Перевод: с английского на русский

с русского на английский

при+решении+задачи

  • 41 smart metering

    1. интеллектуальный учет электроэнергии

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > smart metering

  • 42 objectively determined valuations

    1. объективно обусловленные (оптимальные) оценки

     

    объективно обусловленные (оптимальные) оценки
    О.О. оценки

    Одно из основных понятий линейного программирования, введенное Л.В.Канторовичем. Это оценки продуктов, ресурсов, работ, вытекающие из условий решаемой оптимизационной задачи. Их называют также двойственными оценками, разрешающими множителями, множителями Лагранжа и целым рядом других терминов. Будучи элементами двойственной задачи линейного программирования, они показывают, насколько изменится значение критерия оптимальности в соответствующей прямой задаче при приращении данного ресурса на единицу (т.е. имеют предельный характер)[1]. Оценки выступают, следовательно, как мера дефицитности ресурсов и продукции, как мера влияния ограничений на функционал; их можно использовать далее как инструмент определения эффективности отдельных технологических способов с позиций общего оптимума и, наконец, как инструмент балансирования суммарных затрат и результатов. Так как о.о. оценки показывают, насколько возрастает (или уменьшается) функционал (критерий оптимальности) экономико-математической задачи линейного программирования при увеличении (или уменьшении) запаса соответствующего вида ресурса на единицу — и при использовании ее наилучшим образом, — то они могут показать, к каким экономическим последствиям приведет производство дополнительной единицы ресурса. Если производство единицы ресурса, оцененного таким образом, увеличит функционал меньше чем на эту величину, то такой ресурс не надо производить, т.е. не надо включать в план. В противном случае этот ресурс целесообразно включать в план, поскольку общий результат увеличится. О.о.оценки являются также показателями взаимозаменяемости ресурсов относительно заданного критерия, т.е. характеризуют эффективность замены малого количества (единицы) одного ресурса другим в рамках решения экономико-математической задачи. Таким образом, система о.о. оценок может характеризовать экономическую структуру плана, роль отдельных факторов в формировании оптимума. О.о. оценки применяются в оптимизационных расчетах: при решении задач размещения производства, наиболее рационального прикрепления поставщиков к потребителям, оптимального раскроя материалов и многих других. В перспективном планировании эти оценки могут использоваться в качестве ориентировочных цен, характеризующих будущие соотношения ресурсов и потребностей общества. (Эта их роль хорошо отражена в термине, принятом в западной литературе, — «теневые цены«). При этом учитываются следующие закономерности. С течением времени о.о. оценки имеют тенденцию к снижению. При развитии народного хозяйства по оптимальной траектории оптимальная оценка стремится к так называемой нормальной оценке, которая складывается из прямых затрат и затрат обратной связи, возникающих вследствие ограниченности капитальных вложений. Эти закономерности объясняются тем, что на долговременном отрезке развития дефицитность воспроизводимых ресурсов будет выравниваться в результате соответствующего распределения капитальных вложений. Оптимальные оцен­ки, таким образом, определяются всей совокупностью условий общественного производства и потребления, учитываемых при составлении плана (прогноза). На основе о.о. оценок были выработаны многообразные методы экономико-математического анализа хозяйственных процессов. Ставился вопрос об их использовании и в ценообразовании (подробнее см. Оптимальное ценоообразование). [1] См. примечание к статье «Предельная доходность»
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    • О.О. оценки

    EN

    Англо-русский словарь нормативно-технической терминологии > objectively determined valuations

  • 43 positive transference

    положительный перенос; знания, приобретенные в одном контексте при решении одной задачи, приводят к более широкому взгляду на другую задачу и успешному её решению.
    * * *
    положительный перенос; знания, приобретенные в одном контексте при решении одной задачи, приводят к более широкому взгляду на другую задачу и успешному её решению.

    Англо-русский словарь по социологии > positive transference

  • 44 tape intermix

    Вычислительная техника: использование разнотипных запоминающих устройств на магнитной ленте (при решении одной задачи), использование разнотипных запоминающих устройств на (магнитной) ленте (при решении одной задачи)

    Универсальный англо-русский словарь > tape intermix

  • 45 OR

    1. техническая надёжность
    2. скорость перетекания
    3. скорость переполнения
    4. реле защиты от перегрузок
    5. реле защиты от перегрузки
    6. по заказу
    7. отчёт об эксплуатации
    8. отправитель/получатель
    9. общая надёжность
    10. исследование операций
    11. внешний радиус

     

    внешний радиус
    наружный радиус


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    EN

     

    исследование операций

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    исследование операций
    Прикладное направление кибернетики, используемое для решения практических организационных (в том числе экономических) задач. Это — комплексная научная дисциплина. Круг проблем, изучаемых ею, пока недостаточно определен. Иногда И.о. понимают очень широко, включая в него ряд чисто математических методов, иногда, наоборот, очень узко — как практическую методику решения с помощью экономико-математических моделей строго определенного перечня задач. Главный метод И.о. — системный анализ целенаправленных действий (операций) и объективная (в частности, количественная) сравнительная оценка возможных результатов этих действий. Например, расширение выпуска продукции на заводе требует одновременного и взаимосвязанного решения множества частных проблем: реконструкции предприятия, заказа оборудования, сырья и материалов, подготовки рынка сбыта, совершенствования технологии, изменений системы оперативно-производственного планирования и диспетчирования, организационной перестройки, перемещения руководящих работников и т.д. При анализе возможных последствий принимаемых решений приходится учитывать такие факторы, как неопределенность, случайность и риск. К решению столь сложных задач привлекают экономистов, математиков, статистиков, инженеров, социологов, психологов и др., поэтому одной из особенностей И.о. считают его междисциплинарный комплексный характер. Операционные исследования прежде всего предназначены для предварительного количественного обоснования принимаемых решений, поскольку они, как видно из примеров, очень сложны, требуют больших затрат и, главное, могут реализоваться многими способами (эти способы называют стратегиями или альтернативами). Кроме обоснования самих решений И.о. позволяет сравнить возможные варианты (альтернативы) организации операции, оценить возможное влияние на результат отдельных факторов, выявить «узкие места», т.е. те элементы системы, нарушение работы которых может особенно сильно сказаться на успехе операции и т.д. Таким образом, сущность задач И.о. — поиск путей рационального использования имеющихся ресурсов для реализации поставленной цели. Количественные методы И.о. строятся на основе достижений экономико-математических и математико-статистических дисциплин (теории массового обслуживания, оптимального программирования и т.д.). Разные математические методы применяются (в тех или иных комбинациях) при решении различных классов задач. Среди важнейших классов задач И.о. можно назвать задачи управления запасами, распределения ресурсов и назначения (распределительные задачи), задачи массового обслуживания, задачи замены оборудования, упорядочения и согласования (в том числе теории расписаний), состязательные (например, игры), задачи поиска и др. Среди применяемых методов — математическое программирование (линейное, нелинейное и т.п.), дифференциальные и разностные уравнения, методы теории графов, марковские процессы, теория игр, теория (статистических) решений, теория распознавания образов и ряд других. Считается, что И.о. зародилось накануне второй мировой войны, когда в Англии на одной радиолокационной станции была создана группа специалистов для решения технических задач с помощью математики. Они сосредоточили внимание на сравнении эффективности путей решения задач, поиске оптимального решения. Участие в этой группе представителей разных специальностей предопределило комплексный, или, как теперь принято говорить, системный подход. В настоящее время в этом направлении работают сотни исследовательских учреждений и групп в десятках стран. Организованы общества И.о., объединяемые международной федерацией (ИФОРС International Federation Of Operational Research Societies). Методы И.о., как и любые математические методы, всегда в той или иной мере упрощают, огрубляют задачу, отражая нелинейные процессы линейными моделями, стохастические системы — детерминированными и т.д. Жизнь богаче любой самой сложной схемы. Поэтому не следует ни преувеличивать значения количественных методов И.о., ни преуменьшать его, ссылаясь на примеры неудачных решений. Уместно привести в связи с этим известное парадоксальное определение, которое дал крупный американский специалист в этой области Т.А.Саати: «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими способами…»
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    общая надёжность
    (напр. системы)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отправитель/получатель
    (МСЭ-Т F.400/ Х.400).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    • originator/recipient
    • OR

     

    отчёт об эксплуатации

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    по заказу

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    реле защиты от перегрузки
    -
    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Тематики

    EN

     

    реле защиты от перегрузок

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    скорость переполнения
    (напр. ёмкости)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    скорость перетекания

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    техническая надёжность

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > OR

  • 46 operational research

    1. оперативное исследование
    2. исследование операций

     

    исследование операций

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    исследование операций
    Прикладное направление кибернетики, используемое для решения практических организационных (в том числе экономических) задач. Это — комплексная научная дисциплина. Круг проблем, изучаемых ею, пока недостаточно определен. Иногда И.о. понимают очень широко, включая в него ряд чисто математических методов, иногда, наоборот, очень узко — как практическую методику решения с помощью экономико-математических моделей строго определенного перечня задач. Главный метод И.о. — системный анализ целенаправленных действий (операций) и объективная (в частности, количественная) сравнительная оценка возможных результатов этих действий. Например, расширение выпуска продукции на заводе требует одновременного и взаимосвязанного решения множества частных проблем: реконструкции предприятия, заказа оборудования, сырья и материалов, подготовки рынка сбыта, совершенствования технологии, изменений системы оперативно-производственного планирования и диспетчирования, организационной перестройки, перемещения руководящих работников и т.д. При анализе возможных последствий принимаемых решений приходится учитывать такие факторы, как неопределенность, случайность и риск. К решению столь сложных задач привлекают экономистов, математиков, статистиков, инженеров, социологов, психологов и др., поэтому одной из особенностей И.о. считают его междисциплинарный комплексный характер. Операционные исследования прежде всего предназначены для предварительного количественного обоснования принимаемых решений, поскольку они, как видно из примеров, очень сложны, требуют больших затрат и, главное, могут реализоваться многими способами (эти способы называют стратегиями или альтернативами). Кроме обоснования самих решений И.о. позволяет сравнить возможные варианты (альтернативы) организации операции, оценить возможное влияние на результат отдельных факторов, выявить «узкие места», т.е. те элементы системы, нарушение работы которых может особенно сильно сказаться на успехе операции и т.д. Таким образом, сущность задач И.о. — поиск путей рационального использования имеющихся ресурсов для реализации поставленной цели. Количественные методы И.о. строятся на основе достижений экономико-математических и математико-статистических дисциплин (теории массового обслуживания, оптимального программирования и т.д.). Разные математические методы применяются (в тех или иных комбинациях) при решении различных классов задач. Среди важнейших классов задач И.о. можно назвать задачи управления запасами, распределения ресурсов и назначения (распределительные задачи), задачи массового обслуживания, задачи замены оборудования, упорядочения и согласования (в том числе теории расписаний), состязательные (например, игры), задачи поиска и др. Среди применяемых методов — математическое программирование (линейное, нелинейное и т.п.), дифференциальные и разностные уравнения, методы теории графов, марковские процессы, теория игр, теория (статистических) решений, теория распознавания образов и ряд других. Считается, что И.о. зародилось накануне второй мировой войны, когда в Англии на одной радиолокационной станции была создана группа специалистов для решения технических задач с помощью математики. Они сосредоточили внимание на сравнении эффективности путей решения задач, поиске оптимального решения. Участие в этой группе представителей разных специальностей предопределило комплексный, или, как теперь принято говорить, системный подход. В настоящее время в этом направлении работают сотни исследовательских учреждений и групп в десятках стран. Организованы общества И.о., объединяемые международной федерацией (ИФОРС International Federation Of Operational Research Societies). Методы И.о., как и любые математические методы, всегда в той или иной мере упрощают, огрубляют задачу, отражая нелинейные процессы линейными моделями, стохастические системы — детерминированными и т.д. Жизнь богаче любой самой сложной схемы. Поэтому не следует ни преувеличивать значения количественных методов И.о., ни преуменьшать его, ссылаясь на примеры неудачных решений. Уместно привести в связи с этим известное парадоксальное определение, которое дал крупный американский специалист в этой области Т.А.Саати: «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими способами…»
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    оперативное исследование
    Систематическое изучение путем наблюдения и/или в эксперименте работы системы, например, здравоохранения или его элементов с целью ее усовершенствования.
    [Англо-русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.]

    Тематики

    • вакцинология, иммунизация

    EN

    Англо-русский словарь нормативно-технической терминологии > operational research

  • 47 operations research

    1. исследование операций

     

    исследование операций

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    исследование операций
    Прикладное направление кибернетики, используемое для решения практических организационных (в том числе экономических) задач. Это — комплексная научная дисциплина. Круг проблем, изучаемых ею, пока недостаточно определен. Иногда И.о. понимают очень широко, включая в него ряд чисто математических методов, иногда, наоборот, очень узко — как практическую методику решения с помощью экономико-математических моделей строго определенного перечня задач. Главный метод И.о. — системный анализ целенаправленных действий (операций) и объективная (в частности, количественная) сравнительная оценка возможных результатов этих действий. Например, расширение выпуска продукции на заводе требует одновременного и взаимосвязанного решения множества частных проблем: реконструкции предприятия, заказа оборудования, сырья и материалов, подготовки рынка сбыта, совершенствования технологии, изменений системы оперативно-производственного планирования и диспетчирования, организационной перестройки, перемещения руководящих работников и т.д. При анализе возможных последствий принимаемых решений приходится учитывать такие факторы, как неопределенность, случайность и риск. К решению столь сложных задач привлекают экономистов, математиков, статистиков, инженеров, социологов, психологов и др., поэтому одной из особенностей И.о. считают его междисциплинарный комплексный характер. Операционные исследования прежде всего предназначены для предварительного количественного обоснования принимаемых решений, поскольку они, как видно из примеров, очень сложны, требуют больших затрат и, главное, могут реализоваться многими способами (эти способы называют стратегиями или альтернативами). Кроме обоснования самих решений И.о. позволяет сравнить возможные варианты (альтернативы) организации операции, оценить возможное влияние на результат отдельных факторов, выявить «узкие места», т.е. те элементы системы, нарушение работы которых может особенно сильно сказаться на успехе операции и т.д. Таким образом, сущность задач И.о. — поиск путей рационального использования имеющихся ресурсов для реализации поставленной цели. Количественные методы И.о. строятся на основе достижений экономико-математических и математико-статистических дисциплин (теории массового обслуживания, оптимального программирования и т.д.). Разные математические методы применяются (в тех или иных комбинациях) при решении различных классов задач. Среди важнейших классов задач И.о. можно назвать задачи управления запасами, распределения ресурсов и назначения (распределительные задачи), задачи массового обслуживания, задачи замены оборудования, упорядочения и согласования (в том числе теории расписаний), состязательные (например, игры), задачи поиска и др. Среди применяемых методов — математическое программирование (линейное, нелинейное и т.п.), дифференциальные и разностные уравнения, методы теории графов, марковские процессы, теория игр, теория (статистических) решений, теория распознавания образов и ряд других. Считается, что И.о. зародилось накануне второй мировой войны, когда в Англии на одной радиолокационной станции была создана группа специалистов для решения технических задач с помощью математики. Они сосредоточили внимание на сравнении эффективности путей решения задач, поиске оптимального решения. Участие в этой группе представителей разных специальностей предопределило комплексный, или, как теперь принято говорить, системный подход. В настоящее время в этом направлении работают сотни исследовательских учреждений и групп в десятках стран. Организованы общества И.о., объединяемые международной федерацией (ИФОРС International Federation Of Operational Research Societies). Методы И.о., как и любые математические методы, всегда в той или иной мере упрощают, огрубляют задачу, отражая нелинейные процессы линейными моделями, стохастические системы — детерминированными и т.д. Жизнь богаче любой самой сложной схемы. Поэтому не следует ни преувеличивать значения количественных методов И.о., ни преуменьшать его, ссылаясь на примеры неудачных решений. Уместно привести в связи с этим известное парадоксальное определение, которое дал крупный американский специалист в этой области Т.А.Саати: «Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими способами…»
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > operations research

  • 48 heuristics

    1. эвристика

     

    эвристика
    Опыт. Знание, приобретенное на основе накопления опыта.
    [ http://www.morepc.ru/dict/]

    эвристика
    1. В широком смысле слова раздел психологии, изучающий природу мыслительных операций человека при решении им различных задач. 2. В узком смысле — приемы и методы поиска решения задач и вывода доказательств, основанные на учете опыта решения сходных задач в прошлом, накоплении опыта, учете ошибок, а также — интуиции. Легче всего показать сущность Э. и ее отличие от алгоритмического подхода (такого, при котором каждый шаг решения задач заранее предопределен) на игре в шахматы. В этой игре нет никакой возможности выбрать лучший ход путем перебора всех мыслимых вариантов, поскольку их число астрономически велико. Шахматист действует эвристически — на основании опыта и интуиции. Изучение проблем Э. связано с более общей проблемой создания так называемого искусственного интеллекта или мыслящих ЭВМ. Исследования в этом направлении показали, во-первых, что создание искусственного интеллекта намного более сложная задача, чем это представлялось на первых порах, во-вторых, позволили выработать некоторые весьма эффективные методы решения сложных вычислительных задач. Один из распространенных эвристических методов — метод иерархически направленного перебора возможных шагов к решению, при котором отбрасываются заведомо ненужные варианты и существенно сокращается их число. Методы эвристического программирования используются при решении задач распознавания образов, автоматического поиска информации (в информационно-поисковых системах), в такой популярной области как выработка программ для игры ЭВМ в шахматы и т.д. Разрабатываются также эвристические методы решения экономических задач. При обычных, полностью алгоритмированных методах машина решает задачу последовательно от начала до конца. При этом, как бы хорошо ни была составлена программа, она делает массу ненужных вычислений, перебирая вариант за вариантом возможного решения. Эвристические методы позволят, видимо, отказаться от части ненужных расчетов и решать некоторые задачи с меньшими затратами машинного времени. Кроме того, перспективно соединение точных алгоритмических методов с эвристическими. В таких случаях модели называют эвроритмическими, или алгоритмо-эвристическими. Эвристические программы не предназначены для получения точных численных решений, их главная задача — определение стратегии поиска приблизительных решений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > heuristics

  • 49 system analysis

    1. системный анализ
    2. анализ систем

     

    анализ систем

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    системный анализ
    Совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам различного характера. Он опирается на системный подход, а также на ряд математических методов и современных методов управления. Основная процедура – построение обобщенной модели, отображающей взаимосвязи реальной ситуации. [http://www.rol.ru/files/dict/internet/#P].
    [ http://www.morepc.ru/dict/]

    системный анализ
    1. Научная дисциплина, разрабатывающая общие принципы исследования сложных объектов с учетом их системного характера. 2. Методология исследования объектов посредством представления их в качестве систем и анализа этих систем. Как научную дисциплину С.а. можно считать развитием идей кибернетики. Как и кибернетика, он исследует категории, общие для многих дисциплин и относящиеся к так называемым системам, которые изучаются любой наукой. Когда речь идет об изучении действующих, развивающихся систем, какими являются и любой экономический объект, и экономика в целом, то системное исследование может иметь два аспекта — генетический и функциональный, т.е. изучение исторического развития системы и изучение ее реального действия, функционирования. Будучи методологией исследования объектов посредством представления их в качестве систем и анализа этих систем, С.а. представляет собой весьма эффективное средство решения сложных, обычно недостаточно четко сформулированных проблем в науке, на производстве и в других областях. При этом любой объект рассматривается не как единое, неразделимое целое, а как система взаимосвязанных составных элементов, их свойств, качеств. Например, в экономике отдельные стороны, характеризующие данный экономический процесс, рассматриваются как элементы системы, изучается их взаимосвязь. Соответственно С.а. сводится к уточнению сложной проблемы и ее структуризации в серию задач, решаемых с помощью экономико-математических методов, нахождению критериев их решения, детализации целей, конструированию эффективной организации для достижения целей. С.а. любого объекта проводится в несколько этапов. Главные из них следующие: 1. Постановка задачи — определение объекта исследования, постановка целей, задание критериев для изучения объекта и управления им. 2. Выделение системы, подлежащей изучению, и ее структуризация. 3. Составление математической модели изучаемой системы: параметризация, установление зависимостей между введенными параметрами, упрощение описания системы путем выделения подсистем и определения их иерархии, окончательная фиксация целей и критериев. Таким образом, создается модель системы, которая помогает лучше ее понять, выделить главное — то, благодаря чему можно поставить и решить задачу. Такую модель называют также абстрактной системой. Результаты исследования абстрактной системы по определенным правилам можно перенести на реальные изучаемые системы (объекты исследования). В этом смысл применения С.а. прежде всего при решении сложных проблем управления (сложных в том смысле, что требуют выбора наилучших альтернатив в условиях неполноты информации, неопределенности и т.п.). С.а. применяется, в частности, при проектировании организационных структур управления (здесь одно из правил заключается в том, что необходимо строить оргструктуры в зависимости от задачи и методов решения, а не наоборот, как обычно бывает на практике), при выборе альтернатив путем сопоставления затрат на реализацию возможных альтернатив с их ожидаемой эффективностью — такие методики, например, в США называются анализом “затраты-эффективность”, “затраты-выгоды” и др. Системный подход к изучению экономических явлений [systems approach in eco¬nomics] - “комплексное изучение экономики как единого целого с позиций системного анализа”[1]. Можно встретить двоякое понимание С.п.: с одной стороны, это — рассмотрение, анализ существующих систем, с другой — создание или, как часто говорят, конструирование, синтез систем для достижения каких-то целей. Эта двойственность отражает реальное положение дел. Анализ и синтез тесно связаны. Рассмотрим в качестве примера автоматизированную систему управления (АСУ). Ее создание — синтез системы — невозможно без анализа реальных процессов управления, взаимодействия отдельных звеньев предприятия, самого предприятия с внешним миром и т.д. Поскольку главная отличительная особенность большой или сложной системы — тесная взаимосвязь всех ее эле¬ментов и частей, то С.п. к анализу экономических явлений означает учет этих взаимосвязей, изучение отдельных экономических объектов как структурных частей более сложных систем, выявление роли каждого из них в общем процессе функционирования экономической системы и, наоборот, воздействия системы в целом на отдельные ее элементы. [1] Федоренко Н.П. Системный под¬ход к изучению экономических явлений. — в кн.: Математика и кибернетика в экономике: Словарь-справочник. — М.: Эко¬номика, 1975, стр. 517.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > system analysis

  • 50 systems analysis

    1. системный анализ

     

    системный анализ
    Совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам различного характера. Он опирается на системный подход, а также на ряд математических методов и современных методов управления. Основная процедура – построение обобщенной модели, отображающей взаимосвязи реальной ситуации. [http://www.rol.ru/files/dict/internet/#P].
    [ http://www.morepc.ru/dict/]

    системный анализ
    1. Научная дисциплина, разрабатывающая общие принципы исследования сложных объектов с учетом их системного характера. 2. Методология исследования объектов посредством представления их в качестве систем и анализа этих систем. Как научную дисциплину С.а. можно считать развитием идей кибернетики. Как и кибернетика, он исследует категории, общие для многих дисциплин и относящиеся к так называемым системам, которые изучаются любой наукой. Когда речь идет об изучении действующих, развивающихся систем, какими являются и любой экономический объект, и экономика в целом, то системное исследование может иметь два аспекта — генетический и функциональный, т.е. изучение исторического развития системы и изучение ее реального действия, функционирования. Будучи методологией исследования объектов посредством представления их в качестве систем и анализа этих систем, С.а. представляет собой весьма эффективное средство решения сложных, обычно недостаточно четко сформулированных проблем в науке, на производстве и в других областях. При этом любой объект рассматривается не как единое, неразделимое целое, а как система взаимосвязанных составных элементов, их свойств, качеств. Например, в экономике отдельные стороны, характеризующие данный экономический процесс, рассматриваются как элементы системы, изучается их взаимосвязь. Соответственно С.а. сводится к уточнению сложной проблемы и ее структуризации в серию задач, решаемых с помощью экономико-математических методов, нахождению критериев их решения, детализации целей, конструированию эффективной организации для достижения целей. С.а. любого объекта проводится в несколько этапов. Главные из них следующие: 1. Постановка задачи — определение объекта исследования, постановка целей, задание критериев для изучения объекта и управления им. 2. Выделение системы, подлежащей изучению, и ее структуризация. 3. Составление математической модели изучаемой системы: параметризация, установление зависимостей между введенными параметрами, упрощение описания системы путем выделения подсистем и определения их иерархии, окончательная фиксация целей и критериев. Таким образом, создается модель системы, которая помогает лучше ее понять, выделить главное — то, благодаря чему можно поставить и решить задачу. Такую модель называют также абстрактной системой. Результаты исследования абстрактной системы по определенным правилам можно перенести на реальные изучаемые системы (объекты исследования). В этом смысл применения С.а. прежде всего при решении сложных проблем управления (сложных в том смысле, что требуют выбора наилучших альтернатив в условиях неполноты информации, неопределенности и т.п.). С.а. применяется, в частности, при проектировании организационных структур управления (здесь одно из правил заключается в том, что необходимо строить оргструктуры в зависимости от задачи и методов решения, а не наоборот, как обычно бывает на практике), при выборе альтернатив путем сопоставления затрат на реализацию возможных альтернатив с их ожидаемой эффективностью — такие методики, например, в США называются анализом “затраты-эффективность”, “затраты-выгоды” и др. Системный подход к изучению экономических явлений [systems approach in eco¬nomics] - “комплексное изучение экономики как единого целого с позиций системного анализа”[1]. Можно встретить двоякое понимание С.п.: с одной стороны, это — рассмотрение, анализ существующих систем, с другой — создание или, как часто говорят, конструирование, синтез систем для достижения каких-то целей. Эта двойственность отражает реальное положение дел. Анализ и синтез тесно связаны. Рассмотрим в качестве примера автоматизированную систему управления (АСУ). Ее создание — синтез системы — невозможно без анализа реальных процессов управления, взаимодействия отдельных звеньев предприятия, самого предприятия с внешним миром и т.д. Поскольку главная отличительная особенность большой или сложной системы — тесная взаимосвязь всех ее эле¬ментов и частей, то С.п. к анализу экономических явлений означает учет этих взаимосвязей, изучение отдельных экономических объектов как структурных частей более сложных систем, выявление роли каждого из них в общем процессе функционирования экономической системы и, наоборот, воздействия системы в целом на отдельные ее элементы. [1] Федоренко Н.П. Системный под¬ход к изучению экономических явлений. — в кн.: Математика и кибернетика в экономике: Словарь-справочник. — М.: Эко¬номика, 1975, стр. 517.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > systems analysis

  • 51 model constraints

    1. ограничения модели

     

    ограничения модели
    Запись условий, в которых действительны расчеты, использующие эту модель. Обычно представляя собою систему уравнений и неравенств, они в совокупности определяют область допустимых решений (допустимое множество). Совместность системы ограничений — обязательное условие разрешимости модели: в случае несовместности этой системы допустимое множество является пустым. На практике в качестве О.м. часто выступают ресурсы сырья и материалов, капиталовложения, возможные варианты расширения предприятий, потребности в готовой продукции и т.п. Как правило, если снять ограничения задачи, то показатели ее решения окажутся лучше, чем при решении, соответствующем реальным условиям. И, наоборот, если сделать ограничения более жесткими и тем самым сократить возможности выбора вариантов, то решение окажется, как правило, хуже. В первом случае оно будет оптимистичным, во втором — пессимистичным. Это, между прочим, открывает возможность приблизительного, прикидочного решения некоторых оптимизационных задач: меняя ограничения, можно оценить диапазон значений, в пределах которых находятся решения задачи. На рис.O.3 а, б показаны некоторые важнейшие типы О.м., определяющих область допустимых решений в задачах математического программирования. (Для наглядности — в 2-мерном пространстве, в его первом квадранте). Ограничения I, II, Y — линейные, III, IY, YI — нелинейные. Линейными ограничениями являются на рис. O.3а также оси координат; иначе говоря, в область допустимых решений здесь входят все точки, удовлетворяющие I и II, но кроме того, отвечающие условию  x1  ? 0, x2 ? 0 (см. Неотрицательность значений). Кривая IY — ограничение переменной x2 сверху, YI — ограничение той же переменной снизу. Запись типа  a? x ?b  называется двусторонним ограничением. Все показанные ограничения относятся к типу ограничений-неравенств. Что касается ограничений-равенств, то они определяют область допустимых решений как точку (в одномерном пространстве), как линию (в двумерном пространстве), как гиперповерхность (в многомерном пространстве). Экономико-математические ограничения разделяются также на детерминированные (см. рис. O.3 а, б) и стохастические (см. рис.O.3 в). В последнем случае серия кривых АВС отображает возможные случайные реализации стохастического ограничения. В задачах математического программирования системы ограничений (т.е. выражающих их уравнений и неравенств) удобно записывать в векторной форме: f (x) = b или f (x) ? b и т.п., где x — вектор-столбец управляющих переменных xi (i = 1, 2, …, n), b — вектор-столбец, компонентами которого являются функции ограничений bi (примеры см. в статье Математическое программирование). В моделях планирования ограничения снизу имеют смысл плановых заданий (которые допустимо перевыполнять), ограничения сверху — смысл «квот» на выпуск тех или иных видов продукции. При совпадении ограничений сверху и снизу экономический субъект полностью лишается свободы принятия решений в данной области. В системах моделей различаются общесистемные (или глобальные) О.м., имеющие силу для всей моделируемой экономической системы, и локальные ограничения для моделей отдельных подсистем. Несовместность локальных ограничений с общесистемными приводит к неразрешимости системы моделей.   Рис.О.3  Линейные и нелинейные ограничения
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > model constraints

  • 52 optimizing system

    1. оптимизируемая система

     

    оптимизируемая система
    При решении оптимальных задач — совокупность входящих в расчет объектов и их связей с «внешним миром», средой. Обычно требуется серьезный анализ для правильного выделения (иногда говорят — локализации) О.с. Например, возможно ли решать изолированно задачу размещения и развития угольной промышленности в стране? Да, такие задачи решаются. Но ясно, что их результаты будут ненадежны, пока мы не свяжем их с размещением и развитием газовой, нефтяной промышленности. Открытие нового крупного газового месторождения может сделать нецелесообразным строительство шахт, вполне выгодных с точки зрения отдельно взятой «угольной» задачи. Поэтому оптимизация в рассматриваемом случае может быть достигнута только в комплексе — как задача обеспечения страны топливом и энергией в целом. Для определения круга объектов, входящих в О.с., применяют следующее правило: при дальнейшем ее расширении не должны существенно изменяться выводы об эффективности объектов, входящих в нее. Это выясняется с помощью изучения реальных связей в народном хозяйстве и предварительных расчетов.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > optimizing system

  • 53 Ford — Fulkerson algorithm

    1. ФордаФалкерсона алгоритм

     

    ФордаФалкерсона алгоритм
    Способ решения задачи построения максимального потока в сети. (Поток в сети определяется пропускной способностью ее дуг от начальной вершины до конечной вершины.). Алгоритм Л.Форда и Д.Фалкерсона применяется, например, при решении транспортной задачи: требуется перевезти из начальной вершины сети в конечную груз по дугам сети за минимальное время. При этом по каждой дуге нельзя перевозить груза больше фиксированного объема.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > Ford — Fulkerson algorithm

  • 54 II)

    1. Общее

    F.1. Общее

    В настоящем стандарте приводится большое число общих требований, которые могут или не могут быть применены в отношении отдельной машины. Поэтому простое, без квалифицированной оценки утверждение о соответствии оборудования всем требованиям настоящего стандарта является недостоверным. Прежде чем приступить к выполнению требований настоящего стандарта, его необходимо тщательно изучить. Техническими комитетами разрабатываются стандарты на отдельные виды продукции или на отдельные продукты (тип С в СЕН) и для конкретных производителей продукции. До выхода этих стандартов следует руководствоваться настоящим стандартом посредством:

    a) установления соответствия и

    b) выбора наиболее близких понятий к требованиям соответствующих разделов, и

    c) изменения требований разделов, если необходимо там, где специфические требования на машину перекрываются другими стандартами, относящимися к данному вопросу.

    В этом случае необходимо обеспечить правильный подбор модификаций и опций без снижения уровня защиты, необходимой для машины в соответствии с оценкой рисков.

    При использовании всех трех вышеприведенных принципов рекомендуется:

    - руководствоваться соответствующими разделами и пунктами настоящего стандарта:

    1) если указано соответствие применяемой опции,

    2) если требования могут быть конкретизированы для отдельной машины или оборудования;

    - руководствоваться напрямую соответствующими стандартами, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    Во всех случаях экспертизой устанавливается:

    - завершенность оценки рисков для машины;

    - прочтение и понимание всех требований настоящего стандарта;

    - правильность выбора варианта реализации требований настоящего стандарта при наличии альтернативы;

    - понимание альтернативы или специфических требований, определяемых для машины или ее эксплуатации, при отсутствии или отличии от соответствующих требований настоящего стандарта;

    - точность определения таких специфических требований.

    Приведенная на рисунке 1 блок-схема типичной машины должна быть использована в качестве отправной точки при решении данной задачи. Это определяется пунктами и разделами, имеющими отношение к специфическим требованиям к оборудованию.

    Настоящий стандарт является комплексным документом, и таблица F.1 призвана помочь в понимании применения требований настоящего стандарта к специальным машинам и установлении связей с другими стандартами по данной тематике.

    Таблица F.1 - Выбор вариантов применения требований стандарта

    Наименование раздела, пункта или подпункта

    Номер раздела, пункта или подпункта

    I)

    II)

    III)

    IV)

    Область применения

    1

    X

    ИСО 121 00 (все части) ИСО 14121 [28]

    Общие требования

    4

    X

    X

    X

    МЭК 60439

    Электрооборудование, соответствующее требованиям МЭК 60439

    4.2.2

    X

    X

    Устройство отключения питания (изолирующий распределитель)

    5.3

    X

    Цепи, на которые не распространяются общие правила по подключению к источнику питания

    5.3.5

    X

    X

    ИСО 12100 (все части)

    Предотвращение непреднамеренных пусков, изоляция

    5.4, 5.5, 5.6

    X

    X

    X

    ИСО 14118 [13]

    Защита от поражения электрическим током

    6

    X

    МЭК 60364-4-41

    Аварийное управление

    9.2.5.4

    X

    X

    ИСО 13850

    Двуручное управление

    9.2.6.2

    X

    X

    ИСО 13851 [14]

    Дистанционное управление

    9.2.7

    X

    X

    X

    Функции управления в случае отказа

    9.4

    X

    X

    X

    ИСО 14121 [28]

    Датчики положения

    10.1.4

    X

    X

    X

    ИСО 14119 [29]

    Цвета и маркировка операционного интерфейса

    10.2, 10.3, 10.4

    X

    X

    МЭК 60073

    Устройства аварийной остановки

    10.7

    X

    X

    ИСО 13850

    Устройства аварийного отключения

    10.8

    X

    Аппаратура управления, защита от внешних воздействий

    10.1.3, 11.3

    X

    X

    X

    МЭК 60529

    Идентификация проводов

    13.2

    X

    Подтверждение соответствия (испытания и проверка)

    18

    X

    X

    X

    Дополнительные требования (опросный лист)

    приложение В

    X

    X

    «X» обозначены разделы, пункты и подпункты настоящего стандарта, которые могут быть применены при следующих условиях:

    I) применение приведенных в разделе, пункте или подпункте материалов;

    II) использование дополнительных специфических требований;

    III) использование других требований;

    IV) использование других стандартов, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    <2>Приложение G

    Таблица G.1 иллюстрирует сравнение поперечных сечений проводников в Американском сортаменте проволоки (AWG) с квадратными миллиметрами, квадратными дюймами и круговыми милами.

    Таблица G.1 - Сравнение размеров проводников

    Номерной размер,

    Номер диаметра

    Площадь поперечного сечения

    Сопротивление медного провода при постоянном токе при 20°С,

    Круговой мил

    мм2

    дюйм2

    0,2

    0,196

    0,000304

    91,62

    387

    24

    0,205

    0,000317

    87,60

    404

    0,3

    0,283

    0,000438

    63,46

    558

    22

    0,324

    0,000504

    55,44

    640

    0,5

    0,500

    0,000775

    36,70

    987

    20

    0,519

    0,000802

    34,45

    1020

    0,75

    0,750

    0,001162

    24,80

    1480

    18

    0,823

    0,001272

    20,95

    1620

    1,0

    1,000

    0,001550

    18,20

    1973

    16

    1,31

    0,002026

    13,19

    2580

    1,5

    1,500

    0,002325

    12,20

    2960

    14

    2,08

    0,003228

    8,442

    4110

    2,5

    2,500

    0,003875

    7,56

    4934

    12

    3,31

    0,005129

    5,315

    6530

    4

    4,000

    0,006200

    4,700

    7894

    10

    5,26

    0,008152

    3,335

    10380

    6

    6,000

    0,009300

    3,110

    11841

    8

    8,37

    0,012967

    2,093

    16510

    10

    10,000

    0,001550

    1,840

    19735

    6

    13,3

    0,020610

    1,320

    26240

    16

    16,000

    0,024800

    1,160

    31576

    4

    21,1

    0,032780

    0,8295

    41740

    25

    25,000

    0,038800

    0,7340

    49339

    2

    33,6

    0,052100

    0,5211

    66360

    35

    35,000

    0,054200

    0,5290

    69073

    1

    42,4

    0,065700

    0,4139

    83690

    50

    47,000

    0,072800

    0,3910

    92756

    Сопротивление при температурах, отличных от 20 °С, вычисляют по формуле:

    R = RI[1 + 0,00393(t - 20)],

    где RI - сопротивление при 20°С;

    R - сопротивление при температуре t°C.

    <2>Приложение Н

    Таблица Н.1

    Обозначение ссылочного международного стандарта

    Обозначение и наименование соответствующего национального стандарта

    МЭК 60034-1

    ГОСТ 28330-89 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Общие технические требования

    МЭК 60034-5

    *

    МЭК 60034-11

    *

    МЭК 60072-1

    *

    МЭК 60072-2

    *

    МЭК 60073:2002

    ГОСТ 29149-91 Цвета световой сигнализации и кнопок

    МЭК 60309-1:1999

    ГОСТ 29146.1-91 Соединители электрические промышленного назначения. Часть 1. Общие требования

    МЭК 60364-4-41:2001

    ГОСТ Р 50571.3-94( МЭК 60364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током

    МЭК 60364-4-43:2001

    ГОСТ Р 50571.5-95 (МЭК 60364-4-43-77) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока

    МЭК 60364-5-52:2001

    ГОСТ Р 50571.15-97( МЭК 60364-5-52-93) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки

    МЭК 60364-5-53:2002

    *

    МЭК 60364-5-54:2002

    ГОСТ Р 50571.10-96( МЭК 60364-5-54-80) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники

    МЭК 60364-6-61:2001

    ГОСТ Р 50571.16-99 Электроустановки зданий. Часть 6. Испытания. Глава 61. Приемо-сдаточные испытания

    МЭК 604 17-DB 2002

    *

    МЭК 60439-1:1999

    ГОСТ Р 51321.1-2000 Устройства комплектные низковольтные распределения и управления. Часть 1.Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний

    МЭК 60446:1 999

    *

    МЭК 60447:2004

    ГОСТ Р МЭК 60447-2000 Интерфейс человеко-машинный. Принципы приведения в действие

    МЭК 60529:1999

    ГОСТ 14254-96( МЭК 529-89) Степени защиты, обеспечиваемые оболочками (Код IP)

    МЭК 60617-06:2001

    *

    МЭК 60621-3:1979

    *

    МЭК 60664-1:1992

    *

    МЭК 60947-1:2004

    ГОСТ Р 50030.1-2007( МЭК 60947-1: 2004) Аппаратура распределения и управления низковольтная. Часть 1. Общие требования

    МЭК 60947-2:2003

    ГОСТ Р 50030.2-99( МЭК 60947-2-98) Аппаратура распределения и управления низковольтная. Часть 2. Автоматические выключатели

    МЭК 60947-5-1:2003

    ГОСТ Р 50030.5.1-2005 (МЭК 60947-5-1:2003) Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления

    МЭК 60947-7-1:2002

    ГОСТ Р 50030.7.1-2000 (МЭК 60947-7-1-89) Аппаратура распределения и управления низковольтная. Часть 7. Электрооборудование вспомогательное. Раздел 1. Клеммные колодки для медных проводников

    МЭК 61082-1:1991

    *

    МЭК 61082-2:1993

    *

    МЭК 61082-3:1993

    *

    МЭК 61082-4:1996

    *

    МЭК 61140:2001

    ГОСТ Р МЭК 61140-2000 Защита от поражения электрическим током. Общие положения по безопасности, обеспечиваемой электрооборудованием и электроустановками в их взаимосвязи

    МЭК 61310 -2

    ГОСТ 28690-90 Знак соответствия технических средств требованиям электромагнитной совместимости. Форма, размеры, технические требования

    МЭК 61 310 (все части за исключением части 2)

    *

    МЭК 61 346 (все части)

    *

    МЭК 61557-3:1997

    ГОСТ Р МЭК 61557-3 2006 Сети электрические распределительные низковольтные напряжением до 1000 В переменного 1500 В постоянного тока. Электробезопасность. Аппаратура для испытаний, измерения и контроля средств защиты. Часть 3. Полное сопротивление контура

    МЭК 61 558-1: 1997

    *

    МЭК 61558-2-6

    *

    МЭК 61984:2001

    *

    МЭК 62023:2000

    *

    МЭК 62027:2000

    *

    МЭК 62061:2005

    *

    МЭК 62079:2001

    *

    ИСО 7000:2004

    *

    ИСО 12100-1:2003

    *

    ИСО 12100-2:2003

    *

    ИСО 13849-1:1999

    *

    ИСО 13849-2:2003

    *

    ИСО 13850:1996

    *

    *Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов

    <2>Библиография

    [1] МЭК 60038:2002

    Стандартные напряжения

    [2] МЭК 60204-11:2000

    Безопасность машин. Электрическое оборудование машин. Часть 11. Требования к высоковольтному оборудованию на напряжения свыше 1000 В переменного тока или 1500 В постоянного тока, но не свыше 36 кВ

    [3] МЭК 60204-31:1996

    Электрооборудование промышленных машин. Частные требования к швейным машинам, установкам и системам

    [4] МЭК 60204-32:1998

    Безопасность оборудования. Электрооборудование промышленных  машин. Часть 32. Требования к грузоподъемным машинам

    [5] МЭК 61000-6-1:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 1. Устойчивость к электромагнитным помехам в жилой, коммерческой и среде легкой индустрии

    [6] МЭК 61000-6-2:2005

    Совместимость технических средств электромагнитная. Часть 6-2. Общие требования. Устойчивость к электромагнитным помехам в промышленных зонах

    [7] СИСПР 61000-6-3:1996

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 3. Нормы эмиссии для жилых, коммерческих и среды легкой индустрии

    [8] МЭК 61000-6-4:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 4. Эмиссия помех в промышленных зонах

    [9] МЭК 61000-5-2:1997

    Электромагнитная совместимость. Часть 5. Монтаж и снижение помех в проводке. Раздел 2. Заземление и скрутка

    [10] МЭК 61496-1:2004

    Безопасность машин. Электрочувствительное защитное оборудование. Часть 1. Общие требования и испытания

    [11] МЭК 61800-3:2004

    Электроприводы регулируемые. Часть 3. Требования по электромагнитной совместимости и методы испытаний

    [12] МЭК 60947-5-2:1997

    Аппараты коммутационные и управления низковольтные. Часть 5-2. Устройства управления и переключатели. Выключатели конечные Дополнение 1 (1999) Дополнение 2 (2003)

    [13] ИСО 14118:2000

    Безопасность машин. Предотвращение непредусмотренного пуска

    [14] ИСО 13851:2002

    Безопасность машин. Средства управления обоими руками. Функциональные аспекты и принципы проектирования

    [15] ИСО 14122 серия

    Безопасность машин. Средства постоянного доступа к машине

    [16]СЕНЕЛЕК НD 516 S2

    Руководство по применению гармонизированных кабелей

    [17] МЭК 60287 (все части)

    Кабели. Расчет номинальных токов нагрузок в условиях установившегося режима

    [18] МЭК 60757:1983

    Коды для обозначения цветов

    [19] МЭК 60332 (все части)

    Испытания на огнестойкость электрических и оптических кабелей

    [20] МЭК 61084-1: 1991

    Кабельные проводящие и канализирующие системы для электрического монтажа. Часть 1. Основные требования

    [21] МЭК 60364 (все части)

    Электроустановки зданий

    [22] МЭК 61557 (все части)

    Безопасность в низковольтных  системах  электроснабжения   напряжением до 1000 В переменного тока и до 1500 В постоянного тока. Оборудование для проведения испытаний, измерений и контроля исполнения защитных функций

    [23] МЭК 60228:2004

    Жилы токопроводящие изолированных кабелей

    [24] МЭК 61200-53:1994

    Устройства электрические. Часть 53. Выбор и монтаж электрооборудования. Аппаратура коммутационная и управления

    [25] МЭК 61180-2:1994

    Техника для проведения высоковольтных испытаний низковольтного электрооборудования. Часть 2. Испытательное оборудование

    [26] МЭК 60335 (все части)

    Бытовое и аналогичное ему применение электричества. Безопасность

    [27] МЭК 60269-1:1998

    Предохранители низковольтные. Часть 1. Общие требования

    [28] ИСО 14121:1999

    Безопасность машин. Принципы оценки риска

    [29] ИСО 14119:1998

    Безопасность машин. Блокировочные устройства для ограждений. Принципы конструкции и выбора

    <2>

    Источник: ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > II)

  • 55 III)

    1. Общее

    F.1. Общее

    В настоящем стандарте приводится большое число общих требований, которые могут или не могут быть применены в отношении отдельной машины. Поэтому простое, без квалифицированной оценки утверждение о соответствии оборудования всем требованиям настоящего стандарта является недостоверным. Прежде чем приступить к выполнению требований настоящего стандарта, его необходимо тщательно изучить. Техническими комитетами разрабатываются стандарты на отдельные виды продукции или на отдельные продукты (тип С в СЕН) и для конкретных производителей продукции. До выхода этих стандартов следует руководствоваться настоящим стандартом посредством:

    a) установления соответствия и

    b) выбора наиболее близких понятий к требованиям соответствующих разделов, и

    c) изменения требований разделов, если необходимо там, где специфические требования на машину перекрываются другими стандартами, относящимися к данному вопросу.

    В этом случае необходимо обеспечить правильный подбор модификаций и опций без снижения уровня защиты, необходимой для машины в соответствии с оценкой рисков.

    При использовании всех трех вышеприведенных принципов рекомендуется:

    - руководствоваться соответствующими разделами и пунктами настоящего стандарта:

    1) если указано соответствие применяемой опции,

    2) если требования могут быть конкретизированы для отдельной машины или оборудования;

    - руководствоваться напрямую соответствующими стандартами, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    Во всех случаях экспертизой устанавливается:

    - завершенность оценки рисков для машины;

    - прочтение и понимание всех требований настоящего стандарта;

    - правильность выбора варианта реализации требований настоящего стандарта при наличии альтернативы;

    - понимание альтернативы или специфических требований, определяемых для машины или ее эксплуатации, при отсутствии или отличии от соответствующих требований настоящего стандарта;

    - точность определения таких специфических требований.

    Приведенная на рисунке 1 блок-схема типичной машины должна быть использована в качестве отправной точки при решении данной задачи. Это определяется пунктами и разделами, имеющими отношение к специфическим требованиям к оборудованию.

    Настоящий стандарт является комплексным документом, и таблица F.1 призвана помочь в понимании применения требований настоящего стандарта к специальным машинам и установлении связей с другими стандартами по данной тематике.

    Таблица F.1 - Выбор вариантов применения требований стандарта

    Наименование раздела, пункта или подпункта

    Номер раздела, пункта или подпункта

    I)

    II)

    III)

    IV)

    Область применения

    1

    X

    ИСО 121 00 (все части) ИСО 14121 [28]

    Общие требования

    4

    X

    X

    X

    МЭК 60439

    Электрооборудование, соответствующее требованиям МЭК 60439

    4.2.2

    X

    X

    Устройство отключения питания (изолирующий распределитель)

    5.3

    X

    Цепи, на которые не распространяются общие правила по подключению к источнику питания

    5.3.5

    X

    X

    ИСО 12100 (все части)

    Предотвращение непреднамеренных пусков, изоляция

    5.4, 5.5, 5.6

    X

    X

    X

    ИСО 14118 [13]

    Защита от поражения электрическим током

    6

    X

    МЭК 60364-4-41

    Аварийное управление

    9.2.5.4

    X

    X

    ИСО 13850

    Двуручное управление

    9.2.6.2

    X

    X

    ИСО 13851 [14]

    Дистанционное управление

    9.2.7

    X

    X

    X

    Функции управления в случае отказа

    9.4

    X

    X

    X

    ИСО 14121 [28]

    Датчики положения

    10.1.4

    X

    X

    X

    ИСО 14119 [29]

    Цвета и маркировка операционного интерфейса

    10.2, 10.3, 10.4

    X

    X

    МЭК 60073

    Устройства аварийной остановки

    10.7

    X

    X

    ИСО 13850

    Устройства аварийного отключения

    10.8

    X

    Аппаратура управления, защита от внешних воздействий

    10.1.3, 11.3

    X

    X

    X

    МЭК 60529

    Идентификация проводов

    13.2

    X

    Подтверждение соответствия (испытания и проверка)

    18

    X

    X

    X

    Дополнительные требования (опросный лист)

    приложение В

    X

    X

    «X» обозначены разделы, пункты и подпункты настоящего стандарта, которые могут быть применены при следующих условиях:

    I) применение приведенных в разделе, пункте или подпункте материалов;

    II) использование дополнительных специфических требований;

    III) использование других требований;

    IV) использование других стандартов, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    <2>Приложение G

    Таблица G.1 иллюстрирует сравнение поперечных сечений проводников в Американском сортаменте проволоки (AWG) с квадратными миллиметрами, квадратными дюймами и круговыми милами.

    Таблица G.1 - Сравнение размеров проводников

    Номерной размер,

    Номер диаметра

    Площадь поперечного сечения

    Сопротивление медного провода при постоянном токе при 20°С,

    Круговой мил

    мм2

    дюйм2

    0,2

    0,196

    0,000304

    91,62

    387

    24

    0,205

    0,000317

    87,60

    404

    0,3

    0,283

    0,000438

    63,46

    558

    22

    0,324

    0,000504

    55,44

    640

    0,5

    0,500

    0,000775

    36,70

    987

    20

    0,519

    0,000802

    34,45

    1020

    0,75

    0,750

    0,001162

    24,80

    1480

    18

    0,823

    0,001272

    20,95

    1620

    1,0

    1,000

    0,001550

    18,20

    1973

    16

    1,31

    0,002026

    13,19

    2580

    1,5

    1,500

    0,002325

    12,20

    2960

    14

    2,08

    0,003228

    8,442

    4110

    2,5

    2,500

    0,003875

    7,56

    4934

    12

    3,31

    0,005129

    5,315

    6530

    4

    4,000

    0,006200

    4,700

    7894

    10

    5,26

    0,008152

    3,335

    10380

    6

    6,000

    0,009300

    3,110

    11841

    8

    8,37

    0,012967

    2,093

    16510

    10

    10,000

    0,001550

    1,840

    19735

    6

    13,3

    0,020610

    1,320

    26240

    16

    16,000

    0,024800

    1,160

    31576

    4

    21,1

    0,032780

    0,8295

    41740

    25

    25,000

    0,038800

    0,7340

    49339

    2

    33,6

    0,052100

    0,5211

    66360

    35

    35,000

    0,054200

    0,5290

    69073

    1

    42,4

    0,065700

    0,4139

    83690

    50

    47,000

    0,072800

    0,3910

    92756

    Сопротивление при температурах, отличных от 20 °С, вычисляют по формуле:

    R = RI[1 + 0,00393(t - 20)],

    где RI - сопротивление при 20°С;

    R - сопротивление при температуре t°C.

    <2>Приложение Н

    Таблица Н.1

    Обозначение ссылочного международного стандарта

    Обозначение и наименование соответствующего национального стандарта

    МЭК 60034-1

    ГОСТ 28330-89 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Общие технические требования

    МЭК 60034-5

    *

    МЭК 60034-11

    *

    МЭК 60072-1

    *

    МЭК 60072-2

    *

    МЭК 60073:2002

    ГОСТ 29149-91 Цвета световой сигнализации и кнопок

    МЭК 60309-1:1999

    ГОСТ 29146.1-91 Соединители электрические промышленного назначения. Часть 1. Общие требования

    МЭК 60364-4-41:2001

    ГОСТ Р 50571.3-94( МЭК 60364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током

    МЭК 60364-4-43:2001

    ГОСТ Р 50571.5-95 (МЭК 60364-4-43-77) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока

    МЭК 60364-5-52:2001

    ГОСТ Р 50571.15-97( МЭК 60364-5-52-93) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки

    МЭК 60364-5-53:2002

    *

    МЭК 60364-5-54:2002

    ГОСТ Р 50571.10-96( МЭК 60364-5-54-80) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники

    МЭК 60364-6-61:2001

    ГОСТ Р 50571.16-99 Электроустановки зданий. Часть 6. Испытания. Глава 61. Приемо-сдаточные испытания

    МЭК 604 17-DB 2002

    *

    МЭК 60439-1:1999

    ГОСТ Р 51321.1-2000 Устройства комплектные низковольтные распределения и управления. Часть 1.Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний

    МЭК 60446:1 999

    *

    МЭК 60447:2004

    ГОСТ Р МЭК 60447-2000 Интерфейс человеко-машинный. Принципы приведения в действие

    МЭК 60529:1999

    ГОСТ 14254-96( МЭК 529-89) Степени защиты, обеспечиваемые оболочками (Код IP)

    МЭК 60617-06:2001

    *

    МЭК 60621-3:1979

    *

    МЭК 60664-1:1992

    *

    МЭК 60947-1:2004

    ГОСТ Р 50030.1-2007( МЭК 60947-1: 2004) Аппаратура распределения и управления низковольтная. Часть 1. Общие требования

    МЭК 60947-2:2003

    ГОСТ Р 50030.2-99( МЭК 60947-2-98) Аппаратура распределения и управления низковольтная. Часть 2. Автоматические выключатели

    МЭК 60947-5-1:2003

    ГОСТ Р 50030.5.1-2005 (МЭК 60947-5-1:2003) Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления

    МЭК 60947-7-1:2002

    ГОСТ Р 50030.7.1-2000 (МЭК 60947-7-1-89) Аппаратура распределения и управления низковольтная. Часть 7. Электрооборудование вспомогательное. Раздел 1. Клеммные колодки для медных проводников

    МЭК 61082-1:1991

    *

    МЭК 61082-2:1993

    *

    МЭК 61082-3:1993

    *

    МЭК 61082-4:1996

    *

    МЭК 61140:2001

    ГОСТ Р МЭК 61140-2000 Защита от поражения электрическим током. Общие положения по безопасности, обеспечиваемой электрооборудованием и электроустановками в их взаимосвязи

    МЭК 61310 -2

    ГОСТ 28690-90 Знак соответствия технических средств требованиям электромагнитной совместимости. Форма, размеры, технические требования

    МЭК 61 310 (все части за исключением части 2)

    *

    МЭК 61 346 (все части)

    *

    МЭК 61557-3:1997

    ГОСТ Р МЭК 61557-3 2006 Сети электрические распределительные низковольтные напряжением до 1000 В переменного 1500 В постоянного тока. Электробезопасность. Аппаратура для испытаний, измерения и контроля средств защиты. Часть 3. Полное сопротивление контура

    МЭК 61 558-1: 1997

    *

    МЭК 61558-2-6

    *

    МЭК 61984:2001

    *

    МЭК 62023:2000

    *

    МЭК 62027:2000

    *

    МЭК 62061:2005

    *

    МЭК 62079:2001

    *

    ИСО 7000:2004

    *

    ИСО 12100-1:2003

    *

    ИСО 12100-2:2003

    *

    ИСО 13849-1:1999

    *

    ИСО 13849-2:2003

    *

    ИСО 13850:1996

    *

    *Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов

    <2>Библиография

    [1] МЭК 60038:2002

    Стандартные напряжения

    [2] МЭК 60204-11:2000

    Безопасность машин. Электрическое оборудование машин. Часть 11. Требования к высоковольтному оборудованию на напряжения свыше 1000 В переменного тока или 1500 В постоянного тока, но не свыше 36 кВ

    [3] МЭК 60204-31:1996

    Электрооборудование промышленных машин. Частные требования к швейным машинам, установкам и системам

    [4] МЭК 60204-32:1998

    Безопасность оборудования. Электрооборудование промышленных  машин. Часть 32. Требования к грузоподъемным машинам

    [5] МЭК 61000-6-1:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 1. Устойчивость к электромагнитным помехам в жилой, коммерческой и среде легкой индустрии

    [6] МЭК 61000-6-2:2005

    Совместимость технических средств электромагнитная. Часть 6-2. Общие требования. Устойчивость к электромагнитным помехам в промышленных зонах

    [7] СИСПР 61000-6-3:1996

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 3. Нормы эмиссии для жилых, коммерческих и среды легкой индустрии

    [8] МЭК 61000-6-4:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 4. Эмиссия помех в промышленных зонах

    [9] МЭК 61000-5-2:1997

    Электромагнитная совместимость. Часть 5. Монтаж и снижение помех в проводке. Раздел 2. Заземление и скрутка

    [10] МЭК 61496-1:2004

    Безопасность машин. Электрочувствительное защитное оборудование. Часть 1. Общие требования и испытания

    [11] МЭК 61800-3:2004

    Электроприводы регулируемые. Часть 3. Требования по электромагнитной совместимости и методы испытаний

    [12] МЭК 60947-5-2:1997

    Аппараты коммутационные и управления низковольтные. Часть 5-2. Устройства управления и переключатели. Выключатели конечные Дополнение 1 (1999) Дополнение 2 (2003)

    [13] ИСО 14118:2000

    Безопасность машин. Предотвращение непредусмотренного пуска

    [14] ИСО 13851:2002

    Безопасность машин. Средства управления обоими руками. Функциональные аспекты и принципы проектирования

    [15] ИСО 14122 серия

    Безопасность машин. Средства постоянного доступа к машине

    [16]СЕНЕЛЕК НD 516 S2

    Руководство по применению гармонизированных кабелей

    [17] МЭК 60287 (все части)

    Кабели. Расчет номинальных токов нагрузок в условиях установившегося режима

    [18] МЭК 60757:1983

    Коды для обозначения цветов

    [19] МЭК 60332 (все части)

    Испытания на огнестойкость электрических и оптических кабелей

    [20] МЭК 61084-1: 1991

    Кабельные проводящие и канализирующие системы для электрического монтажа. Часть 1. Основные требования

    [21] МЭК 60364 (все части)

    Электроустановки зданий

    [22] МЭК 61557 (все части)

    Безопасность в низковольтных  системах  электроснабжения   напряжением до 1000 В переменного тока и до 1500 В постоянного тока. Оборудование для проведения испытаний, измерений и контроля исполнения защитных функций

    [23] МЭК 60228:2004

    Жилы токопроводящие изолированных кабелей

    [24] МЭК 61200-53:1994

    Устройства электрические. Часть 53. Выбор и монтаж электрооборудования. Аппаратура коммутационная и управления

    [25] МЭК 61180-2:1994

    Техника для проведения высоковольтных испытаний низковольтного электрооборудования. Часть 2. Испытательное оборудование

    [26] МЭК 60335 (все части)

    Бытовое и аналогичное ему применение электричества. Безопасность

    [27] МЭК 60269-1:1998

    Предохранители низковольтные. Часть 1. Общие требования

    [28] ИСО 14121:1999

    Безопасность машин. Принципы оценки риска

    [29] ИСО 14119:1998

    Безопасность машин. Блокировочные устройства для ограждений. Принципы конструкции и выбора

    <2>

    Источник: ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > III)

  • 56 IV)

    1. Общее

    F.1. Общее

    В настоящем стандарте приводится большое число общих требований, которые могут или не могут быть применены в отношении отдельной машины. Поэтому простое, без квалифицированной оценки утверждение о соответствии оборудования всем требованиям настоящего стандарта является недостоверным. Прежде чем приступить к выполнению требований настоящего стандарта, его необходимо тщательно изучить. Техническими комитетами разрабатываются стандарты на отдельные виды продукции или на отдельные продукты (тип С в СЕН) и для конкретных производителей продукции. До выхода этих стандартов следует руководствоваться настоящим стандартом посредством:

    a) установления соответствия и

    b) выбора наиболее близких понятий к требованиям соответствующих разделов, и

    c) изменения требований разделов, если необходимо там, где специфические требования на машину перекрываются другими стандартами, относящимися к данному вопросу.

    В этом случае необходимо обеспечить правильный подбор модификаций и опций без снижения уровня защиты, необходимой для машины в соответствии с оценкой рисков.

    При использовании всех трех вышеприведенных принципов рекомендуется:

    - руководствоваться соответствующими разделами и пунктами настоящего стандарта:

    1) если указано соответствие применяемой опции,

    2) если требования могут быть конкретизированы для отдельной машины или оборудования;

    - руководствоваться напрямую соответствующими стандартами, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    Во всех случаях экспертизой устанавливается:

    - завершенность оценки рисков для машины;

    - прочтение и понимание всех требований настоящего стандарта;

    - правильность выбора варианта реализации требований настоящего стандарта при наличии альтернативы;

    - понимание альтернативы или специфических требований, определяемых для машины или ее эксплуатации, при отсутствии или отличии от соответствующих требований настоящего стандарта;

    - точность определения таких специфических требований.

    Приведенная на рисунке 1 блок-схема типичной машины должна быть использована в качестве отправной точки при решении данной задачи. Это определяется пунктами и разделами, имеющими отношение к специфическим требованиям к оборудованию.

    Настоящий стандарт является комплексным документом, и таблица F.1 призвана помочь в понимании применения требований настоящего стандарта к специальным машинам и установлении связей с другими стандартами по данной тематике.

    Таблица F.1 - Выбор вариантов применения требований стандарта

    Наименование раздела, пункта или подпункта

    Номер раздела, пункта или подпункта

    I)

    II)

    III)

    IV)

    Область применения

    1

    X

    ИСО 121 00 (все части) ИСО 14121 [28]

    Общие требования

    4

    X

    X

    X

    МЭК 60439

    Электрооборудование, соответствующее требованиям МЭК 60439

    4.2.2

    X

    X

    Устройство отключения питания (изолирующий распределитель)

    5.3

    X

    Цепи, на которые не распространяются общие правила по подключению к источнику питания

    5.3.5

    X

    X

    ИСО 12100 (все части)

    Предотвращение непреднамеренных пусков, изоляция

    5.4, 5.5, 5.6

    X

    X

    X

    ИСО 14118 [13]

    Защита от поражения электрическим током

    6

    X

    МЭК 60364-4-41

    Аварийное управление

    9.2.5.4

    X

    X

    ИСО 13850

    Двуручное управление

    9.2.6.2

    X

    X

    ИСО 13851 [14]

    Дистанционное управление

    9.2.7

    X

    X

    X

    Функции управления в случае отказа

    9.4

    X

    X

    X

    ИСО 14121 [28]

    Датчики положения

    10.1.4

    X

    X

    X

    ИСО 14119 [29]

    Цвета и маркировка операционного интерфейса

    10.2, 10.3, 10.4

    X

    X

    МЭК 60073

    Устройства аварийной остановки

    10.7

    X

    X

    ИСО 13850

    Устройства аварийного отключения

    10.8

    X

    Аппаратура управления, защита от внешних воздействий

    10.1.3, 11.3

    X

    X

    X

    МЭК 60529

    Идентификация проводов

    13.2

    X

    Подтверждение соответствия (испытания и проверка)

    18

    X

    X

    X

    Дополнительные требования (опросный лист)

    приложение В

    X

    X

    «X» обозначены разделы, пункты и подпункты настоящего стандарта, которые могут быть применены при следующих условиях:

    I) применение приведенных в разделе, пункте или подпункте материалов;

    II) использование дополнительных специфических требований;

    III) использование других требований;

    IV) использование других стандартов, в которых требования к электрооборудованию аналогичны настоящему стандарту.

    <2>Приложение G

    Таблица G.1 иллюстрирует сравнение поперечных сечений проводников в Американском сортаменте проволоки (AWG) с квадратными миллиметрами, квадратными дюймами и круговыми милами.

    Таблица G.1 - Сравнение размеров проводников

    Номерной размер,

    Номер диаметра

    Площадь поперечного сечения

    Сопротивление медного провода при постоянном токе при 20°С,

    Круговой мил

    мм2

    дюйм2

    0,2

    0,196

    0,000304

    91,62

    387

    24

    0,205

    0,000317

    87,60

    404

    0,3

    0,283

    0,000438

    63,46

    558

    22

    0,324

    0,000504

    55,44

    640

    0,5

    0,500

    0,000775

    36,70

    987

    20

    0,519

    0,000802

    34,45

    1020

    0,75

    0,750

    0,001162

    24,80

    1480

    18

    0,823

    0,001272

    20,95

    1620

    1,0

    1,000

    0,001550

    18,20

    1973

    16

    1,31

    0,002026

    13,19

    2580

    1,5

    1,500

    0,002325

    12,20

    2960

    14

    2,08

    0,003228

    8,442

    4110

    2,5

    2,500

    0,003875

    7,56

    4934

    12

    3,31

    0,005129

    5,315

    6530

    4

    4,000

    0,006200

    4,700

    7894

    10

    5,26

    0,008152

    3,335

    10380

    6

    6,000

    0,009300

    3,110

    11841

    8

    8,37

    0,012967

    2,093

    16510

    10

    10,000

    0,001550

    1,840

    19735

    6

    13,3

    0,020610

    1,320

    26240

    16

    16,000

    0,024800

    1,160

    31576

    4

    21,1

    0,032780

    0,8295

    41740

    25

    25,000

    0,038800

    0,7340

    49339

    2

    33,6

    0,052100

    0,5211

    66360

    35

    35,000

    0,054200

    0,5290

    69073

    1

    42,4

    0,065700

    0,4139

    83690

    50

    47,000

    0,072800

    0,3910

    92756

    Сопротивление при температурах, отличных от 20 °С, вычисляют по формуле:

    R = RI[1 + 0,00393(t - 20)],

    где RI - сопротивление при 20°С;

    R - сопротивление при температуре t°C.

    <2>Приложение Н

    Таблица Н.1

    Обозначение ссылочного международного стандарта

    Обозначение и наименование соответствующего национального стандарта

    МЭК 60034-1

    ГОСТ 28330-89 Машины электрические асинхронные мощностью от 1 до 400 кВт включительно. Общие технические требования

    МЭК 60034-5

    *

    МЭК 60034-11

    *

    МЭК 60072-1

    *

    МЭК 60072-2

    *

    МЭК 60073:2002

    ГОСТ 29149-91 Цвета световой сигнализации и кнопок

    МЭК 60309-1:1999

    ГОСТ 29146.1-91 Соединители электрические промышленного назначения. Часть 1. Общие требования

    МЭК 60364-4-41:2001

    ГОСТ Р 50571.3-94( МЭК 60364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током

    МЭК 60364-4-43:2001

    ГОСТ Р 50571.5-95 (МЭК 60364-4-43-77) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от сверхтока

    МЭК 60364-5-52:2001

    ГОСТ Р 50571.15-97( МЭК 60364-5-52-93) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 52. Электропроводки

    МЭК 60364-5-53:2002

    *

    МЭК 60364-5-54:2002

    ГОСТ Р 50571.10-96( МЭК 60364-5-54-80) Электроустановки зданий. Часть 5. Выбор и монтаж электрооборудования. Глава 54. Заземляющие устройства и защитные проводники

    МЭК 60364-6-61:2001

    ГОСТ Р 50571.16-99 Электроустановки зданий. Часть 6. Испытания. Глава 61. Приемо-сдаточные испытания

    МЭК 604 17-DB 2002

    *

    МЭК 60439-1:1999

    ГОСТ Р 51321.1-2000 Устройства комплектные низковольтные распределения и управления. Часть 1.Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний

    МЭК 60446:1 999

    *

    МЭК 60447:2004

    ГОСТ Р МЭК 60447-2000 Интерфейс человеко-машинный. Принципы приведения в действие

    МЭК 60529:1999

    ГОСТ 14254-96( МЭК 529-89) Степени защиты, обеспечиваемые оболочками (Код IP)

    МЭК 60617-06:2001

    *

    МЭК 60621-3:1979

    *

    МЭК 60664-1:1992

    *

    МЭК 60947-1:2004

    ГОСТ Р 50030.1-2007( МЭК 60947-1: 2004) Аппаратура распределения и управления низковольтная. Часть 1. Общие требования

    МЭК 60947-2:2003

    ГОСТ Р 50030.2-99( МЭК 60947-2-98) Аппаратура распределения и управления низковольтная. Часть 2. Автоматические выключатели

    МЭК 60947-5-1:2003

    ГОСТ Р 50030.5.1-2005 (МЭК 60947-5-1:2003) Аппаратура распределения и управления низковольтная. Часть 5. Аппараты и коммутационные элементы цепей управления. Глава 1. Электромеханические аппараты для цепей управления

    МЭК 60947-7-1:2002

    ГОСТ Р 50030.7.1-2000 (МЭК 60947-7-1-89) Аппаратура распределения и управления низковольтная. Часть 7. Электрооборудование вспомогательное. Раздел 1. Клеммные колодки для медных проводников

    МЭК 61082-1:1991

    *

    МЭК 61082-2:1993

    *

    МЭК 61082-3:1993

    *

    МЭК 61082-4:1996

    *

    МЭК 61140:2001

    ГОСТ Р МЭК 61140-2000 Защита от поражения электрическим током. Общие положения по безопасности, обеспечиваемой электрооборудованием и электроустановками в их взаимосвязи

    МЭК 61310 -2

    ГОСТ 28690-90 Знак соответствия технических средств требованиям электромагнитной совместимости. Форма, размеры, технические требования

    МЭК 61 310 (все части за исключением части 2)

    *

    МЭК 61 346 (все части)

    *

    МЭК 61557-3:1997

    ГОСТ Р МЭК 61557-3 2006 Сети электрические распределительные низковольтные напряжением до 1000 В переменного 1500 В постоянного тока. Электробезопасность. Аппаратура для испытаний, измерения и контроля средств защиты. Часть 3. Полное сопротивление контура

    МЭК 61 558-1: 1997

    *

    МЭК 61558-2-6

    *

    МЭК 61984:2001

    *

    МЭК 62023:2000

    *

    МЭК 62027:2000

    *

    МЭК 62061:2005

    *

    МЭК 62079:2001

    *

    ИСО 7000:2004

    *

    ИСО 12100-1:2003

    *

    ИСО 12100-2:2003

    *

    ИСО 13849-1:1999

    *

    ИСО 13849-2:2003

    *

    ИСО 13850:1996

    *

    *Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов

    <2>Библиография

    [1] МЭК 60038:2002

    Стандартные напряжения

    [2] МЭК 60204-11:2000

    Безопасность машин. Электрическое оборудование машин. Часть 11. Требования к высоковольтному оборудованию на напряжения свыше 1000 В переменного тока или 1500 В постоянного тока, но не свыше 36 кВ

    [3] МЭК 60204-31:1996

    Электрооборудование промышленных машин. Частные требования к швейным машинам, установкам и системам

    [4] МЭК 60204-32:1998

    Безопасность оборудования. Электрооборудование промышленных  машин. Часть 32. Требования к грузоподъемным машинам

    [5] МЭК 61000-6-1:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 1. Устойчивость к электромагнитным помехам в жилой, коммерческой и среде легкой индустрии

    [6] МЭК 61000-6-2:2005

    Совместимость технических средств электромагнитная. Часть 6-2. Общие требования. Устойчивость к электромагнитным помехам в промышленных зонах

    [7] СИСПР 61000-6-3:1996

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 3. Нормы эмиссии для жилых, коммерческих и среды легкой индустрии

    [8] МЭК 61000-6-4:1997

    Совместимость технических средств электромагнитная. Часть 6. Общие требования. Секция 4. Эмиссия помех в промышленных зонах

    [9] МЭК 61000-5-2:1997

    Электромагнитная совместимость. Часть 5. Монтаж и снижение помех в проводке. Раздел 2. Заземление и скрутка

    [10] МЭК 61496-1:2004

    Безопасность машин. Электрочувствительное защитное оборудование. Часть 1. Общие требования и испытания

    [11] МЭК 61800-3:2004

    Электроприводы регулируемые. Часть 3. Требования по электромагнитной совместимости и методы испытаний

    [12] МЭК 60947-5-2:1997

    Аппараты коммутационные и управления низковольтные. Часть 5-2. Устройства управления и переключатели. Выключатели конечные Дополнение 1 (1999) Дополнение 2 (2003)

    [13] ИСО 14118:2000

    Безопасность машин. Предотвращение непредусмотренного пуска

    [14] ИСО 13851:2002

    Безопасность машин. Средства управления обоими руками. Функциональные аспекты и принципы проектирования

    [15] ИСО 14122 серия

    Безопасность машин. Средства постоянного доступа к машине

    [16]СЕНЕЛЕК НD 516 S2

    Руководство по применению гармонизированных кабелей

    [17] МЭК 60287 (все части)

    Кабели. Расчет номинальных токов нагрузок в условиях установившегося режима

    [18] МЭК 60757:1983

    Коды для обозначения цветов

    [19] МЭК 60332 (все части)

    Испытания на огнестойкость электрических и оптических кабелей

    [20] МЭК 61084-1: 1991

    Кабельные проводящие и канализирующие системы для электрического монтажа. Часть 1. Основные требования

    [21] МЭК 60364 (все части)

    Электроустановки зданий

    [22] МЭК 61557 (все части)

    Безопасность в низковольтных  системах  электроснабжения   напряжением до 1000 В переменного тока и до 1500 В постоянного тока. Оборудование для проведения испытаний, измерений и контроля исполнения защитных функций

    [23] МЭК 60228:2004

    Жилы токопроводящие изолированных кабелей

    [24] МЭК 61200-53:1994

    Устройства электрические. Часть 53. Выбор и монтаж электрооборудования. Аппаратура коммутационная и управления

    [25] МЭК 61180-2:1994

    Техника для проведения высоковольтных испытаний низковольтного электрооборудования. Часть 2. Испытательное оборудование

    [26] МЭК 60335 (все части)

    Бытовое и аналогичное ему применение электричества. Безопасность

    [27] МЭК 60269-1:1998

    Предохранители низковольтные. Часть 1. Общие требования

    [28] ИСО 14121:1999

    Безопасность машин. Принципы оценки риска

    [29] ИСО 14119:1998

    Безопасность машин. Блокировочные устройства для ограждений. Принципы конструкции и выбора

    <2>

    Источник: ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа

    Англо-русский словарь нормативно-технической терминологии > IV)

  • 57 transference, negative

    отрицательный перенос; знания, приобретенные в одном контексте при решении одной задачи, приводят к худшему выполнению другой задачи.

    Англо-русский словарь по социологии > transference, negative

  • 58 KB

    1. тысяча нуклеотидов
    2. клавиатура
    3. килобод
    4. килобар
    5. килобаз
    6. база знаний

     

    база знаний
    БЗ

    1. Набор знаний, касающийся определенной предметной области и записанный на каком-либо языке представления знаний.
    2. Информационный ресурс, позволяющий получать ответы или подсказки на плохо формализованные запросы или на запросы с неполными исходными данными.
    3. семантическая модель, описывающая предметную область и позволяющая отвечать на такие вопросы из этой предметной области, ответы на которые в явном виде не присутствуют в базе. База знаний является основным компонентом систем Искусственного интеллекта и Экспертных систем.
    4. Семантическая модель, предназначенная для представления в компьютере знаний, накопленных человеком в определенной предметной области. Является основной составной частью интеллектуальных и экспертных систем [http://www.rol.ru/files/dict/internet/].
    5. Знанием является проверенный практикой результат познания действительности. Иначе говоря, знание - это накопленные человечеством истины, факты, принципы и прочие объекты познания. Поэтому в отличие от базы данных в базе знаний располагаются познаваемые сведения, содержащиеся в документах, книгах, статьях, отчетах.
    В базе знаний в соответствии с принятой в ней методологией классификации располагаются объекты познания, образующие совокупность знаний. В любом объекте представляется набор элементов знаний. Элементы знаний благодаря концептуальным связям, предоставляемым гиперсредой, объединяются, образуя базу знаний. Такие связи бывают четырех видов: общность, партитивность, противопоставление и функциональная взаимозависимость.
    Общность - это связь двух элементов по содержанию их характеристик. Принцип партитивности подразумевает соотношение целого и его частей. Противопоставление встречается в элементах, которые имеют положительные и отрицательные характеристики. Взаимосвязь отображает взаимную зависимость элементов.
    Базы знаний широко используются не только для получения пользователями тех или иных знаний. Они также применяются и при решении задач искусственного интеллекта. Так, в рамках экспертных систем используются два важных класса баз.
    Статическая база знаний содержит сведения, отражающие специфику конкретной области и остающиеся неизменными в ходе решения задачи.
    Динамическая база знаний используется для хранения данных, существенных для решения конкретной задачи и меняющихся в процессе этого решения (например, во время проведения лабораторных исследований).
    Каждая база знаний включает набор сведений, правил и механизм логического вывода. Ее функционирование определяет "система управления базой знаний" (Knowledge base management system, KBMS).
    (Терминологическая база данных по информатике и бизнесу [Электронный ресурс])
    [ http://www.morepc.ru/dict/]

    база знаний

    (ITIL Service Transition)
    Логическая база данных, содержащая данные и информацию, используемые Системой управления знаниями по услугам.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    knowledge base
    (ITIL Service Transition)
    A logical database containing data and information used by the service knowledge management system.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    • БЗ

    EN

     

    килобаз
    1000 пар азотистых оснований в ДНК (РНК)
    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    Тематики

    EN

    • kb

     

    килобод
    1000 бит/с. См. также baud. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    клавиатура
    Расположение клавиш (печатных или функциональных) определенным способом.
    [ ГОСТ Р МЭК 60447-2000]

    клавиатура

    Набор кнопок для управления параметрами компьютеризированных приборов и установок.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    клавиатура
    Устройство для ручного ввода символов в компьютер.
    Примеры сочетаний:
    keyboard responsiveness - тактильная чувствительность клавиатуры
    keyboard template - накладка на клавиатуру - наклейки с дополнительной разметкой.
    [ http://www.morepc.ru/dict/]

    Тематики

    • автоматизация, основные понятия
    • виды (методы) и технология неразр. контроля

    EN

     

    тысяча нуклеотидов
    т.н.

    Единица измерения длины молекулы нуклеиновой кислоты; для двуцепочечных молекул ДНК Т.н. соответствует тысяче пар нуклеотидов (т.п.н.); в отечественной литературе иногда неоправданно используется аллитеративный термин «килобаза».
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    Синонимы

    • т.н.

    EN

    Англо-русский словарь нормативно-технической терминологии > KB

  • 59 knowledge base

    1. база знаний

     

    база знаний
    БЗ

    1. Набор знаний, касающийся определенной предметной области и записанный на каком-либо языке представления знаний.
    2. Информационный ресурс, позволяющий получать ответы или подсказки на плохо формализованные запросы или на запросы с неполными исходными данными.
    3. семантическая модель, описывающая предметную область и позволяющая отвечать на такие вопросы из этой предметной области, ответы на которые в явном виде не присутствуют в базе. База знаний является основным компонентом систем Искусственного интеллекта и Экспертных систем.
    4. Семантическая модель, предназначенная для представления в компьютере знаний, накопленных человеком в определенной предметной области. Является основной составной частью интеллектуальных и экспертных систем [http://www.rol.ru/files/dict/internet/].
    5. Знанием является проверенный практикой результат познания действительности. Иначе говоря, знание - это накопленные человечеством истины, факты, принципы и прочие объекты познания. Поэтому в отличие от базы данных в базе знаний располагаются познаваемые сведения, содержащиеся в документах, книгах, статьях, отчетах.
    В базе знаний в соответствии с принятой в ней методологией классификации располагаются объекты познания, образующие совокупность знаний. В любом объекте представляется набор элементов знаний. Элементы знаний благодаря концептуальным связям, предоставляемым гиперсредой, объединяются, образуя базу знаний. Такие связи бывают четырех видов: общность, партитивность, противопоставление и функциональная взаимозависимость.
    Общность - это связь двух элементов по содержанию их характеристик. Принцип партитивности подразумевает соотношение целого и его частей. Противопоставление встречается в элементах, которые имеют положительные и отрицательные характеристики. Взаимосвязь отображает взаимную зависимость элементов.
    Базы знаний широко используются не только для получения пользователями тех или иных знаний. Они также применяются и при решении задач искусственного интеллекта. Так, в рамках экспертных систем используются два важных класса баз.
    Статическая база знаний содержит сведения, отражающие специфику конкретной области и остающиеся неизменными в ходе решения задачи.
    Динамическая база знаний используется для хранения данных, существенных для решения конкретной задачи и меняющихся в процессе этого решения (например, во время проведения лабораторных исследований).
    Каждая база знаний включает набор сведений, правил и механизм логического вывода. Ее функционирование определяет "система управления базой знаний" (Knowledge base management system, KBMS).
    (Терминологическая база данных по информатике и бизнесу [Электронный ресурс])
    [ http://www.morepc.ru/dict/]

    база знаний

    (ITIL Service Transition)
    Логическая база данных, содержащая данные и информацию, используемые Системой управления знаниями по услугам.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    knowledge base
    (ITIL Service Transition)
    A logical database containing data and information used by the service knowledge management system.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    Синонимы

    • БЗ

    EN

    Англо-русский словарь нормативно-технической терминологии > knowledge base

  • 60 barrier function

    1. барьерная функция

     

    барьерная функция
    Вспомогательная функция, используемая при решении некоторых задач математического программирования. Стремится к минус бесконечности (??) при приближении к границе области допустимых значений изнутри. При переходе от задачи максимизации к задаче минимизации знак Б.ф. меняется на обратный.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > barrier function

См. также в других словарях:

  • Р 50.2.004-2000: Государственная система обеспечения единства измерений. Определение характеристик математических моделей зависимостей между физическими величинами при решении измерительных задач. Основные положения — Терминология Р 50.2.004 2000: Государственная система обеспечения единства измерений. Определение характеристик математических моделей зависимостей между физическими величинами при решении измерительных задач. Основные положения: измерительная… …   Словарь-справочник терминов нормативно-технической документации

  • при — предлог. ком чём. 1. Указывает на место, в непосредственной близости от которого что л. находится; около, возле, у, рядом с. Комната при кухне. Разбить сад при доме. Остановиться при входе в ущелье. Часовня стоит при дороге. * Ногою твёрдой стать …   Энциклопедический словарь

  • при — предлог. ком чём. 1) а) Указывает на место, в непосредственной близости от которого что л. находится; около, возле, у, рядом с. Комната при кухне. Разбить сад при доме. Остановиться при входе в ущелье. Часовня стоит при дороге. * Ногою твёрдой… …   Словарь многих выражений

  • Задачи на взвешивание — Задачи на взвешивание  тип олимпиадных задач по математике, в которых требуется установить тот или иной факт (выделить фальшивую монету среди настоящих, отсортировать набор грузов по возрастанию веса и т. п.) посредством… …   Википедия

  • Задачи-аналоги — ТРИЗ теория решения изобретательских задач, основанная Генрихом Сауловичем Альтшуллером и его коллегами в 1946 году, и впервые опубликованная в 1956 году[1] это технология творчества, основанная на идее о том, что «изобретательское творчество… …   Википедия

  • Задачи юридической психологии — Достижение целей ЮП обеспечивается решением комплекса основных задач. 1. Изучение истории развития юридико психологического знания и его использования в обществе и органах правопорядка. 2. Разработка методологии и методики юридико… …   Энциклопедия современной юридической психологии

  • Оптимальный приём сигналов — У этого термина существуют и другие значения, см. Сигнал (значения). Оптимальный приём сигналов  область радиотехники, в которой обработка принимаемых сигналов осуществляется на основе методов математической статистики[1] …   Википедия

  • ОБРАТНОЙ ЗАДАЧИ РАССЕЯНИЯ МЕТОД — метод исследования нек рых нелинейных уравнений математическойфизики. Введён К. Гарднером (С. S. Gardner), Дж. Грином (J. М. Greene),М. Крускалом (М. D. Kruskal) и Р. Миурой (R. М. Miura) в 1967, хотя отд …   Физическая энциклопедия

  • Внеэкономические факторы оптимальной задачи — [extra economic(al) factors in optimization problem] факторы,  которые не относятся к экономике, однако оказывают влияние на решение данной планово экономической задачи (например, соображения социального или оборонного характера при решении… …   Экономико-математический словарь

  • внеэкономические факторы оптимальной задачи — Факторы, которые не относятся к экономике, однако оказывают влияние на решение данной планово экономической задачи (например, соображения социального или оборонного характера при решении задачи оптимального размещения предприятий). Во всех… …   Справочник технического переводчика

  • ГЕОФИЗИКИ МАТЕМАТИЧЕСКИЕ ЗАДАЧИ — задачи, возникающие при анализе физич. явлений, изучаемых в связи с исследованиями строения Земли. В зависимости от природы изучаемых физич. явлений различают следующие виды геофизич. исследований: грави разведку, основанную на изучении… …   Математическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»