). Иное дело в рыночной экономике. Там безработица, при всей ее нежелательности, все же должна быть достаточной, чтобы страна не сорвалась в ускоренную инфляцию. Зависимость темпа инфляции от уровня занятости для рыночной экономики выражена т.н. кривой Филлипса. Она показывает, что инфляция неизбежна, если уровень занятости окажется выше определенной отметки. Подробнее см. Филлипса кривая. Не ускоряющий инфляцию (инфляционно нейтральный) уровень безработицы (НУИУБ) [non-accelerating inflation rate of unemployment] – некий промежуточный уровень безработицы, при котором инфляция остается неизменной. Разумеется, в перспективе, с изменением общественных институтов можно НУИУБ снизить, но все же при любом состоянии общества, имеющего рыночную экономику, всегда существует некоторый критический уровень безработицы, ниже которого инфляция начинает расти бесконечно (в силу раскручивания спирали «заработная плата – цены»).
    [ http://slovar-lopatnikov.ru/]

    EN

    unemployment
    The condition of being without remunerative employment. (Source: CED)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > безработица

  • 18 безударный ручной гайковерт

    1. portable rotary nutrunner

     

    безударный ручной гайковерт
    Ручной гайковерт, на рабочий орган которого при затяжке резьбового соединения крутящий момент воздействует непрерывно.
    [ ГОСТ 16436-70]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > безударный ручной гайковерт

  • 19 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

См. также в других словарях:

  • рабочий крутящий момент — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN working torque …   Справочник технического переводчика

  • рабочий — 1. РАБОЧИЙ, его; м. Человек, занятый физическим трудом в сфере материального производства. Промышленные рабочие. Сельскохозяйственные рабочие. Железнодорожный р. ◁ Рабочая, ей; ж. Разг. Рабочие, их; мн. 2. РАБОЧИЙ, ая, ее. 1. Относящийся к… …   Энциклопедический словарь

  • рабочий уровень воды — Уровень воды в момент его измерения. [ГОСТ 23903 79] Тематики пути водные внутр. и их навигац. оборуд …   Справочник технического переводчика

  • Рабочий Посёлок (Ленинградская область) — У этого термина существуют и другие значения, см. Рабочий посёлок (значения). Упразднённый посёлок Рабочий Посёлок №1 Страна …   Википедия

  • Рабочий и Колхозница — В. И. Мухина Рабочий и Колхозница, 1937 Сталь. Высота: ок. 25 м Северный вход ВВЦ «Рабочий и колхозница» скульптурная группа из двух фигур (нержавеющая хромоникелевая сталь), поднявших над головами серп и мол …   Википедия

  • Рабочий вопрос — Р. вопрос есть вопрос об экономическом, юридическом и социальном положении наемных рабочих и его улучшении. Он составляет главную часть современного социального вопроса, понимаемого как проблема преобразования существующего общественного строя в… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Рабочий день — см. День рабочий и Ночной труд (см.); здесь дается лишь обзор позднейших законодательных мер по этому предмету. Англия. Законом 6 июля 1895 г. сверхурочная работа, т. е. работа, производимая по особому соглашению сверх законом установленного Р.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • "РАБОЧИЙ СЪЕЗД" — антимарксистская идея, направленная на ликвидацию революц. партии пролетариата и создание легальной широкой рабочей партии в России в составе соц. демократов, эсеров, анархистов, беспартийных и т. д. Впервые была выдвинута одним из лидеров… …   Советская историческая энциклопедия

  • рабочий конденсатор двигателя — 1.3.1 рабочий конденсатор двигателя (motor running capacitor): Мощный конденсатор, подключаемый к вспомогательной обмотке двигателя, помогающий защищать двигатель при запуске и увеличивающий момент вращения двигателя в условиях эксплуатации.… …   Словарь-справочник терминов нормативно-технической документации

  • рабочий останов — 3.13 рабочий останов (operational stop): Останов движений станка в процессе производства. Функции управления между системой управления и приводами подачи станка сохраняются (вращающий момент, скорость вращения, положение). Источник: ГОСТ Р ЕН… …   Словарь-справочник терминов нормативно-технической документации

  • рабочий — I его; м. см. тж. рабочая, рабочие Человек, занятый физическим трудом в сфере материального производства. Промышленные рабочие. Сельскохозяйственные рабочие. Железнодорожный рабо/чий. II ая, ее. 1) отно …   Словарь многих выражений

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»