Перевод: с русского на французский

с французского на русский

процесс+управления

  • 1 процесс управления

    processus d'administration, processus de management

    Русско-французский финансово-экономическому словарь > процесс управления

  • 2 процесс управления

    Dictionnaire russe-français universel > процесс управления

  • 3 процесс

    м

    процесс включения в мировое хозяйство — mouvement d'insertion à l'économie mondiale, mouvement d'insertion à l'économie de mondialisation

    - процесс восстановления равновесия
    - процесс вступления
    - процесс выполнения
    - процесс глобализации
    - процесс закупки
    - процесс изготовления
    - процесс индустриализации
    - процесс интернационализации
    - процесс конкуренции
    - процесс концентрации
    - процесс накопления
    - процесс обмена
    - процесс обращения
    - процесс перераспределения
    - процесс планирования
    - процесс покупки
    - процесс потребления
    - процесс приватизации
    - процесс приспособления
    - процесс производства
    - процесс разноски
    - процесс распределения
    - процесс распространения
    - процесс регулирования цен
    - процесс совершенствования
    - процесс создания запасов
    - процесс стратегического планирования
    - процесс труда
    - процесс управления
    - процесс экономического развития
    - процесс экономического роста
    - бюджетный процесс
    - воспроизводственный процесс
    - в ходе воспроизводственного процесса
    - инвестиционный процесс
    - интеграционный процесс
    - инфляционные процессы
    - контролируемый процесс
    - кризисные процессы
    - наблюдаемый процесс
    - неконтролируемый процесс
    - непрерывный процесс
    - организационный процесс
    - переговорный процесс
    - перераспределительный процесс
    - производственный процесс
    - регулируемый процесс
    - рыночный процесс
    - циклический процесс
    - экономический процесс

    Русско-французский финансово-экономическому словарь > процесс

  • 4 размыкающий контакт

    1. contact de repos
    2. contact d'ouverture
    3. contact à ouverture
    4. contact "b"

     

    размыкающий контакт электрической цепи
    Контакт электрической цепи, замкнутый в начальном положении устройства и размыкающийся при переходе устройства в конечное положение
    [ ГОСТ 14312-79]

    контакт b — размыкающий контакт
    Контакт управления или вспомогательный контакт, разомкнутый, когда главные контакты контактного коммутационного аппарата замкнуты, и замкнутый, когда они разомкнуты.
    МЭК 60050(441-15-13)
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    контакт «b»
    размыкающий контакт

    -
    [IEV number 442-05-32]

    EN

    break contact
    a contact which is opened when the relay is in its operate condition and which is closed when the relay is in its release condition
    [IEV number 446-16-16]

    b-contact
    break contact

    a control or auxiliary contact which is open when the main contacts of the circuit-breaker or contactor are closed and closed when they are open
    Source: 441-15-13 MOD
    [IEV number 442-05-32]

    FR

    contact de repos
    contact à ouverture

    contact ouvert lorsque le relais est à l'état de travail et fermé lorsque le relais est à l'état de repos
    [IEV number 446-16-16]

    contact d'ouverture
    contact "b"

    contact de commande ou contact auxiliaire qui est ouvert lorsque les contacts principaux du disjoncteur ou du contacteur sont fermés et qui est fermé lorsque ces contacts sont ouverts
    Source: 441-15-13 MOD
    [IEV number 442-05-32]

    0229

    Размыкающий контакт
    (условное обозначение)

    Параллельные тексты EN-RU

    This setting defines whether there is an intervention in the control process of external switchgear units by using external termination contacts.
    [Schneider Electric]

    Данный параметр определяет возможность вмешательства в процесс управления внешними коммутационными аппаратами с помощью внешних размыкающих контактов.
    [Перевод Интент]

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > размыкающий контакт

  • 5 оптимизация

    1. optimisation

     

    оптимизация
    Процесс отыскания варианта, соответствующего критерию оптимальности
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    оптимизация
    1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
    [ http://slovar-lopatnikov.ru/]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    The quest for the optimum

    Вопрос оптимизации

    Throughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.

    На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.

    With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.

    На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.

    Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.

    Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,
    то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.

    This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.

    В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.

    Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.

    Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.

    Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.

    Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.

    The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.

    Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > оптимизация

  • 6 программируемый логический контроллер

    1. automate programmable à mémoire

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-французский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 7 дросселирование ГТД

    1. réduction du niveau de poussée

     

    дросселирование ГТД
    дросселирование

    Процесс уменьшения тяги (мощности) ГТД вследствие снижения расхода топлива при медленном и плавном перемещении рычага управления.
    [ ГОСТ 23851-79

    Тематики

    Синонимы

    EN

    DE

    FR

    258. Дросселирование ГТД

    Дросселирование

    D. Drosselung

    Е. Deceleration

    F. Réduction du niveau de poussée

    Процесс уменьшения тяги (мощности) ГТД вследствие снижения расхода топлива при медленном и плавном перемещении рычага управления

    Источник: ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > дросселирование ГТД

  • 8 приемистость ГТД

    1. accélération

     

    приемистость ГТД
    приемистость

    Ндп. разгон ГТД
    Процесс быстрого увеличения тяги (мощности) ГТД за счет повышения расхода топлива при резком перемещении рычага управления.
    [ ГОСТ 23851-79

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    261. Приемистость ГТД

    Приемистость

    Ндп. Разгон ГТД

    D. Beschleunigungsvermogen

    Е. Acceleration

    F. Accélération

    Процесс быстрого увеличения тяги (мощности) ГТД за счет повышения расхода топлива при резком перемещении рычага управления

    Источник: ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > приемистость ГТД

  • 9 сброс газа ГТД

    1. décélération

     

    сброс газа ГТД
    сброс газа

    Процесс быстрого уменьшения тяги (мощности) ГТД вследствие снижения расхода топлива при резком перемещении рычага управления.
    [ ГОСТ 23851-79

    Тематики

    Синонимы

    EN

    DE

    FR

    259. Сброс газа ГТД

    Сброс газа

    D. Gasabwurf

    Е. Chop deceleration

    F. Décélération

    Процесс быстрого уменьшения тяги (мощности) ГТД вследствие снижения расхода топлива при резком перемещении рычага управления

    Источник: ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > сброс газа ГТД

  • 10 технологическая система

    1. système technologique

     

    технологическая система
    Совокупность функционально взаимосвязанных средств технологического оснащения, предметов производства и исполнителей для выполнения в регламентированных условиях производства заданных технологических процессов или операций.
    Примечания
    1. К предметам производства относятся: материал, заготовка, полуфабрикат и изделие, находящиеся в соответствии с выполняемым технологическим процессом в стадии хранения, транспортирования, формообразования, обработки, сборки, ремонта, контроля и испытаний.
    2. К регламентированным условиям производства относятся: регулярность поступления предметов производства, параметры энергоснабжения, параметры окружающей среды и др.
    3. Следует различать четыре иерархических уровня технологических систем: технологические системы операций, технологические системы процессов, технологические системы производственных подразделений и технологические системы предприятий.Технологическая система (ТС) является частью производственной системы и, как любая другая система, имеет свою структуру и функционирует в определенных условиях.
    Состав и структура технологической системы, условия производства, режим работы регламентируются конструкторской, технологической и другой технической документацией. Изменение этой документации приводит к соответствующему изменению технологической системы.
    Все технологические системы можно подразделить на четыре иерархических уровня: технологические системы операций; технологические системы процессов; технологические системы производственных подразделений и технологические системы предприятий.
    Технологическая система операции обеспечивает выполнение одной заданной технологической операции.
    Технологическая система процесса включает в себя в качестве подсистем совокупность технологических систем операций, относящихся к одному методу (обработки, формообразования, сборки или контроля) или к одному наименованию изготовляемой продукции. При наличии автоматизированной системы управления технологическим процессом (АСУ ТП) ее технические средства входят в состав технологической системы этого процесса.
    Технологическая система производственного подразделения состоит из технологических систем процессов и (или) операций, функционирующих в рамках данного подразделения.
    Технологическая система предприятия состоит из технологических систем его производственных подразделений.
    Различают следующие виды технологических систем:
    последовательная технологическая система - технологическая система, все подсистемы которой последовательно выполняют различные части заданного технологического процесса;
    параллельная технологическая система - технологическая система, подсистемы которой параллельно выполняют заданный технологический процесс или заданную технологическую операцию;
    комбинированная технологическая система - технологическая система, структура которой может быть представлена в виде объединения последовательных и параллельных систем более низкого уровня;
    технологическая система с жесткой связью подсистем - технологическая система, в которой отказ хотя бы одной подсистемы вызывает немедленное прекращение функционирования технологической системы в целом;
    технологическая система с нежесткой связью подсистем - технологическая система, в которой отказ одной из подсистем не вызывает немедленного прекращения функционирования технологической системы в целом;
    по уровню автоматизации:
    механизированная технологическая система - технологическая система, средства технологического оснащения которой состоят из механизированно-ручных и механизированных технических устройств;
    автоматизированная технологическая система - технологическая система, средства технологического оснащения которой состоят из автоматизированно-ручных и автоматизированных устройств;
    автоматическая технологическая система - технологическая система, средства технологического оснащения которой состоят из автоматических устройств;
    по уровню специализации:
    специальная технологическая система - технологическая система для изготовления или ремонта изделия одного наименования и типоразмера;
    специализированная технологическая система - технологическая система для изготовления или ремонта группы изделий с общими конструктивными и технологическими признаками;
    универсальная технологическая система - технологическая система для изготовления или ремонта изделий с различными конструктивными и технологическими признаками.
    Аналогичные понятия уровней и видов используют также для технологических комплексов.
    Частным случаем (видовым понятием) последовательной технологической системы является технологическая линия, в которой технологическое оборудование располагают в последовательности выполнения операций заданного технологического процесса таким образом, чтобы число рабочих мест равнялось числу операций. При этом в последовательной технологической системе на одно и то же рабочее место предмет производства может поступать несколько раз для выполнения различных операций.
    Подсистемы параллельной технологической системы могут содержать общие средства технологического оснащения. Так, например, шестишпиндельный автомат содержит шесть параллельных подсистем, отказы которых взаимозависимы из-за наличия общих элементов: системы подачи, привода и т.п. В случае, если параллельные подсистемы станков не содержат общих элементов (например шесть однотипных станков выполняют параллельно и независимо друг от друга одну и ту же операцию технологического процесса), то технологическую систему называют многоканальной.
    Классификация технологических систем по уровню специализации относится к технологическим системам операции, процесса и производственного подразделения. При этом универсальная, специализированная, специальная технологические системы производственного подразделения (процесса) могут содержать в себе подсистемы различного уровня специализации. Уровень специализации технологической системы определяют соотношением ограничений, вносимых каждой подсистемой применительно к номенклатуре изготовляемой продукции. Неудачный выбор этого соотношения приводит к снижению технологических возможностей системы в целом.
    Технологическая система, выполняющая групповой технологический процесс, является универсальной.
    Уровень и вид технологической системы являются определяющими признаками для выбора критериев отказов и предельных состояний, показателей надежности и методов их оценки.
    [ ГОСТ 27.004-85]

    Тематики

    • надежность, основные понятия

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > технологическая система

  • 11 технический контроль

    1. controle technique

     

    технический контроль
    Проверка соответствия объекта установленным техническим требованиям.
    [ ГОСТ 16504-81]
    [ ГОСТ 13015-2003]

    технический контроль
    контроль

    Проверка соответствия объекта установленным техническим требованиям.
    Пояснения
    Сущность всякого контроля сводится к осуществлению двух основных этапов:
    1. Получение информации о фактическом состоянии некоторого объекта, о признаках и показателях его свойств. Эту информацию можно назвать первичной.
    2. Сопоставление первичной информации с заранее установленными требованиями, нормами, критериями, т. е. обнаружение соответствия или несоответствия фактических данных требуемым (ожидаемым). Информацию о рассогласовании (расхождении) фактических и требуемых данных можно называть вторичной.
    Объектом, данные о состоянии и (или) свойствах которого подлежат при контроле сопоставлению с установленными требованиями может быть продукция или процесс (см. пояснения и примеры к термину «Объект контроля»).
    В ряде случаев граница во времени между первым и вторым этапами контроля неразличима. В таких случаях первый этап может быть выражен нечетко или может практически не наблюдаться. Характерным примером является контроль размера калибром, сводящийся к операции сопоставления фактического и предельно допустимого значений размера.
    Далее вторичная информация используется для выработки соответствующих управляющих воздействий на объект, подвергавшийся контролю. В этом смысле всякий контроль всегда активен. Необходимо отметить в связи с этим, что всякий контроль, кроме того, всегда в той или иной степени должен быть профилактическим, поскольку вторичная информация может использоваться для совершенствования разработки, производства и эксплуатации продукции, для повышения ее качества и т. д.
    Однако, принятие решений на основе анализа вторичной информации, выработка соответствующих управляющих воздействий уже не является частью контроля. Это следующий этап управления, основанный на результатах контроля - неотъемлемой и существенной части всякого управления. При техническом контроле первичная информация сопоставляется с техническими требованиями, записанными в нормативной документации, с признаками контрольного образца, с данными, зафиксированными при помощи калибра и т. д.
    На стадии разработки продукции технический контроль заключается, например, в проверке соответствия опытного образца и (или) разработанной технической документации правилам оформления и техническому заданию.
    На стадии изготовления технический контроль охватывает качество, комплектность, упаковку, маркировку и количество предъявляемой продукции, ход (состояние) производственных процессов.
    На стадии эксплуатации продукции технический контроль заключается, например, в проверке соблюдения требований эксплуатационной и ремонтной документации.
    [ ГОСТ 16504-81]

    Тематики

    Синонимы

    EN

    FR

    81. Технический контроль*

    Контроль

    Е. Inspection

    F. Controle technique

    Проверка соответствия объекта установленным техническим требованиям

    Источник: ГОСТ 16504-81: Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > технический контроль

  • 12 сборка мусора

    n
    gener. ramasse-miettes (- В программировании "сборка мусора" (устоявшийся термин, С точки зрения русского языка правильнее «сбор мусора»[1], англ. garbage collection, GC) — одна из форм автоматического управления памятью. Специальный процесс,)

    Dictionnaire russe-français universel > сборка мусора

  • 13 данные

    1. données

     

    данные
    Интерпретируемое формализованным способом представление информации, пригодное для коммуникации, интерпретации или обработки.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    данные
    Информация, представленная в виде, пригодном для обработки автоматическими средствами при возможном участии человека
    [ ГОСТ 15971-90]
    [ ГОСТ Р 50304-92]
    [ОСТ 45.127-99]

    [Руководящий документ "Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года"]

    данные
    Представление информации в формализованном виде, пригодном для передачи, интерпретации или обработки.
    [ ГОСТ Р ИСО/МЭК 12119-2000]
    [ ГОСТ Р 52653-2006]

    данные
    Информация, представленная в формализованном виде, пригодном для передачи, интерпретации или обработки с участием человека или автоматическими средствами
    [ ГОСТ 34.320-96]

    данные
    Сведения, являющиеся объектом обработки в информационных человеко-машинных системах.
    [ ГОСТ 17657-79]

    данные
    Информация, обработанная и представленная в формализованном виде для дальнейшей обработки
    [ГОСТ 7.0-99]

    данные
    Сведения о состоянии любого объекта — экономического или не экономического, большой системы или ее элементарной части (элемента), о человеке и машине и т. д., представленные в формализованном виде и предназначенные для обработки (или уже обработанные). Д. не обязательно должны быть числовыми: например, статистические показатели работы предприятий и анкетные сведения о человеке — все это Д.) В процессах сбора, обработки и использования они расчленяются на отдельные элементарные составляющие — элементы данных или элементарные данные (иногда их называют просто данными). Элементарные Д. могут быть выражены целыми и вещественными числами, словами, а также булевыми величинами, способными принимать лишь два значения — «истина» (1), «ложь» (0). Слово «Д.» не вполне соответствует слову «информация«, хотя они часто употребляются как синонимы. Д. — величина, число или отношение, вводимые в процесс обработки или выводимые из него. Информация же определяется как знание, полученное из этих данных. Следовательно, обработка данных есть приведение их к такому виду, который наиболее удобен для получения из них информации, знания. Для того, чтобы из минимального количества Д. извлечь максимум информации, используются различные способы записи массивов данных, методы агрегирования и др. Для того, чтобы быть воспринятыми и стать информацией, Д. проходят как бы тройной фильтр: физический (ограничения по пропускной способности канала), семантический (см. Тезаурус) и прагматический, где оценивается полезность Д. (см. Информация). Экономические Д. можно подразделить на два особенно важных класса: условно-постоянные и переменные. Различие между ними поясним простым примером: нормативы запасов — условно-постоянные Д., размеры запасов отдельных материалов на конкретные даты — переменные. Следовательно, первые — это всякого рода расценки, нормативы, нормы, сведения о производительности оборудования и т.д. Обычно в автоматизированных системах управления они либо хранятся в массивах картотек (устаревшая и выходящая из употребления система), либо вводятся в память машины один раз и при необходимости включаются в расчет самой машиной. Условно-постоянными они называются потому, что все же время от времени обновляются. Переменные Д. (сведения о выработке рабочих, о сдаче деталей и продукции, о тех же запасах на складе и многие другие) после расчета, как правило, выводятся из памяти компьютера. См. также Автоматизированная система обработки данных (АСОД), База данных, Носитель данных, Обработка данных, Показатель, Сбор данных, Скорость передачи данных, Экономическая информация.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > данные

  • 14 промышленная политика

    1. politique industrielle

     

    промышленная политика

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    промышленная политика
    Направление экономической политики государства, обращенное к одной из отраслей экономики — промышленности. Включает определение целей и перспектив ее развития, выбор и создание средств достижения целей. В девяностые годы между российскими экономистами велись активные дискуссии о содержании и даже о самой необходимости промышленной политики для страны, начинающей трудный переход от плана к рынку. Противники рыночных реформ видели ее смысл, прежде всего, в финансовой поддержке крайне неэффективных советских предприятий, то есть требовали возмещения их убытков за счет налогов с населения страны, продолжения выпуска не нужной потребителям продукции и так далее. Проведенная приватизация значительной части промышленности в большой мере сняла эти проблемы. Однако когда (с 2003 – 2005 годов) начался процесс обратного расширения государственного сектора промышленности, значение промышленной политики вновь возросло. Активно создавались так называемые институты развития – финансовые структуры, через которые в промышленность в виде инвестиций стали перекачиваться огромные бюджетные средства (то есть собранные с населения налоги), по пути значительная часть из них стала разворовываться и промышленная политика оказалась одним из главных источников коррупции в государственном аппарате. Между тем, предназначение промышленной политики в современных условиях состоит в принятии эффективных мер государственного регулирования рыночных процессов, решительном изменении условий для бизнеса – то есть в закреплении прав собственности, упорядочении контрактных отношений, становлении цивилизованных норм арбитража, прозрачности деятельности государственных органов управления промышленностью, в расширения прав предпринимательских организаций и всего бизнес-сообщества в решении своих проблем без вмешательства коррумпированных силовых органов и, конечно, в приведении судебной системы в нормальное состояние. Тогда промышленность станет развиваться достойными темпами.
    [ http://slovar-lopatnikov.ru/]

    EN

    industrial policy
    Course of action adopted by national government to support and promote industrial activities. (Source: GOODa)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > промышленная политика

  • 15 разворачивание судна с целью определения остаточной девиации магнитного компаса

    1. compensation et régulation du compas

     

    разворачивание судна с целью определения остаточной девиации магнитного компаса
    Процесс маневрирования судна с целью корректирования девиации и определения остаточных девиаций.
    [ ГОСТ Р 52682-2006

    Тематики

    • средства навигации, наблюдения, управления

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > разворачивание судна с целью определения остаточной девиации магнитного компаса

  • 16 регулирование компаса

    1. compensation du compas

     

    регулирование компаса
    поправка компаса

    Процесс противодействия влиянию магнетизма судна на положение компаса при помощи корректирующего устройства, снижающего девиацию компаса.
    [ ГОСТ Р 52682-2006

    Тематики

    • средства навигации, наблюдения, управления

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > регулирование компаса

  • 17 сигнал

    1. signal

     

    cигнал
    1. Материальный носитель информации, содержащий в себе информацию, кодированную определенным образом.
    2. Любая физическая величина (например, температура, давление воздуха, интенсивность света и т. п.), которая изменяется со временем. Именно благодаря этому изменению сигнал может нести в себе некую информацию.
    [ http://life-prog.ru/view_programmer.php?id=146&page=15]

    сигнал

    Визуальное, звуковое или осязательное обозначение передаваемой информации
    [ ГОСТ Р МЭК 60447-2000]

    сигнал

    Материальное воплощение сообщения, представляющее собой изменение некоторой физической величины.
    [ ГОСТ 23829-79]

    сигнал
    В области контроля технического состояния изделий используется понятие "сигнал", которое включает следующие компоненты:
    наличие физической величины (несущей величины), характеризующей материальный (энергетический) носитель воздействия;
    изменение значений данной физической величины содержит информацию об источнике воздействия и физической среде, взаимодействующей с отображаемым материальным носителем;
    изменение несущей величины во времени характеризуется совокупностью физических величин, взаимосвязь которых представляется определенной математической функцией.
    Пример
    Периодический сигнал в виде гармонического колебания тока.
    Несущая физическая величина - ток, как характеристика направленного движения электронов. Изменение тока в данном случае характеризуется зависимостью I (t) = A·cos(2π/T - φ) = A·cos(ωt - φ), т.е. связанной совокупностью физических величин A, T, ω, φ (амплитуда, период, угловая частота и начальная фаза соответственно).
    [ ГОСТ 19919-74]

    сигнал
    Форма представления данных, при которой данные рассматриваются в виде последовательности значений скалярной величины - записанной (измеренной) во времени.
    [ ГОСТ Р 50304-92]

    сигнал
    Форма представления информации для передачи по каналу.
    Примечание. В зависимости от множества возможных сигналов и области их определения во времени различают четыре вида сигналов: дискретные дискретного времени, дискретные непрерывного времени, непрерывные дискретного времени и непрерывные непрерывного времени; первые и последние соответственно именуются также «дискретными сигналами» и «непрерывными сигналами».
    [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии. 1979 г.]

    сигнал
    Совокупность несущего воздействия и передаваемой им информации.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    сигнал
    Знак, физический процесс или явление, несущие информацию. В кибернетике выделяют четыре компонента С.: физический носитель (природа его может быть самой различной: звуковой, электрической и т.п.), форма выражения (см. Синтаксический аспект информации), интерпретация смысла (см. Семантический аспект информации), правила приписывания различного смысла одному и тому же С. (см. Прагматический аспект информации). Общие закономерности преобразования и передачи С. изучаются теорией информации.
    [ http://slovar-lopatnikov.ru/]

    EN

    signal
    unit of information conveyed from one object to another
    NOTE Messages (units of signals) may be sent in a communication network in the form of telegrams. Such messages may represent one or several signals
    [IEC 61175, ed. 2.0 (2005-09)]

    signal
    visual, acoustic or tactile message conveying information
    [IEC 60447, ed. 3.0 (2004-01)]

    signal
    variation of a physical quantity used to represent data
    NOTE A signal is represented by one or several parameters.
    [IEC 60706-5, ed. 2.0 (2007-09)]

    signal
    physical variable of which one or more parameters carry information about one or more variables represented by the signal
    [IEC 60770-2, ed. 3.0 (2010-11)]

    FR

    signal
    unité d'information transportée d'un objet vers un autre
    NOTE Des messages (unités de signaux) peuvent être envoyés dans un réseau de communication sous la forme de télégrammes. De tels messages peuvent représenter un ou plusieurs signaux.
    [IEC 61175, ed. 2.0 (2005-09)]

    signal
    message visuel, acoustique ou tactile véhiculant de l'information
    [IEC 60447, ed. 3.0 (2004-01)]

    signal
    variation d’une quantité physique utilisée pour représenter des données
    NOTE Un signal est représenté par un ou plusieurs paramètres.
    [IEC 60706-5, ed. 2.0 (2007-09)]

    signal
    variable physique dont un ou plusieurs paramètres contiennent des informations sur une ou plusieurs variables représentées par le signal
    [IEC 60770-2, ed. 3.0 (2010-11)]

    КЛАССИФИКАЦИЯ

    • По физической природой носителя информации:
      • электрические;
      • электромагнитные;
      • оптические;
      • акустические и др.;
    • По способу задания сигнала:
      • регулярные (детерминированные), заданные аналитической функцией;
      • нерегулярные (случайные), которые принимают произвольные значения в любой момент времени.
        Для описания таких сигналов используются средства теории вероятности;
    • В зависимости от функции, описывающей параметры сигнала, выделяют сигналы:

    [ Источник с изменениями]

    Тематики

    • автоматизация, основные понятия
    • виды (методы) и технология неразр. контроля
    • контроль автоматизир. тех. состояния авиац. техники
    • системы для сопряж. радиоэлектр. средств интерфейсные
    • теория передачи информации
    • экономика

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > сигнал

См. также в других словарях:

  • Процесс управления — (экономической системой) [ process of economic system control] совокупность действий субъекта управления, осуществляющего управление экономической системой, и соответствующего поведения управляемого объекта (объектов). Включает ряд… …   Экономико-математический словарь

  • Процесс управления — общий объем непрерывных взаимосвязанных действий или функций в рамках организации …   Словарь терминов антикризисного управления

  • процесс управления — Общий объем непрерывных взаимосвязанных действий или функций в рамках организации. [http://tourlib.net/books men/meskon glossary.htm] Тематики менеджмент в целом EN management process …   Справочник технического переводчика

  • процесс управления — 3.5 процесс управления: Совокупность отдельных видов деятельности, направленных на обеспечение функционирования и развития системы в интересах достижения стоящих перед ней целей. Источник: СТО Газпром 7 2005: Структура управлен …   Словарь-справочник терминов нормативно-технической документации

  • Процесс Управления Маркетингом — процесс, включающий в себя анализ и отбор рынков, разработка программы маркетинга, осуществление маркетинговых мероприятий. Словарь бизнес терминов. Академик.ру. 2001 …   Словарь бизнес-терминов

  • процесс управления (экономической системой) — Совокупность действий субъекта управления, осуществляющего управление экономической системой, и соответствующего поведения управляемого объекта (объектов). Включает ряд взаимосвязанных аспектов: информационный: сбор и обработка статистической… …   Справочник технического переводчика

  • процесс управления системами — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN systems management process …   Справочник технического переводчика

  • ПРОЦЕСС УПРАВЛЕНИЯ МАРКЕТИНГОМ — процесс, состоящий из: 1) анализа рыночных возможностей 2) отбора целевых рынков 3) разработки комплекса маркетинга 4) претворения в жизнь маркетинговых мероприятий …   Большой экономический словарь

  • ПРОЦЕСС УПРАВЛЕНИЯ РИСКОМ — В управлении риском: 1. Идентификация и анализ подверженности риску наступления ущерба. 2. Измерение всех существующих подверженностей риску наступления ущерба. 3. Выбор метода или комбинации методов, которые необходимо использовать для того,… …   Страхование и управление риском. Терминологический словарь

  • процесс управления маркетингом — Последовательность действий подразделений маркетинговой службы (управления) маркетинга по достижению тактических и стратегических целей маркетинга (например, анализ рыночных возможностей, выбор целевых рынков, разработка комплекса маркетинга,… …   Терминологический словарь маркетинга

  • ПРОЦЕСС УПРАВЛЕНИЯ — общий объем непрерывных взаимосвязанных действий, функций администрации и сотрудником в рамках единой организации …   Большой экономический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»