Перевод: с русского на английский

с английского на русский

он+ни+на+что+не+реагирует

  • 1 максимальная токовая защита с пуском по напряжению

    1. voltage controlled overcurrent relay

     

    максимальная токовая защита с пуском по напряжению

    [В.А.Семенов. Англо-русский словарь по релейной защите]


    Максимальная токовая защита с пуском от реле минимального напряжения

    Максимальная токовая защита реагирует на увеличение тока в защищаемом элементе сети. Она применяется для защиты линий, имеющих одностороннее питание, на линиях устанавливается со стороны источника питания и воздействует на отключение выключателя в случае повреждения на защищаемой линии или на шинах подстанций, питающихся от этой линии. Селективность защит обеспечивается подбором выдержек времени, нарастающих ступенями в сторону источника питания (рис. 7.5). Ступень времени Δt =t2-t1≈0,4÷0,8 с. Так, при повреждении в точке K1 по реле защит на подстанциях 1 и 2 будет проходить один и тот же ток . Однако защита на подстанции 1 сработает быстрее и отключит поврежденную линию. Защита на подстанции 2 в этом случае не успеет сработать на отключение и вернется в исходное положение.
    Токовая отсечка - это максимальная токовая защита, селективность действия которой обеспечивается не ступенчатым подбором выдержек времени в подавляющем большинстве случаев отсечка действует мгновенно, а выбором тока срабатывания. Известно, что ток КЗ уменьшается по мере удаления места КЗ от источника питания. Ток срабатывания отсечки Iсз по значению выбирается таким, чтобы отсечка надежно срабатывала при КЗ на заранее определенном участке линии (например, на участке АВ, рис. 7.6) и не приходила в действие при КЗ за пределами этого участка, где Iк< I сз, например в точке С. Таким образом, токовая отсечка защищает часть линии, а не всю линию.

    5306
    Рис. 7.2. Нормальный (а) и утяжеленный (б) режимы работы электрической сети с изолированной нейтралью

    5307
    Рис. 7.3. Замыкание двух фаз на землю в сети с изолированной нейтралью приводит к КЗ. Штриховой линией показан путь тока КЗ

    Токовая отсечка применяется для защиты линий с односторонним и двухсторонним питанием и, кроме того, для защиты трансформаторов. В последнем случае отсечка устанавливается с питающей стороны трансформатора и действует при повреждениях на вводах ВН и в некоторой части первичной обмотки. При повреждениях вторичной обмотки отсечка не срабатывает.
    Максимальная направленная защита (рис. 7.7) применяется для защиты сетей с двухсторонним питанием. Она реагирует на определенные значения тока КЗ и его направление. Орган направления в схеме защиты разрешает ей срабатывать на отключение выключателя, если ток КЗ направлен от шин в сторону защищаемой линии. Селективность действия пускового органа защиты достигается выбором выдержек времени по указанному выше ступенчатому принципу.
    Максимальные направленные защиты устанавливаются с обеих сторон защищаемых линий. В качестве основных защит их применяют в сетях напряжением до 35 кВ.
    Максимальная токовая защита с пуском от реле минимального напряжения. Одним из недостатков максимальных токовых защит является недостаточная чувствительность при КЗ в разветвленных (с большим числом параллельных линий) сильно загруженных сетях. Повышение чувствительности и улучшение отстройки от токов нагрузки достигаются применением пуска защит от реле минимального напряжения (рис. 7.8). Из схемы видно, что защита может действовать только при срабатывании реле KV, уставка которого выбирается ниже минимально возможного уровня рабочего напряжения. При КЗ напряжение в сети существенно понижается, реле напряжения срабатывает, предоставляя возможность токовому органу защиты действовать на отключение.
    Ток срабатывания токовых реле КА выбирается по значению длительного тока нагрузки нормального режима, в результате чего чувствительность защиты при КЗ резко повышается. При кратковременных перегрузках линий токовые реле могут замыкать свои контакты, что, однако, не приводит к срабатыванию защиты на отключение: этому препятствуют реле минимального напряжения, контакты которых в нормальном рабочем режиме разомкнуты.
    5308
    Рис. 7.4. Участки схемы, отключаемые при КЗ: К1-К4 - точки КЗ. Выключатели, отключившиеся при КЗ, зачернены

    5309
    Рис. 7.5. Применение максимальных токовых защит в сети с односторонним питанием

    5310
    Рис. 7.6. Зона действия отсечки на линии с односторонним питанием

    Наличие напряжения на зажимах реле минимального напряжения постоянно контролируется специальным устройством (на рис. 7.8 не показано), подающим сигнал и выводящим защиту из действия при обрывах и повреждениях вторичных цепей трансформаторов напряжения.
    5311
    Рис. 7.7. Принципиальная схема максимальной направленной защиты линии:
    КA - токовое реле (пусковой орган); KW - реле мощности (орган направления мощности КЗ); КТ - реле времени (орган выдержки времени)

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-2.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > максимальная токовая защита с пуском по напряжению

  • 2 релейная защита

    1. RP
    2. relaying
    3. relay protection
    4. protective relaying
    5. protection relay
    6. protection

     

    защита
    Совокупность устройств, предназначенных для обнаружения повреждений или других анормальных режимов в энергосистеме, отключения повреждения, прекращения анормальных режимов и подачи команд или сигналов.
    Примечания:
    1) Термин «защита» является общим термином для устройств защиты или систем защиты.
    2) Термин «защита» может употребляться для описания защиты целой энергосистемы или защиты отдельной установки в энергосистеме, например: защита трансформатора, защита линии, защита генератора.
    3) Защита не включает в себя оборудование установки энергосистемы, предназначенное, например, для ограничения перенапряжений в энергосистеме. Однако, она включает в себя оборудование, предназначенное для управления отклонениями напряжения или частоты в энергосистеме, такое как оборудование для автоматического управления реакторами для автоматической разгрузки и т.п.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    релейная защита

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    релейная защита

    релейная защита электрических систем
    Совокупность устройств (или отдельное устройство), содержащая реле и способная реагировать на короткие замыкания (КЗ) в различных элементах электрической системы — автоматически выявлять и отключать поврежденный участок. В ряде случаев Р. з. может реагировать и на др. нарушения нормального режима работы системы (например, на повышение тока, напряжения) — включать сигнализацию или (реже) отключать соответствующий элемент системы. КЗ — основной вид повреждений в электрических системах как по частоте возникновения, так и по масштабам отрицательных последствий. При КЗ наступает резкое и неравномерное понижение напряжения в системе и значительное увеличение тока в отдельных её элементах, что в конечном счёте может привести к прекращению электроснабжения потребителей и разрушению оборудования. Применение Р. з. сводит вредные последствия КЗ к минимуму.

    Р. з. срабатывает при изменениях определённых электрических величин. Чаще всего встречается Р. з., реагирующая на повышение тока (токовая защита). Нередко в качестве воздействующей величины используют напряжение. Применяют также Р. з., реагирующую на снижение отношения напряжения к току, которое пропорционально расстоянию (дистанции) от Р. з. до места КЗ (дистанционная защита). Обычно устройства Р. з. изолированы от системы; информация об электрических величинах поступает на них от измерительных трансформаторов тока или напряжения либо от др. измерительных преобразователей.

    Как правило, каждый элемент электрической системы (генератор, трансформатор, линию электропередачи и т.д.) оборудуют отдельными устройствами Р. з. Защита системы в целом обеспечивается комплексной селективной Р. з., при этом отключение поврежденного элемента осуществляется вполне определённым устройством Р. з., а остальные устройства, получая информацию о КЗ, не срабатывают. Такая Р. з. должна срабатывать при КЗ, внутренних по отношению к защищаемому элементу, не срабатывать при внешних, а также не срабатывать в отсутствии КЗ.

    Селективность (избирательность) Р. з. характеризуется протяжённостью зоны срабатывания защиты (при КЗ в пределах этой зоны Р. з. срабатывает с заданным быстродействием) и видами режимов работы системы, при которых предусматривается её несрабатывание. В зависимости от уровня селективности при внешних КЗ принято делить Р. з. на абсолютно селективные, не срабатывающие при любых внешних КЗ, относительно селективные, срабатывание которых при внешних КЗ предусмотрено только в случае отказа защиты или выключателя смежного поврежденного элемента, и неселективные, срабатывание которых допускается (в целях упрощения) при внешних КЗ в границах некоторой зоны. Наиболее распространены относительно селективные Р. з. Любая Р. з. должна удовлетворять требованиям устойчивости функционирования, характеризующейся совершенством способов "распознавания" защитой режима работы электрической системы, и надёжности функционирования, определяющейся в первую очередь отсутствием отказов устройств Р. з.

    Один из простейших путей достижения селективности Р. з. (обычно токовых и дистанционных) — применение реле, в которых между моментом возникновения требования о срабатывании реле и завершением процесса срабатывания проходит строго определённый промежуток времени, называется выдержкой времени (см. Реле времени).

    4608


    На рис. 1 показаны схема участка радиальной электрической сети с односторонним питанием (при котором ток к месту КЗ идёт с одной стороны), оснащенного относительно селективной Р. з., и соответствующие выдержки времени. Устройства Р. з. 1 и 2 имеют по три ступени, каждая из которых настроена на определённые значения входного сигнала т. о., что выдержка времени этих устройств ступенчато зависит от расстояния до места КЗ. Протяжённость зон, защищаемых отдельными ступенями, и соответствующие им выдержки времени выбираются с таким расчётом, чтобы устройства защиты поврежденных участков сети срабатывали раньше др. устройств. Зону первой ступени Р. з., не имеющей специального замедления срабатывания, приходится принимать несколько меньшей защищаемого участка, поскольку, например, устройство 1 не способно различить КЗ в точках K1 и K2. Последние ступени Р. з. (в Р. з., показанной на рис. 1, — третьи) — резервные, у них часто нет четко ограниченной зоны срабатывания.

    4609

    В сетях, в которых ток к месту КЗ может идти с двух сторон (от разных источников питания или по обходной связи), относительно селективные Р. з. выполняют направленными — срабатывающими только тогда, когда мощность КЗ передаётся через защищаемые элементы в условном направлении от шин ближайшей подстанции в линию. Так, при КЗ в точке К (рис. 2) могут сработать только устройства 1, 3, 4 и 6. При этом устройства 1 и 3 (4 и 6) для обеспечения селективности согласованы между собой по зонам срабатывания и выдержкам времени.

    В ряде случаев — на достаточно мощных генераторах, трансформаторах, линиях напряжением 110 кв и выше — для обеспечения высокого быстродействия Р. з. применяют сравнительно сложные абсолютно селективные защиты. Из них наиболее распространены т. н. продольные защиты, к которым для распознавания КЗ, в конце "своего" и в начале смежного участков подводится информация с разных концов элемента. Так, продольная дифференциальная токовая защита реагирует на геометрическую разность векторов токов на концах элемента. Эта разность при внешнем КЗ теоретически равна нулю, а при внутреннем — току в месте КЗ. В защитах др. типов производится сопоставление фаз векторов тока (дифференциально-фазная защита) или направлений потока мощности на концах элемента. К продольным защитам электрических машин и линий длиной примерно до 10 км информация об изменении электрических величин поступает непосредственно по соединительным проводам. На более длинных линиях для передачи такой информации обычно используют ВЧ каналы связи по проводам самой линии, а также УКВ каналы радиосвязи и радиорелейные линии.
    Э. П. Смирнов.
    [БСЭ, 1969-1978]

    НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ

    В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
    Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
    Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.

    Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
    Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
    Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.

    Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
    Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (например, снизить ток при его возрастании, понизить напряжение при его увеличении и т. д.).

    В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
    Первоначально в качестве подобной защиты применялись плавкие предохранители. Однако по мере роста мощности и напряжения электрических установок и усложнения их схем коммутации такой способ защиты стал недостаточным, в силу чего были созданы защитные устройства, выполняемые при помощи специальных автоматов — реле, получившие название релейной защиты.

    Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем. Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникновение повреждений и ненормальных режимов.
    При возникновении повреждений защита выявляет и отключает от системы поврежденный участок, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения.

    При возникновении ненормальных режимов защита выявляет их и в зависимости от характера нарушения производит операции, необходимые для восстановления нормального режима, или подает сигнал дежурному персоналу.
    В современных электрических системах релейная защита тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.

    К основным устройствам такой автоматики относятся:

    • автоматы повторного включения (АПВ),
    • автоматы включения резервных источников питания и оборудования (АВР),
    • автоматы частотной разгрузки (АЧР).

    [Чернобровов Н. В. Релейная защита. Учебное пособие для техникумов]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > релейная защита

  • 3 управление аварийными сигналами

    1. alarm management

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление аварийными сигналами

  • 4 направленная токовая защита нулевой последовательности

    1. directional neutral current relay

     

    направленная токовая защита нулевой последовательности

    [В.А.Семенов. Англо-русский словарь по релейной защите]

    Нулевая последовательность фаз.
    Согласно теории симметричных составляющих любую несимметричную систему трех токов или напряжений - обозначим их А, В, С - можно представить в виде трех систем прямой, обратной и нулевой последовательностей фаз (рис. 7.9, а-в). Первые две системы симметричны и уравновешены, последняя симметрична, но не уравновешена.
    Система прямой последовательности (рис. 7.9, а) состоит из трех вращающихся векторов A 1, B 1, C 1, равных по значению и повернутых на 120° относительно друг друга, причем вектор B1 следует за вектором А 1.
    5300
    Рис. 7.8. Принципиальная схема максимальной токовой защиты с пуском от реле минимального напряжения:
    КА - реле тока (токовый пусковой орган); КV - реле минимального напряжения (пусковой орган по напряжению); КТ - реле времени
    Система обратной последовательности (рис. 7.9, б) состоит также из трех векторов A 2, B 2, C 2, равных по значению и повернутых на 120° относительно друг друга, но при вращении в ту же сторону, что и векторы прямой последовательности, вектор B 2 опережает вектор A 2 на 120°.
    Система нулевой последовательности (рис. 7.9, в) состоит из трех векторов A 0, B 0, C 0, совпадающих по фазе.
    Очевидно, что сложение одноименных векторов этих трех систем дает ту несимметричную систему, которая была разложена на, ее составляющие:

    В качестве примера сложение векторов фазы С выполнено на рис. 7.9, г.
    Существует и метод расчета симметричных составляющих, согласно которому составляющая нулевой последовательности

    5301
    Рис. 7.9. Симметричные составляющие:
    а, б, в - прямой, обратной и нулевой последовательности соответственно; г - сложение векторов трех последовательностей фазы С
    5302
    Рис. 7.10. Однофазное КЗ на землю на ненагруженной линии с односторонним питанием:
    а - схема линии; б - векторная диаграмма напряжения и тока для точки К ; в, г - векторные диаграммы напряжения и токов, построенные с помощью симметричных составляющих

    Таким образом, для нахождения A 0 надо геометрически сложить три составляющие вектора и взять одну треть от суммы.
    Целесообразность представления несимметричных систем тремя симметричными составляющими состоит в том, что анализ и расчеты напряжений и токов для системы нулевой последовательности могут выполняться независимо от систем прямой и обратной последовательностей, что во многих случаях упрощает расчеты.
    Включение же защит на составляющие нулевой последовательности дает ряд преимуществ по сравнению с включением их на полные токи и напряжения фаз для действия при КЗ на землю.
    Практическое использование составляющих нулевой последовательности. Рассмотрим металлическое замыкание фазы А на землю в сети с эффективно заземленной нейтралью (рис. 7.10, а). Этот вид повреждения относится к несимметричным КЗ и характеризуется тем, что в замкнутом контуре действует ЭДС E A, под действием которой в поврежденной фазе А проходит ток IA=Ik отстающий от E A на 90°; напряжение фазы А относительно земли в месте повреждения (точка К) UAк =0, так как эта точка непосредственно соединена с землей; токи в неповрежденных фазах IB и IC отсутствуют. С учетом сказанного на рис. 7.10, б построена векторная диаграмма для точки К.
    На рис. 7.10, в и г приведены векторные диаграммы напряжений и токов, построенные с помощью симметричных составляющих для того же случая однофазного КЗ.
    Сравнение диаграммы, представленной на рис. 7.10, б, с диаграммами рис. 7.10, в и г показывает, что вектор I к равен вектору 3I0, а ЕА =U B к + U C к = 3U0к. Значит, полный ток фазы в месте повреждения может быть представлен утроенным значением тока нулевой последовательности, а ЭДС - ЕА - утроенным значением напряжения нулевой последовательности.
    Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

    Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0.
    Для получения напряжения нулевой последовательности вторичные обмотки трансформатора напряжения соединяют в разомкнутый треугольник (рис. 7.12) и обязательно заземляют нейтраль его первичной обмотки. В этом случае

    5303
    Рис. 7.11. Соединение трансформаторов тока в фильтр токов нулевой последовательности
    В нормальном режиме работы и КЗ между фазами (без земли) геометрическая сумма напряжений вторичных обмоток, соединенных в разомкнутый треугольник, равна нулю, и поэтому Up также равно нулю (рис. 7.12, б). И только при однофазных (или двухфазных) КЗ на землю на зажимах разомкнутого треугольника появляется напряжение Up=3U0 (рис. 7.12, в).
    Фазные напряжения систем прямой и обратной последовательностей образуют симметричные звезды, и поэтому суммы их векторов в схеме разомкнутого треугольника всегда равны нулю.

    5304
    Рис. 7.12. Соединение однофазных трансформаторов напряжении в фильтр напряжения нулевой последовательности:
    а - общая схема трансформатора напряжения; б - векторные диаграммы в нормальном режиме работы; с - то же при замыкании фазы А на землю в сети с заземленной нейтралью; PV - вольтметр контроля исправности цепей вторичной обмотки

    В сетях с эффективным заземлением нейтрали около 80% повреждений связано с замыканиями на землю. Для защиты оборудования применяют устройства, реагирующие на составляющие нулевой последовательности.
    Схема и некоторые вопросы эксплуатации токовой направленной защиты нулевой последовательности. Принципиальная схема защиты показана на рис. 7.13. Пусковое токовое реле КА, включенное на фильтр токов нулевой последовательности, реагирует на появление КЗ на землю, когда в нулевом проводе проходит ток 3I0.
    Реле мощности KW фиксирует направление мощности КЗ, обеспечивая селективность действия: защита работает при направлении мощности КЗ от шин подстанции в защищаемую линию. Напряжение 3U0 подводится к реле мощности от обмотки разомкнутого треугольника трансформатора напряжения (шинки EV, H, KV, K).
    Реле времени КТ создает выдержку времени, необходимую по условию селективности.
    На рис. 7.14 показано размещение токовых направленных защит нулевой последовательности в сети, работающей с заземленными нейтралями с обеих сторон рассматриваемого участка. График характеристик выдержек времени построен по встречно-ступенчатому принципу. Из графика видно, что каждая защита отстраивается от защиты смежного участка ступенью времени Δt =t1-t3.
    Значение тока срабатывания пускового токового реле выбирается по условию надежного действия реле при КЗ в конце следующего (второго) участка сети, а также по условию отстройки от тока небаланса.
    Появление тока небаланса в реле связано с погрешностью трансформаторов тока, неидентичностью трансформаторов тока, неидентичностью их характеристик намагничивания и имеет решающее значение. Чтобы не допустить действия пускового токового реле от тока небаланса, ток срабатывания реле принимают больше тока небаланса. Ток небаланса определяется для нормального рабочего режима или для режима трехфазного КЗ в зависимости от выдержки времени защиты.
    При наличии в защищаемой сети автотрансформаторов, электрически связывающих сети двух напряжений, однофазное или двухфазное замыкание на землю к сети среднего напряжения приводит к появлению тока I0 в линиях высшего напряжения. Чтобы избежать ложных срабатываний защит линий высшего напряжения, уставки их защит по току срабатывания и выдержкам времени согласуют с уставками защит в сети среднего напряжения. По указанной причине избегают, как правило, заземления нейтралей обмоток звезд высшего и среднего напряжений у одного трансформатора. Заметим также, что у трансформатора со схемой соединения звезда-треугольник замыкание на землю на стороне треугольника не вызывает появления тока I0 на стороне звезды.
    Ток I0 появляется в линиях при неполнофазных режимах работы участков сетей. Такие режимы могут быть кратковременными и длительными. От кратковременных неполнофазных режимов, возникающих, например, в цикле ОАПВ линии, а также АПВ при неодновременном включении трех фаз выключателя защиты отстраиваются по току срабатывания или выдержки времени защит принимаются больше, чем время t ОАПВ. При возможных неполнофазных режимах работы линий (например, при пофазном ремонте под напряжением) токовые направленные защиты нулевой последовательности ремонтируемой линии и смежных участков должны проверяться и отстраиваться от несимметрии или выводиться из работы, так как они мало приспособлены для работы в таких условиях.
    В процессе эксплуатации токовых защит нулевой последовательности должны строго учитываться все заземленные нейтрали автотрансформаторов и трансформаторов, являющиеся как бы источниками токов нулевой последовательности. Распределение тока I0 в сети определяется исключительно расположением заземленных нейтралей, а не генераторов электростанций.
    Контроль исправности цепей напряжения разомкнутого треугольника осуществляется с помощью вольтметра, периодически подключаемого с помощью кнопки SB (см. рис. 7.12). Вольтметр измеряет напряжение небаланса, имеющего значение 1-3 В. При нарушении цепей показание вольтметра пропадает.
    Наряду с рассмотренной токовой направленной защитой нулевой последовательности широкое распространение в сетях 110 кВ и выше получили направленные отсечки и ступенчатые защиты пулевой последовательности. Наиболее совершенными являются четырехступенчатые защиты, первая ступень которых обычно выполняется без выдержки времени. Первая и вторая ступени защиты предназначены для действий при замыканиях на землю в пределах защищаемой линии и на шинах противоположной подстанции. Последние ступени выполняют в основном роль резервирования.
    5305
    Рис. 7.13. Схема токовой направленной защиты нулевой последовательности
    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-3.html]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > направленная токовая защита нулевой последовательности

  • 5 страх незнакомца

    Специфические аффективные и поведенческие проявления тревоги, указывающие, согласно Шпицу, на второй сдвиг в психической организации младенца. Подобные проявления называют также тревогой восьми месяцев. Шпиц заметил, что в возрасте шести—восьми месяцев ребенок начинает по-новому реагировать на незнакомых ему людей. Если прежде младенец отвечал улыбкой на приближение любого человека, то теперь он реагирует на постороннего человека дистрессом. Эта реакция варьирует от напряженности, настороженности, уклонения от контакта глаз и стремления спрятаться до пронзительного плача, крика и отказа от контакта.
    Шпиц называл подобный ответ тревогой, однако в настоящее время установлено, что такая тревога представляет собой комплексное эмоциональное состояние, включающее в себя физиологические, аффективные и когнитивные компоненты, а потому переживаться в полной мере младенцем не может. Следовательно, реакция, которую наблюдал Шпиц, скорее представляет собой дистресс (Katan, 1972; Brenner, 1982).
    Хотя Шпиц и его современники полагали, что эта реакция на незнакомца указывает на способность различать "своих" и "чужих" (в настоящее время показано, что это новоприобретение достигается уже на третьем-четвертом месяце), она имеет далеко идущие последствия для психоаналитической теории. Она служит индикатором установления истинных объектных отношений, того, что мать стала либидинозным объектом. Она остается самым важным объектом независимо от того, насколько она удовлетворяет желания и потребности ребенка. Кроме того, эта реакция является индикатором развития способностей ребенка к суждению (Spitz, 1957) и расширения спектра аффективных реакций (Emde, Gaensbauer & Harmon, 1976). Развитие когнитивных функций, а также понимание запретов и приказаний возвещают о появлении предшественника Сверх-Я. Социальное взаимодействие становится более сложным, и можно также наблюдать появление предшественников защитных механизмов. Иными словами, Я становится более сложной организацией с рядом взаимодействующих систем.
    \
    Лит.: [131, 181, 484, 803, 804, 843]

    Словарь психоаналитических терминов и понятий > страх незнакомца

  • 6 контрперенос

    Ситуация, при которой чувства и установки аналитика по отношению к пациенту являются дериватами прежних ситуаций жизни аналитика, перемещенных на пациента. Таким образом, контрперенос отражает собственные бессознательные реакции аналитика на пациента, хотя некоторые аспекты этого феномена могут быть осознанными. Феномен аналогичен переносу, имеющему огромное терапевтическое значение при анализе. В узком смысле контрперенос определяется как специфическая реакция на перенос пациента. Некоторые относят к нему все эмоциональные реакции аналитика на пациента — сознательные и бессознательные, в частности, те, что препятствуют аналитическому пониманию и технике. В таком расширенном понимании этот феномен, пожалуй, лучше называть контрреагированием.
    Под влиянием контрпереноса анализ для аналитика приобретает бессознательный конфликтный смысл, вместо того чтобы быть адаптированным к реальности и свободным от конфликтов. Проявления контрпереноса крайне многообразны. Чаще всего он возникает, когда аналитик идентифицируется с пациентом, реагирует на продуцируемый им материал или аспекты аналитической ситуации. В этих условиях стимулируются бессознательные стремления, стоящие за чертами характера аналитика, а их дериваты проявляются в его мыслях, чувствах и действиях.
    Реакции, проистекающие из бессознательных конфликтов аналитика, отличаются от реакций на личность пациента и терапевтическую ситуацию. Первые могут препятствовать аналитической нейтральности и создавать "слепые пятна", мешающие эмпатии и пониманию; в крайних случаях контрперенос может приводить к отыгрыванию. С другой стороны, внимательное изучение аналитиком чувств, возникающих при контрпереносе, дает ключ к пониманию поведения пациента, его чувств и мыслей, облегчая тем самым проникновение в его бессознательное. Такое тщательное самоисследование является одной из основных целей учебного анализа, помогающего аналитику осознать собственные конфликты и их производные.
    И контрперенос, и эмпатия предполагают механизм идентификации, однако здесь имеются существенные различия. При эмпатии идентификация представляет собой преходящее, временное переживание с пациентом производных проявлений его бессознательных фантазий. Возникающий аффективный резонанс с пациентом может способствовать лучшему пониманию его конфликтов. При идентификации же, возникающей вследствие непроанализированного контрпереноса, для аналитика такой инсайт невозможен, поскольку он сам оказывается "захваченным" конфликтом, аналогичным таковому у пациента.
    В последние годы отраженный в психоаналитической литературе интерес к проблеме контрпереноса возрастает, возможно, в результате повышенного внимания к вопросам аналитических взаимоотношений. Некоторые авторы считают, что контрперенос представляет собой биполярный феномен, поскольку и аналитик, и пациент реагируют на переносы друг друга. Представляется, что анализ детей, а также психотических, пограничных и нарциссических пациентов порождает более сложные реакции контрпереноса; возрастание объема работы такого рода также повлияло на повышение интереса к контрпереносу.
    \
    Лит.: [44, 131, 265, 275, 279, 651, 713]

    Словарь психоаналитических терминов и понятий > контрперенос

  • 7 психоневроз

    Термин, представляющий собой одну из основных диагностических психоаналитических и психиатрических категорий. Психоневроз характеризуется множественными нарушениями мышления, чувств, личностных установок и поведения. Симптомы психоневроза коренятся в психических конфликтах, противоборствующие элементы которых относятся главным образом к сфере бессознательного. Символические связи симптома и конфликта впервые удалось раскрыть Фрейду, показавшему, что с помощью психоаналитической терапии подобные связи становятся явными и понятными. Термин психоневроз относится прежде всего к целостным психопатологическим образованиям, состоящим из специфической констелляции симптомов. К последним принято относить непроизвольные движения, изменения телесных функций, болевые и другие неприятные ощущения, наблюдаемые при истерии; эпизоды дисфорического настроения при тревожных состояниях ("приступах") или в рамках невротической депрессии; не поддающиеся произвольному контролю постоянно возникающие мысли и действия при неврозе навязчивых состояний; осознанные иррациональные страхи и опасения, приводящие к значительному ограничению адаптивного поведения при фобических состояниях. Подобные симптомы воспринимаются пациентом как чуждые и непонятные (чуждые Я), возникающие помимо его воли и нарушающие его адаптивную деятельность. Чуждость Я является важным признаком, отличающим психоневротические расстройства от характерологических. Если при психоневрозе фундаментальная функция Я проверки реальности остается практически невредимой, то при психозах она подвергается существенным искажениям. Неповрежденной при психоневрозе остается и такая важная функция Я, как сдерживание влечений, утрачиваемое индивидом при расстройствах перверсного и импульсивного типов.
    Психоневротические нарушения могут сочетаться с расстройствами характера, парафилией, пограничными состояниями, патологическим нарциссизмом и психотическими расстройствами. В типичных случаях в основе психоневротической симптоматики лежат выраженные расстройства характера: истерические симптомы чаще встречаются у демонстративных личностей, обсессивные — у обсессивно-компульсивных и т.п. Психодинамика хорошо защищенных Я-синтонными механизмами защиты характерологических проявлений может не выявлять никаких психоневротических симптомов, однако при частичном ослаблении таких механизмов незамедлительно возникает соответствующая симптоматика.
    Психоневроз возникает в результате усиления конфликта между сексуальными и агрессивными влечениями или их производными и, как таковой, является попыткой контролировать и ограничить влечения. Борьба с влечениями отражает, как правило, не какие-либо реально воздействующие на индивида ситуационные влияния, а противостояние бессознательных фантазий и воспоминаний, исходящих из детских переживаний опасности, которая возникает в типичные моменты психосексуального развития, с одной стороны, и чрезмерно грубых и даже жестоких иерархических проявлений Сверх-Я — с другой. Первичный конфликт, активизируясь и повторяясь все чаще и чаще в виде актуальных переживаний, оживляет бессознательные фантазии, связанные, как правило, с эдиповым комплексом. В этих новых для себя условиях Я реагирует сигнальной тревогой, стимулирующей процессы вытеснения и другие механизмы психологической защиты. Поскольку, однако, постоянная энергетическая заряженность неудовлетворенных желаний остается неустраненной, а защита перестает справляться со стоящими перед ней задачами, происходит возвращение вытесненного материала, который проявляется в виде психоневротической симптоматики. Анализ показывает, что психоневротические симптомы представляют собой компромиссное образование, состоящее из: а) скрытых "замаскированных" проявлений, отражающих наличие запретных сексуальных и агрессивных влечений; б) защиты, направленной против таких влечений, а также "карательных" представлений, исходящих из сферы Сверх-Я. Кроме того, симптомы психоневроза нередко отрицают потребность в симпатии и внимании. Симптоматическое компромиссное образование концентрирует в себе стремление Я интегрировать противоположные цели Оно, Сверх-Я с требованиями, исходящими из реального социума. Возможность существования столь сложных психических конструкций иллюстрирует принцип множественности функций Я, описанный Вельдером (1936) и указывающий на адаптивную направленность деятельности Я.
    Различные типы психоневроза характеризуются соответствующими типами фиксации на различных уровнях раннего развития либидо (то есть на тех уровнях, к которым регрессирует психика) в результате фрустрации или конфликта. При этом "выбор психоневроза" зависит от репертуара соответствующей регрессии защитных механизмов Я. Изначально Фрейд подчеркивал лишь регрессию либидо. Позже, однако, он вынужден был признать, что "податливость" лиц, страдающих психоневрозом, зависит также и от изменчивости агрессивных влечений и степени зрелости индивида на момент возникновения травмы, "запускающей" конфликт. Здесь, наряду с психологическими, немаловажную роль играют биологические детерминанты, а также факторы приобретенного в течение жизни опыта.
    Возникновение и бурное проявление психоневротических симптомов возможны в ответ на возрастание влияния "отраженных" влечений, особенно в пубертатном и климактерическом возрасте, а также в ситуациях соблазна. В таких случаях наблюдается существенное ослабление защитных процессов и появление тревоги либо чувства вины, предвещающих появление остальной симптоматики.
    Первым типом невроза, изученным Фрейдом, являлся так называемый актуальный невроз, возникающий в результате неудовлетворительной половой жизни. Этот тип невроза Фрейд четко отграничивал от истинных психоневрозов; последние, по его мнению, основываются на интрапсихических конфликтах, порождаемых ранними детскими фантазиями и психическими травмами. В некоторых случаях, однако, оба типа неврозов могут существовать одновременно и тогда, согласно Фрейду, их дифференциация не представляется возможной.
    В настоящее время различие между понятиями невроз и психоневроз все больше стирается и оба термина часто используются как взаимозаменяемые. По Фрейду, истерию, фобии и невроз навязчивых состояний следует относить к категории неврозов переноса, поскольку пациенты с подобными нарушениями весьма охотно и без существенных затруднений воспроизводят детские травматические переживания именно в ситуации переноса. Больные, страдающие меланхолией или шизофренией, менее способны к формированию зрелых объектных отношений, а потому при анализе не могут столь адекватно отразить детские конфликты. Такие состояния Фрейд обозначал понятием нарциссические неврозы.
    В культурах и субкультурах с жесткими традициями психоневротические расстройства зачастую интерпретируются в религиозно-идиоматической терминологии — одержимости демонами и т.д. Здесь нередко эффективными оказываются ритуальные методы исцеления, осуществляемые шаманами, священнослужителями или религиозными общинами.
    \
    Лит.: [15, 203, 225, 290, 851]

    Словарь психоаналитических терминов и понятий > психоневроз

  • 8 продольная дифференциальная защита

    1. longitudinal differential protection
    2. line differential protection

     

    продольная дифференциальная защита
    Защита, действие и селективность которой зависят от сравнения величин (или фаз и величин) токов по концам защищаемой линии.
    [ http://docs.cntd.ru/document/1200069370]

    продольная дифференциальная защита

    Защита, срабатывание и селективность которой зависят от сравнения амплитуд или амплитуд и фаз токов на концах защищаемого участка.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    продольная дифференциальная защита линий
    -
    [Интент]

    EN

    longitudinal differential protection
    line differential protection (US)

    protection the operation and selectivity of which depend on the comparison of magnitude or the phase and magnitude of the currents at the ends of the protected section
    [ IEV ref 448-14-16]

    FR

    protection différentielle longitudinale
    protection dont le fonctionnement et la sélectivité dépendent de la comparaison des courants en amplitude, ou en phase et en amplitude, entre les extrémités de la section protégée
    [ IEV ref 448-14-16]


    Продольная дифференциальная защита линий

    Защита основана на принципе сравнения значений и фаз токов в начале и конце линии. Для сравнения вторичные обмотки трансформаторов тока с обеих сторон линии соединяются между собой проводами, как показано на рис. 7.17. По этим проводам постоянно циркулируют вторичные токи I 1 и I 2. Для выполнения дифференциальной защиты параллельно трансформаторам тока (дифференциально) включают измерительный орган тока ОТ.
    Ток в обмотке этого органа всегда будет равен геометрической сумме токов, приходящих от обоих трансформаторов тока: I Р = I 1 + I 2 Если коэффициенты трансформации трансформаторов тока ТА1 и ТА2 одинаковы, то при нормальной работе, а также внешнем КЗ (точка K1 на рис. 7.17, а) вторичные токи равны по значению I 1 =I2 и направлены в ОТ встречно. Ток в обмотке ОТ I Р = I 1 + I 2 =0, и ОТ не приходит в действие. При КЗ в защищаемой зоне (точка К2 на рис. 7.17, б) вторичные токи в обмотке ОТ совпадут по фазе и, следовательно, будут суммироваться: I Р = I 1 + I 2. Если I Р >I сз, орган тока сработает и через выходной орган ВО подействует на отключение выключателей линии.
    Таким образом, дифференциальная продольная защита с постоянно циркулирующими токами в обмотке органа тока реагирует на полный ток КЗ в защищаемой зоне (участок линии, заключенный между трансформаторами тока ТА1 и ТА2), обеспечивая при этом мгновенное отключение поврежденной линии.
    Практическое использование схем дифференциальных защит потребовало внесения ряда конструктивных элементов, обусловленных особенностями работы этих защит на линиях энергосистем.
    Во-первых, для отключения протяженных линий с двух сторон оказалось необходимым подключение по дифференциальной схеме двух органов тока: одного на подстанции 1, другого на подстанции 2 (рис. 7.18). Подключение двух органов тока привело к неравномерному распределению вторичных токов между ними (токи распределялись обратно пропорционально сопротивлениям цепей), появлению тока небаланса и понижению чувствительности защиты. Заметим также, что этот ток небаланса суммируется в ТО с током небаланса, вызванным несовпадением характеристик намагничивания и некоторой разницей в коэффициентах трансформации трансформаторов тока. Для отстройки от токов небаланса в защите были применены не простые дифференциальные реле, а дифференциальные реле тока с торможением KAW, обладающие большей чувствительностью.
    Во-вторых, соединительные провода при их значительной длине обладают сопротивлением, во много раз превышающим допустимое для трансформаторов тока сопротивление нагрузки. Для понижения нагрузки были применены специальные трансформаторы тока с коэффициентом трансформации n, с помощью которых был уменьшен в п раз ток, циркулирующий по проводам, и тем самым снижена в n2 раз нагрузка от соединительных проводов (значение нагрузки пропорционально квадрату тока). В защите эту функцию выполняют промежуточные трансформаторы тока TALT и изолирующие TAL. В схеме защиты изолирующие трансформаторы TAL служат еще и для отделения соединительных проводов от цепей реле и защиты цепей реле от высокого напряжения, наводимого в соединительных проводах во время прохождения по линии тока КЗ.

    5313
    Рис. 7.17. Принцип выполнения продольной дифференциальной защиты линии и прохождение тока в органе тока при внешнем КЗ (а) и при КЗ в защищаемой зоне (б)

     

    5314
    Рис. 7.18. Принципиальная схема продольной дифференциальной защиты линии:
    ZA - фильтр токов прямой и обратной последовательностей; TALT - промежуточный трансформатор тока; TAL - изолирующий трансформатор; KAW - дифференциальное реле с торможением; Р - рабочая и T - тормозная обмотки реле

    Распространенные в электрических сетях продольные дифференциальные защиты типа ДЗЛ построены на изложенных выше принципах и содержат элементы, указанные на рис. 7.18. Высокая стоимость соединительных проводов во вторичных цепях ДЗЛ ограничивает область се применения линиями малой протяженности (10-15 км).
    Контроль исправности соединительных проводов. В эксплуатации возможны повреждения соединительных проводов: обрывы, КЗ между ними, замыкания одного провода на землю.
    При обрыве соединительного провода (рис. 7.19, а) ток в рабочей Р и тормозной Т обмотках становится одинаковым и защита может неправильно сработать при сквозном КЗ и даже при токе нагрузки (в зависимости от значения Ic з .
    Замыкание между соединительными проводами (рис. 7.19, б) шунтирует собой рабочие обмотки реле, и тогда защита может отказать в работе при КЗ в защищаемой зоне.
    Для своевременного выявления повреждений исправность соединительных проводов контролируется специальным устройством (рис. 7.20). Контроль основан на том, что на рабочий переменный ток, циркулирующий в соединительных проводах при их исправном состоянии, накладывается выпрямленный постоянный ток, не оказывающий влияния на работу защиты. Две секции вторичной обмотки TAL соединены разделительным конденсатором С1, представляющим собой большое сопротивление для постоянного тока и малое для переменного. Благодаря конденсаторам С1 в обоих комплектах защит создается последовательная цепь циркуляции выпрямленного тока по соединительным проводам и обмоткам минимальных быстродействующих реле тока контроля КА. Выпрямленное напряжение подводится к соединительным проводам только на одной подстанции, где устройство контроля имеет выпрямитель VS, получающий в свою очередь питание от трансформатора напряжения TV рабочей системы шин. Подключение устройства контроля к той или другой системе шин осуществляется вспомогательными контактами шинных разъединителей или. реле-повторителями шинных разъединителей защищаемой линии.
    Замыкающие контакты КЛ контролируют цепи выходных органов защиты.
    При обрыве соединительных проводов постоянный ток исчезает, и реле контроля КА снимает оперативный ток с защит на обеих подстанциях, и подастся сигнал о повреждении. При замыкании соединительных проводов между собой подается сигнал о выводе защиты из действия, но только с одной стороны - со стороны подстанции, где нет выпрямителя.
    5315
    Рис. 7.19. Прохождение тока в обмотках реле KAW при обрыве (а) и замыкании между собой соединительных проводов (б):
    К1 - точка сквозного КЗ; К2 - точка КЗ в защищаемой зоне
    В устройстве контроля имеется приспособление для периодических измерений сопротивления изоляции соединительных проводов относительно земли. Оно подаст сигнал при снижении сопротивления изоляции любого из соединительных проводов ниже 15-20 кОм.
    Если соединительные провода исправны, ток контроля, проходящий по ним, не превышает 5-6 мА при напряжении 80 В. Эти значения должны периодически проверяться оперативным персоналом в соответствии с инструкцией по эксплуатации защиты.
    Оперативному персоналу следует помнить, что перед допуском к любого рода работам на соединительных проводах необходимо отключать с обеих сторон продольную дифференциальную защиту, устройство контроля соединительных проводов и пуск от защиты устройства резервирования при отказе выключателей УРОВ.
    После окончания работ на соединительных проводах следует проверить их исправность. Для этого включается устройство контроля на подстанции, где оно не имеет выпрямителя, при этом должен появиться сигнал неисправности. Затем устройство контроля включают на другой подстанции (на соединительные провода подают выпрямленное напряжение) и проверяют, нет ли сигнала о повреждении. Защиту и цепь пуска УРОВ от защиты вводят в работу при исправных соединительных проводах.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-5.html]

    Тематики

    Синонимы

    EN

    DE

    • Längsdifferentialschutz, m

    FR

    Русско-английский словарь нормативно-технической терминологии > продольная дифференциальная защита

  • 9 система управления взаимосвязями с клиентами и партнерами

    1. Customer Relationship Management
    2. CRM

     

    система управления взаимосвязями с клиентами и партнерами
    CRM - это стратегия компании касательно взаимодействия с клиентами во всех организационных аспектах - рекламе, продаже, доставке и обслуживании клиентов, дизайне и производстве новых продуктов, выставлении счетов и т.п. Это стратегия, основанная на:
    наличии единого хранилища информации и системы, в которые мгновенно помещаются и из которых немедленно доступны все сведения о всех случаях взаимодействия с клиентами;
    синхронизированости управления множественными каналами взаимодействия (т.е. существуют организационные процедуры, которые регламентируют использование этой системы и информации в каждом подразделении компании);
    постоянном анализе собранной информации о клиентах и принятии соответствующих организационных решений - например, приоритизации клиентов на основе их значимости для компании, выработке индивидуального подхода к клиентам в соответствии с их специфическими потребностями и запросами.

    CRM - концептуально новый подход к взаимодействию с клиентом. Как уже упоминалось выше, этот подход подразумевает, что при любом взаимодействии с клиентом по любому каналу, вашему сотруднику доступна полная информация обо всех взаимоотношениях с клиентами, и он принимает решение на ее основе, что в свою очередь тоже сохраняется и доступно при всех последующих взаимодействиях.
    Наиболее часто встречается классификация CRM-продуктов по трем ключевым направлениям:
    Оперативный CRM
    Приложения, дающие оперативный доступ к информации по конкретному клиенту в процессе взаимодействия с ним в рамках обычных бизнес-процессов - продажи, обслуживания и т.п. Требует хорошей интеграции систем, четкой организационной координации процесса взаимодействия с клиентом по всем каналам.
    На данный момент подавляющая часть CRM-систем относится в основном к классу Оперативных CRM.
    Аналитический CRM
    Синхронизация разрозненных массивов данных и поиск статистических закономерностей в этих данных для выработки наиболее эффективной стратегии маркетинга, продаж, обслуживания клиентов и т.п. Требует хорошей интеграции систем, большого объема наработанных статистических данных, хорошего аналитического инструментария.
    Менее популярный, чем Оперативный CRM, но все-таки достаточно "проработанный" аспект CRM стратегии. Тесно соприкасается с концепцией DM и поэтому поставщики систем в этих областях активно продвигают и репозиционируют свои системы как системы Аналитического CRM.
    Коллаборационный CRM
    Предоставление клиенту гораздо большего влияния в процессе дизайна, производства, доставки и обслуживания продукта. Требует технологий, которые с минимальными затратами дают возможность подключить клиента к сотрудничеству в рамках внутренних процессов компании. Примеры коллаборационного CRM:
    Сбор предложений клиентов при дизайне продукта
    Доступ клиентов к прототипам продукции и возможность обратной связи
    Реверсивное ценообразование - когда клиент описывает требования к продукту и определяет цену, которую он готов заплатить, а производитель реагирует на эти предложения
    Это наиболее "экзотический" аспект CRM, который требует радикальной перестройки внутренних организационных механизмов для своей реализации - но те немногие компании, которые реализуют его, уже достигли невиданных показателей успешности и возврата на инвестиции. Систем, поддерживающих коллаборационный CRM практически нет на рынке, в том числе потому, что коллаборационный процесс в большинстве случаев сугубо индивидуален и должен автоматизироваться за счет чрезвычайно гибкой CRM системы. Плюс, эта система должна быть основана на самых дешевых и открытых технологиях (Интернет) для снижения затрат на построение интерфейса между вашей организацией и вашими клиентами.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > система управления взаимосвязями с клиентами и партнерами

  • 10 инвертный агонист

    [лат. invertere — обращать; греч. agonistions — воинственный, способный к борьбе]
    вещество (лекарство), которое реагирует с таким же рецептором, что и агонист (см. агонист), однако дает противоположный эффект. И.а. называется также отрицательным антагонистом.

    Толковый биотехнологический словарь. Русско-английский. > инвертный агонист

  • 11 реагировать

    реагировать в большей степени на что-л., чем на … — react more to smth than to …

    Производство реагирует в большей степени на постоянный шок, чем на преходящий. — Production reacts more to a permanent shock than to a transitory shock.

    Если же перераспределение затронуло предложение рабочей силы (например, если существующие рабочие реагируют на повышение зарплаты увеличением предложения рабочей силы), то и в распределение вводится некоторое искажение. — If, however, the labor supply is affected by the redistribution (for instance, if the existing workers respond to a higher wage by increasing the labor supply), some distortion in allocation is also introduced.

    Russian-English Dictionary "Microeconomics" > реагировать

  • 12 указатель


    indicator
    (прибор, индикатор) — an instrument that makes information available, but does not store it.
    - (список, перечень) — index
    - автоматического радиокомпасаadf indicator
    - азимутаbearing indicator
    - бокового скольженияsideslip indicator
    -, бортовой — airborne indicator
    - вертикали (авиагоризонта)vertical gyro assembly
    - вертикальной скорости (рис. 59) — vertical speed indicator (vsi), rate-of-climb indicator
    - вибрации двигателяengine vibration indicator
    - воздушной скоростиairspeed indicator (asi)
    прибор для измерения в полете скорости самолета относительно воздуха (рис. 69). — an indicating instrument used in conjunction with an airspeed head (pitot tube) to indicate airspeed.
    - воздушной скорости и числа м, комбинированный — combined airspeed-mach indicater
    - воздушной скорости, комбинированный (кус) — combination airspeed indicator
    прибор имеет две шкалы. внешняя с ценой деления 10 км в диапазоне от 50 до 730 км и внутренняя с ценой деления 10 км в диапазоне от 400 до 1100 км. большая стрелка показывает приборную скорость по внешней шкале, малая - истинную (воздушную) скорость по внутренней шкале (рис. 69). — the large pointer of the combination airspeed indicator (asi) displays indicated airspeed (on the outer scale) and small pointer - true airspeed on the inner scale.
    - воздушной скорости с индикацией максимальной безопасной скоростиmaximum safe airspeed indicator
    - воздушной скорости с сервоприводом и цифровой индикациейservo-driven airspeed indicator with counter display
    - впп (прибора пкп) — runway symbol represents the runway center line.
    - впп и малой высоты (прибора пкп)runway symbol
    для индикации отклонения ла от осевой линии впп, при заходе на посадку. начинает двигаться с высоты 200 фт. — represents the runway center line. slaved to radio altimeter. starts to indicate at 200 ft.
    - выпущенного положения основной (передней) опоры шасси, механический (визуальный) — main (nose) landing gear visual downlock indicator
    указатель выступает из о6шивки крыла или носовой части фюзеляжа при фиксации соответствующей опоры шасси в выпущенном положении. — the indicator can be seen on top of each wing (or fuselage nose) when the gear is safely down and locked.
    - высотомераaltimeter (altm)
    - высотыaltimeter (altm)
    прибор, указывающий высоту полета ла над заданным уровнем отсчета (над уровнем моря или другой уровенной поверхностью) (рис. 69). — an instrument for measuring or indicating the elevation of an aircraft above a given datum line or point. its grаduations indicate units of height above sea level, or any reference line.
    - высоты (цифровой)altitude readout
    - высоты и перепада давлений (увпд), кабинный — (cabin) altitude and differential pressure indicator (cab alt & diff press)
    прибор для указания высоты в кабине (внешняя шкала) и перепада давлений (внутренняя шкала) (рис. 69). — an instrument for indicating the cabin pressure altitude (on outer scale) and differential pressure (on inner scale).
    -"высоты кабины" — cabin altitude indicator
    - гиромагнитного и радио курсов (курсовых углов радио станций) (угр)radio magnetic indicator (rmi)
    - горизонта — attitude /bank and pitch/ indicator
    - горизонта (прибора кпп, самолетик-крен, и шкала тангажа) — (fdi) attitude display
    - давленияpressure indicator
    - давления (воздуха, масла, топлива) — (air, oil, fuel) pressure indicator
    - дальномера (рис. 69) — dme (distance measuring equipment) indicator
    - дальностиdistance indicator

    distance information output is for feeding to a distance indicator.
    - дальности (счетчик)dme (readout) counter
    - дальности полета (пройденного пути)distance flown indicator
    - двухстрелочныйtwo-pointer indicator
    -, директорный (командный) v-образный (прибора пкп) — v-bar command indicator
    - дистанционного авиагоризонта (прибора кпп или пкп)flight director indicator (fdi)
    -, дистанционный — remote-reading indicator
    - (стрелка) заданной траектории (снижения)glide slope deviation pointer
    - (стрелка) заданных курсов (прибора пкп)course arrow
    - задатчика (приборной скорости) (узс)ias selector indicator
    - запаса кислорода — oxygen, quantity indicator
    - запаса топлива, суммирующий (топливомер) — total fuel quantity indicator, fuel totalizer
    - земной индикаторный скорости — calibrated airspeed indicator, cas indicator
    - избыточного давления в гермокабинеcabin overpressure indicator
    - измерителя крутящего момента (икм)torque meter
    - износа (тормозных дисков)wear indicator
    стержень указателя износа прикреплен к нажимному диску и выступает (в зависимости от износа) над поверхностью корпуса тормоза. — то give visual indication of brake wear а wear indicator rod is secured to the pressure disc and projects through the torque plate.
    - (-) индикатор доплеровской рлсdoppler indicator
    - интенсивности обледененияicing rate indicator
    - истекшего времениelapsed time indicator
    - комбинированныйcombination indicator
    -, комбинированный (вертикальной скорости, поворота и скольжения) — rate-of-climb, turn and slip indicator (turn & climb)
    -, комбинированный (курсовой системы, типа нпп) — flight compass
    - контроля вибрации, бортовой (дв.) — airborne vibration monitor indicator, avm indicator
    -, контрольный (при проверках) — reference indicator
    - кренаbank indicator
    пилотажный прибор, указывающий угол наклона самолета относительно продольной оси. — а flight instrument which indicates angular rotation of the airplane about the longitudinal axis.
    - (углов) крена (прибора пкп) (рис. 72) — bank pointer
    - крена (силуэт самолетик прибора кпп) — rotating miniature aircraft operates as a bank indicator.
    - крена, шариковый — ball-bank indicator
    - курса (общий термин)direction indicator
    указаталь курса может быть гироскопическим, магнитным или электрическим прибором. — direction indicator may be gyroscopically stabilized, magnetic or electric instrument.
    - курса (ук-1) для показаний углов отклонения от заданного курса. — (desired, selected) heading deviation indicator
    - курса (подвижный индекс курса прибора пнп) (рис. 73) — heading marker /bug/
    - курса и азимута (радиостанций) — bearing and heading indicator (bhi), radio magnetic indicator (rmi)
    - курса и пеленгов (радиостанций)bearing and heading indicator (bhi)
    - курса и пеленгов (радиостанций) со счетчиком дальности — bearing, distance and heading indicator (bdhi)
    - курса, магнитный — magnetic compass
    - курса следования — course /track/ indicator
    - крена и тангажа (укт, повторитель аг) — attitude indicator
    - (стрелка) курсовых углов (прибора пкп)relative bearing (rb) pointer
    - малых скоростей (вертолета, работающий от дисс) — low-speed indicator
    - манометра (масла)(oil) pressure indicator
    - мгновенного расхода топливa (умрт)fuel flow (rate) indicator (ffi)
    - механическийmechanical indicator
    - навигационных параметров (инерциальной навигационной системы) — pictorial deviation indicator (pdi) provides pictorial display of navigation information produced by ins.
    - наддува (пд) — manifold /boost/ pressure indicater
    - наработкиelapsed time indicator
    - наработки, пяти-цифровой — 5-digit elapsed time indicator
    -, наружный визуальный — exposed sight indicator
    - обжатия амортизатора (шасси)shock strut compression indicator
    - оборотов (рис. 69) — tachometer (indicator)
    - относительной скорости (усо)relative speed indicator
    - общего шага (несущего винта вертолета)(main rotor) collective pitch indicator
    - общей заправки топливом (топливомер) — total fuel quantity indicator, fuel totalizer
    - оставшегося времени (следования до заданного пункта маршрута)time-to-go indicator
    - оставшегося пути (до заданного пункта)distance-to-go indicator
    - остатка топливаfuel remaining indicator
    - отказа исполнительных механизмов прибора (пнп)servo failure indicator
    - отклонений, наглядный — pictorial deviation indicator (pdl)
    обеспечивает индикацию пу, зпу и зк относительно истинного направления на север,a также лбу и ус. — the indicator displays tk, dsrtk, hdg with respect to true north, and xtk and da.
    - отклонения (от заданного положения направления движения)deviation indicator
    - отклонения от заданной скорости (рис. 72) — speed pointer
    - отклонения от заданной траектории в вертикальной nлoскости (отклонения от равносигнальной зоны грм) (рис. 72) — glide slope pointer (to indicate deviation from glide slope beacon beam)
    - отклонения от заданной траектории в горизонтальной плоскости (отклонения от равносигнальной зоны крм) (рис. 72). — localizer pointer (to indicate deviation from localizer beam)
    - относительной барометрической высотыaltitude indicator
    - относительной высотыheight indicator
    -, отношения давлений (уод, указатель тяги двиг.) — engine pressure ratio (epr) indicator
    - перегрузокaccelerometer
    - перенаддува гермокабиныcabin overpressure indicator
    - перепада давленийdifferential pressure indicator (diff press ind)
    - поворотаturn indicator
    пилотажный прибор, измеряющий угловую скорость самолета относительно вертикальной оси (рис. 69). — turn indicator displays rate of turn of the aircraft about the vertical axis.
    - поворота и крена комбинированный прибор для индикации угловой скорости поворота и угла крена. — turn and bank indicator an instrument combining in one case а turn indicator and а lateral inclinometer.
    - поворота и скольжения — turn and slip indicator (turn & slip)
    - "поворота и скольжения командира" (надпись) — turn & slip, captain's
    - поворота переднего колесаnose landing gear steering indicator
    - поворота, электрический (эуп) (рис. 69) — electric turn indicator
    - (-) повторительslave indicator
    - положения (подвижных элементов)position indicator
    - положения верхней мертвой точки (поршня пд)top-center indicator
    - положения глиссадыglideslope pointer
    стрелка пилотажного командного прибора, показывающая положение самолета относительно луча глиссады (рис. 72). — the glideslope pointer represents the center of the glideslope beam, the center line of the glideslope scale represents aircraft position.
    - положения закрылковflap position indicator
    - положения клина воздухозаборникаair intake ramp position indicator
    - положения курса (рис. 72) — localizer pointer
    - положения механического замка створок реверсивногo устройства (двиг.) — thrust reverser door mechanical lock indicator
    - положения подвижных элементов самолетаposition indicator
    - положения рулей(control) surface position indicator (spi)
    - положения руля высоты (нуль-индикатора)elevator trim indicator
    - положения руля направления (нуль-индикатора)rudder trim indicator
    - положения рычага топлива (упрт)throttle position indicator
    - положения рычага управления двигателем (руд)throttle lever position indicator
    - положения самолета в боковом движении (прибора нкп)course deviation bar
    - положения самолета в npодольном движении (прибора нкп)glide slope deviation bar
    - положения сиденьяseat position indicator

    indicates longitudinal position of seat from zero to (7) inches.
    - положения (управляемого стабилизатора) (рис. 69) — horizontal stabilizer (trim) position indicator
    - положения тормозных щитковairbrake position indicator
    - положения шассиlanding gear position indicator
    - положения шасси, механический — mechanical landing gear position indicator
    стержень указателя выступаeт над обшивкой (фюзеляжа и крыла) при выпущенном положении шасси, и убирается заподлицо с обшивкой при полной уборке стойки шасси. — the mechanical l.g. position indicator rod projects through а socket in the skin when l.g. is extended and disappears when l.g. is fully retracted.
    - положения шасси с краснобелой маркировкойlanding gear position barber pole indicator

    the landing gear in transient is indicated by the barber pole.
    - положения элеронов (нульиндикатора)aileron trim indicator
    - потери мощности (даигателя)power loss indicator
    датчик указателя реагирует на резкое падение давления в реактивной трубе, что обычно сопровождает потерю тяги. — the power loss indicator sensor defects sudden drop in the jet pipe pressure which accompanies the engine power loss.
    - потребляемой (эпектрической) мощности (в квт)kw meter
    - предельной степени повышения давления в двигателеengine pressure ratio limit indicator (eprl indicator)
    - приборной скоростиias indicator
    - пройденного пути (ла)distance flown indicator
    - пройденного пути (в милях)air-mileage indicator
    -, профильный (вертикальный) — vertical-scale indicator
    -, профильный (с вертикальной ленточной шкалой) — vertical tape indicator
    - путевой скорости и расстояния до пункта назначенияground speed and distance-togo indicator
    - путевой скорости и сноса, (доплеровский) (рис. 82) — (doppler) ground speed and drift indicator
    - работы рулевых машин(ок) автопилота (нуль-индикатор) (рис. 69) — trim indicator
    показывает наличие воздействия рулевых агрегатов на поверхности управления. — display when servo force is being applied to а control surface.
    - радиодальномераdме indicator
    - радиомагнитный (рми)radio magnetic indicator (rmi)
    комбинированный прибор, показывающий направление на всенаправленный маяк. обеспечивает индикацию neленга, курса и курсового угла радиостанции. — а combined indicator which points toward the omnirange station, it combines omnibearing, heading, and relative bearing.
    - расхода воздуха (кислорода, топлива) — air (oxygen, fuel) flow indicator
    - расхода воздуха в кабине (урвк)cabin air flow indicator
    - расходомера топливаfuel flow indicator
    - (измеритель) режима (гтд) (рис. 69) — engine pressure ratio (epr) indicator
    - сближения с впп (прибора пкп)(rising) runway symbol
    связан с радиовысотомером. начинает двигаться с высоты 200 фт и касается условных основных шасси самолетика при касании впп колесами основного шасси самолета. — slaved to radio altimeter to provide rising runway display. starts to indicate at 200 ft and will touch the symbolic main gears of the aircraft symbol at touch down.
    - с вертикальной ленточной шкалойvertical tape indicator
    -. сдвоенный — dual indicator
    - с графическим отображением информацииpictorial display (indicator)
    в вычислительное устройство подаются сигналы путевой скорости и сноса от доплеровского измерителя путевой скорости и сноса, и сигналы курса от курсовой системы, выходные сигналы ву используются для графической и цифровой индикации. — the doppler computer асcepts inputs of velocity along and across aircraft axis from the doppler (equipment) and а heading input from the compass system, and drives а pictorial or digital display.
    - сельсина (электрический эус)synchro indicator
    - (-) сигнализаторcontacting indicator
    индикатор с контактным устройством, срабатывающим при достижении заданной величины. — in the contacting indicator the electrical contacts are made or broken at a predetermined value.
    - скольжения (рис. 72) — slip indicator
    - скольжения, шариковый — ball-slip indicator
    - скорости вибрации двигателяengine vibration indicator
    - скорости, воздушной — airspeed indicator
    - скорости, воздушной, приборной (усвп) — ias indicator
    - скорости изменения высоты в (гермо)кабинеcabin rate-of-climb indicator
    - скорости и числа м (комбинированный)airspeed and mach-number indicator
    - (приборной) скорости с индексом заданных значений — airspeed indicator with speed marker /bug/
    - слепой посадки (с курсовой и глиссадной стрелками) — ils cross-pointer indicator, zero-reader flight director indiсator
    - с непосредственным отсчетомdirect-reading indicator
    - сноса прибор для указания угла сноса ла. — drift indicator the instrument used to measure angle of drift.
    - согласования гпк и ид гироиндукционного компаса в режиме магнитной коррекции — alignment sync indicator indicates synchronized condition of directional gyro and flux gate when operating in mag mode.
    - с перекрещивающимися (командными) стрелками курса и глиссады — ils cross-pointer indicator, zero-reader flighf director indicator

    the cross-pointer indicator contains a loc and g/s pointers.
    - степени повышения давления (двиг.) — engine pressure ratio indicator, epr indicator

    the epr indicator represents the engine thrust.
    - с тросовой передачей, механический — cable-operated indicator
    - суммарного запаса топлива (топливомера) — total fuel quantity indicator, fuel totalizer

    (total fuel qty)
    - суммарного расхода топлива — total fuel consumed indicator, fuel flow totalizing indicator
    - суммарного расхода (остатка) топливаfuel remaining indicator
    -, суммирующий — totalizing indicator, totalizer
    - с цифровым отображением информацииdigital display indicator
    - тангажа (подвижный индекс прибора пп-1)pitch trim bug
    - тахометра (рис. 69) — tachometer (indicator)

    lp rpm is displayed on a tachometer indicator for each engine.
    - текущего курса (неподвижный индекс курса) (рис. 73) — heading lubber line
    - текущего расхода и запаса топливаfuel flow and quantity indicator
    - термометра (воздуха, масла) — (air, oil) temperature indicator
    - температурыtemparature indicator
    - температуры газов за турбиной — exhaust /turbine/ gas temperature indicator, egt/tgt/indicator
    - температуры маслаoil temperature indicator
    - температуры набегающего потока (с учетом нагрева от сжимаемости воздуха) — ram air temperature (rat) indicator (with correction for air heating by compressibility effects)
    - температура наружного воздуха — outside /free/ air temperature indicator (o.a.t. ind)
    -, технологический (контрольный, применяемый при проверках) — reference indicator
    - топливомераfuel quantity indicator
    прибор, указывающий членам экипажа количество расходуемого топлива в каждом баке. "- топливомера" (надпись у прибора) — an instrument to indicate to the flight crew-members, the quantity of usable fuel in each tank during flight. fuel qty
    - топливорасходомераfuel flow indicator
    -, трехстрелочный (моторн. индикатор) — 3-pointer engine gage unit
    - тяги (гтд)thrust indicator
    - тяги (указатель отношения давлений, уод) — engine pressure ratio (epr) indicator
    отношение давлений на выходе и входе двигателя (степень повышения давл. двиг.) пропорционально тяге двигателя, и используется для индикации и контроля режимов работы двигателя (рис. 69). — the epr indication is proportional to thrust and is the instrument used to set up any desired thrust condition.
    - угла атакиangle-of-attack indicator (ang-of-attk ind)
    - угла атаки с датчиком флюгерного типаvane-driven angle-of-attack indicator
    - углов атаки н перегрузок (рис. 69) — angle-of-attack and acceleration indicator
    - углов крена (рис. 72) — bank pointer
    - углов сноса (рис. 73) — drift pointer
    - угр (указатель гиромагнитного и радио курсов)radio magnetic indicator (rmi)
    - уровня — level gauge /gage/
    - уровня (мерное стекло) — sight gauge /gage/
    - уровня (количества) жидкости — fluid level indicator the fluid level indicator is mounted on the hydraulic panel.
    - ускоренийaccelerometer
    -, цифровой (в каталоге) — numerical index
    - частоты вращения (тахометр)tachometer (indicator)
    - частоты вращения роторов двигателейengine rotor tachometer (indicator)
    - числа мmachmeter
    прибор, измеряющий отношение воздушной скорости полета самолета к скорости звука на данной высоте (рис. 69). — а special airspeed indicator that measures speed relative to the speed of sound.
    - числа м с электрической сигнализациейcontacting machmeter
    прибор с сигнализатором (контактным устройством), срабатывающим при достижении заданной скорости по числу м. — an instrument in which electrical contacts are made or broken at a predetermined mach-number.
    - числа оборотовtachometer (indicator)
    - штурмана для показаний магнитного или истинного курса самолета, пеленгов двух радиостанций, их кур и выдачи сигналов курса потребителям. — bearing and heading indicator (bhi)
    - штурмана (уш) (рис. 69) для индикации путевого углa н курса самолета. — course/heading indicator, tk/hdg indicator

    Русско-английский сборник авиационно-технических терминов > указатель

  • 13 одновибратор

    1. univibrator
    2. trigger circuit
    3. start-stop multivibrator
    4. single-trip trigger circuit
    5. single-trip trigger
    6. single-trip multivibrator
    7. single-shot trigger circuit
    8. single-shot trigger
    9. single-shot multivibrator
    10. single-shot flip-flop
    11. single vibrator
    12. single flip-flop oscillator
    13. one-shot multivibrator
    14. one-shot generator
    15. one-shot
    16. one-cycle multivibrator
    17. monovibrator
    18. monostable trigger circuit
    19. monostable multivibrator
    20. monostable flip-flop
    21. monostable circuit
    22. monostable
    23. monoflop
    24. mono
    25. latching circuit
    26. kipp relay
    27. kipp oscillator
    28. gated multivibrator
    29. gate multivibrator
    30. delay multivibrator
    31. biased multivibrator

     

    моностабильный элемент
    одновибратор

    -
    [ГОСТ 2.743-91]

    Одновибраторы -"ждущие мультивибраторы" представляют собой микросхемы, которые в ответ на входной сигнал (логический уровень или фронт) формируют выходной импульс заданной длительности.
    Длительность определяется внешними времязадающими резисторами и конденсаторами.
    То есть можно считать, что у одновибраторов есть внутренняя память, но эта память хранит информацию о входном сигнале строго заданное время, а потом информация исчезает.

    В стандартные серии микросхем входят одновибраторы двух основных типов:
    - одновибраторы без перезапуска;
    - одновибраторы с перезапуском

    Одновибратор без перезапуска не реагирует на входной сигнал до окончания своего выходного импульса.
    Одновибратор с перезапуском начинает отсчет нового времени выдержки Т с каждым новым входным сигналом независимо от того, закончилось ли предыдущее время выдержки.
    В случае, когда период следования входных сигналов меньше времени выдержки Т, выходной импульс одновибратора сперезапуском не прерывается.
    Если период следования входных запускающих импульсов больше времени выдержки одновибратора Т, то оба типа одновибраторов работают одинаково.

    5451
    Одновибратор без перезапуска
     

    5452

    Одновибратор с перезапуском

    [Ю.В. Новиков. Введение в цифровую схемотехнику]


    Параллельные тексты EN-RU

    5409

    Monostable flip-flop
    The output variable will be 1 only if the input variable changes to 1.
    The output variable will remain 1 for 100 ms, regardless of the duration of the input value 1 (non-retriggerable).
    Without a 1 in the function block, the monostable flip-flop is retriggerable.
    The time is 100 ms in this example, but it may be changed to any other duration.

    [Schneider Electric]

    Одновибратор
    Значение переменной на выходе равно 1, если входная переменная становится равной 1.
    Выходная переменная сохраняет значение 1 в течение 100 мс независимо от времени, в течение которого входная переменная продолжает оставаться равной 1 (без выполнения повторного запуска элемента).
    Если в обозначении функции элемента не стоит "1", то это одновибратор с перезапуском.
    В данном примере время выходного импульса составляет 100 мс, но его можно изменить на любое другое.

    [Перевод Интент]

    Тематики

    • Булева алгебра, элементы цифровой техники

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > одновибратор

  • 14 транспептидация

    1. transpeptidation

     

    транспептидация
    Одна из стадий элонгационного цикла рибосомы во время синтеза белка; в процессе Т. аминоацил-тРНК в А-участке рибосомы реагирует с пептидил-тРНК в Р-участке, что сопровождается переносом С-конца полипептида на аминоацил-тРНК; в результате остаток тРНК пептидил-тРНК занимает А-участок, а образовавшаяся тРНК - Р-участок.
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > транспептидация

См. также в других словарях:

  • ЧТО — (1) ЧТО (1) [што] чего, чему, что, чем, о чём, местоим. 1. вопросительное. Какой предмет (вещь), какое явление? Что это такое? Чего вы ждете? Что с вами? Чем ты недоволен? Что из того (следует)? «Что нового покажет мне Москва?» Грибоедов. «Что… …   Толковый словарь Ушакова

  • ЧТО — (1) ЧТО (1) [што] чего, чему, что, чем, о чём, местоим. 1. вопросительное. Какой предмет (вещь), какое явление? Что это такое? Чего вы ждете? Что с вами? Чем ты недоволен? Что из того (следует)? «Что нового покажет мне Москва?» Грибоедов. «Что… …   Толковый словарь Ушакова

  • Что — (1) ЧТО (1) [што] чего, чему, что, чем, о чём, местоим. 1. вопросительное. Какой предмет (вещь), какое явление? Что это такое? Чего вы ждете? Что с вами? Чем ты недоволен? Что из того (следует)? «Что нового покажет мне Москва?» Грибоедов. «Что… …   Толковый словарь Ушакова

  • что —   Вот что (разг.)    1) следующее, вот это.     Вы сделайте вот что: квартальный Пуговицын... пусть стоит для благоустройства, на мосту. оголь.    2) употребляется для подчеркивания последующей или предшествующей речи, в знач.: слушайте или… …   Фразеологический словарь русского языка

  • ХАРАКТЕР — – совокупность устойчивых черт, особенностей, свойств и наклонностей человека, определяющая типичные способы его мышления и поведения.    В психоанализе характер человека рассматривается чаще всего с точки зрения периодов и фаз психосексуального… …   Энциклопедический словарь по психологии и педагогике

  • Внешние пределы: Потрошитель (фильм) — Потрошитель The Outer Limits: Ripper Жанр фантастика Режиссёр Марио Аццопарди Продюсер Брент Карл Клаксон Автор сценария Крис Руппенталь В главных ролях …   Википедия

  • СЕРДЦЕ — СЕРДЦЕ. Содержание: I. Сравнительная анатомия........... 162 II. Анатомия и гистология........... 167 III. Сравнительная физиология.......... 183 IV. Физиология................... 188 V. Патофизиология................ 207 VІ. Физиология, пат.… …   Большая медицинская энциклопедия

  • Угленатровая соль* — или сода, Na2CO3, содержит 58,49% Na 2O и 41,51% CO 2. Она представляет белого цвета и неприятного щелочного (мыльного) вкуса порошковатое вещество уд. в. 2,4 (при 20°), плавится при темп. от 810° до 1098° (по различным данным) и при более… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Угленатровая соль — или сода, Na2CO3, содержит 58,49% Na2O и 41,51% CO2. Она представляет белого цвета и неприятного щелочного (мыльного) вкуса порошковатое вещество уд. в. 2,4 (при 20°), плавится при темп. от 810° до 1098° (по различным данным) и при более сильном… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Потрошитель (За гранью возможного) — У этого термина существуют и другие значения, см. Потрошитель. Потрошитель The Outer Limits: Ripper …   Википедия

  • УРЕТРИТ — УРЕТРИТ, urethritis (от лат. urethra), воспаление слизистой оболочки мочеиспускательного канала, сопровождающееся выделениями из него, зудом, жжением или болью при мочеиспускании. Различают передний У. (urethritis anterior) при воспалении… …   Большая медицинская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»