Перевод: с русского на английский

с английского на русский

наименьшее+значение

  • 21 максимальное (минимальное) напряжение анода тиратрона

    1. thyratron anode maximum (minimum) voltage

     

    максимальное (минимальное) напряжение анода тиратрона
    Наибольшее (наименьшее) значение положительного напряжения анода тиратрона, при котором сетка может управлять моментом возникновения разряда в основном разрядном промежутке.
    [ ГОСТ 20724-83

    Тематики

    EN

    23. Максимальное (минимальное) напряжение анода тиратрона

    Thyratron anode maximum (minimum) voltage

    Наибольшее (наименьшее) значение положительного напряжения анода тиратрона, при котором сетка может управлять моментом возникновения разряда в основном разрядном промежутке

    Источник: ГОСТ 20724-83: Приборы газоразрядные. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > максимальное (минимальное) напряжение анода тиратрона

  • 22 максимальное (минимальное) напряжение анода управляемого разрядника

    1. triggered spark gap anode maximum (minimum) voltage

     

    максимальное (минимальное) напряжение анода управляемого разрядника
    Наибольшее (наименьшее) значение напряжения анода управляемого разрядника, при котором управляющий электрод может управлять моментом возникновения разряда в основном разрядном промежутке.
    [ ГОСТ 20724-83

    Тематики

    EN

    32. Максимальное (минимальное) напряжение анода управляемого разрядника

    Triggered spark gap anode maximum (minimum) voltage

    Наибольшее (наименьшее) значение напряжения анода управляемого разрядника, при котором управляющий электрод может управлять моментом возникновения разряда в основном разрядном промежутке

    Источник: ГОСТ 20724-83: Приборы газоразрядные. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > максимальное (минимальное) напряжение анода управляемого разрядника

  • 23 напряжение возникновения разряда газоразрядного прибора

    1. ignition voltage

     

    напряжение возникновения разряда газоразрядного прибора
    Ндп. напряжение зажигания
    Наименьшее значение напряжения между электродами газоразрядного прибора, при котором возникает разряд данного вида.
    [ ГОСТ 20724-83

    Недопустимые, нерекомендуемые

    Тематики

    EN

    15. Напряжение возникновения разряда газоразрядного прибора

    Ндп. Напряжение зажигания

    Ignition voltage

    Наименьшее значение напряжения между электродами газоразрядного прибора, при котором возникает разряд данного вида

    Источник: ГОСТ 20724-83: Приборы газоразрядные. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > напряжение возникновения разряда газоразрядного прибора

  • 24 отпирающее напряжение тиристора

    1. trigger voltage

     

    отпирающее напряжение тиристора
    Наименьшее значение напряжения в закрытом состоянии тиристора, которое обеспечивает переключение тиристора из закрытого состояния в открытое.
    Обозначение
    Uот
    [ ГОСТ 20332-84

    Тематики

    EN

    FR

    9. Отпирающее напряжение тиристора

    E. Trigger voltage

    F. Tension d’amorcage

    Uот

    Наименьшее значение напряжения в закрытом состоянии тиристора, которое обеспечивает переключение тиристора из закрытого состояния в открытое

    Источник: ГОСТ 20332-84: Тиристоры. Термины, определения и буквенные обозначения параметров оригинал документа

    Русско-английский словарь нормативно-технической терминологии > отпирающее напряжение тиристора

  • 25 отпирающее напряжение управляющей сетки тиратрона

    1. thyratron control grid trigger voltage

     

    отпирающее напряжение управляющей сетки тиратрона
    Наименьшее значение напряжения управляющей сетки тиратрона, необходимое для возникновения разряда в основном разрядном промежутке при заданных напряжениях других электродов.
    [ ГОСТ 20724-83

    Тематики

    EN

    24. Отпирающее напряжение управляющей сетки тиратрона

    Thyratron control grid trigger voltage

    Наименьшее значение напряжения управляющей сетки тиратрона, необходимое для возникновения разряда в основном разрядном промежутке при заданных напряжениях других электродов

    Источник: ГОСТ 20724-83: Приборы газоразрядные. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > отпирающее напряжение управляющей сетки тиратрона

  • 26 пороговый входной ток высокого уровня оптоэлектронного переключателя

    1. high-level threshold input current

     

    пороговый входной ток высокого уровня оптоэлектронного переключателя
    пороговый входной ток высокого уровня

    I1пор
    IH(TO)
    Наименьшее значение входного тока высокого уровня оптоэлектронного переключателя, при котором происходит переход из одного устойчивого состояния в другое.
    [ ГОСТ 27299-87]

    Тематики

    Обобщающие термины

    • параметры оптопар, оптоэлектронных коммутаторов и оптоэлектронных переключателей

    Синонимы

    EN

    77. Пороговый входной ток высокого уровня оптоэлектронного переключателя

    Пороговый входной ток высокого уровня

    High-level threshold input current

    I1пор

    Наименьшее значение входного тока высокого уровня оптоэлектронного переключателя, при котором происходит переход из одного устойчивого состояния в другое

    Источник: ГОСТ 27299-87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров оригинал документа

    Русско-английский словарь нормативно-технической терминологии > пороговый входной ток высокого уровня оптоэлектронного переключателя

  • 27 пусковой ток сетки тиратрона

    1. thyratron anode starting current

     

    пусковой ток сетки тиратрона
    Наименьшее значение тока управляющей сетки тиратрона, при котором возникает разряд в основном разрядном промежутке при заданных напряжениях на других электродах.
    [ ГОСТ 20724-83

    Тематики

    EN

    27. Пусковой ток сетки тиратрона

    Thyratron anode starting current

    Наименьшее значение тока управляющей сетки тиратрона, при котором возникает разряд в основном разрядном промежутке при заданных напряжениях на других электродах

    Источник: ГОСТ 20724-83: Приборы газоразрядные. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > пусковой ток сетки тиратрона

  • 28 ток удержания тиристорной оптопары

    1. holding current

     

    ток удержания тиристорной оптопары
    ток удержания

    Iуд
    Наименьшее значение тока, протекающего в выходной цепи тиристорной оптопары, необходимого для поддержания фотоприемного элемента в открытом состоянии при входном токе, равном нулю.
    [ ГОСТ 27299-87]

    Тематики

    Обобщающие термины

    • параметры оптопар, оптоэлектронных коммутаторов и оптоэлектронных переключателей

    Синонимы

    EN

    58. Ток удержания тиристорной оптопары

    Ток удержания

    Holding current

    Iуд

    Наименьшее значение тока, протекающего в выходной цепи тиристорной оптопары, необходимого для поддержания фотоприемного элемента в открытом состоянии при входном токе, равном нулю

    Источник: ГОСТ 27299-87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров оригинал документа

    Русско-английский словарь нормативно-технической терминологии > ток удержания тиристорной оптопары

  • 29 критический коэффициент демпфирования

    1. critical damping

    3.2 критический коэффициент демпфирования (critical damping): Наименьшее значение коэффициента демпфирования, при котором система, выведенная из состояния равновесия, возвращается в свое исходное положение за кратчайшее время без переколебаний.

    Источник: ГОСТ 31418-2010: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на удар с воспроизведением ударного спектра оригинал документа

    3.2 критический коэффициент демпфирования (critical damping): Наименьшее значение коэффициента демпфирования, при котором система, выведенная из состояния равновесия, возвращается в свое исходное положение за кратчайшее время без переколебаний.

    Источник: ГОСТ Р 53190-2008: Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на удар с воспроизведением ударного спектра оригинал документа

    Русско-английский словарь нормативно-технической терминологии > критический коэффициент демпфирования

  • 30 свинцово-кислотная аккумуляторная батарея

    1. lead acid battery

     

    свинцово-кислотная аккумуляторная батарея
    Аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]


    Свинцово-кислотные аккумуляторы для стационарного оборудования связи

    О. Чекстер, И. Джосан

    Источник: http://www.solarhome.ru/biblio/accu/chekster.htm

    При организации электропитания аппаратуры связи широкое применение находят аккумуляторные установки: их применяют для обеспечения бесперебойности и надлежащего качества электропитания оборудования связи, в том числе при перерывах внешнего электроснабжения, а также для обеспечения запуска и работы автоматики собственных электростанций и электроагрегатов. В подавляющем большинстве аккумуляторных установок используются стационарные свинцово-кислотные элементы и моноблоки.

    Свинцово-кислотные аккумуляторы: за и против

    Преимущественное применение свинцово-кислотных аккумуляторов объясняется целым рядом их достоинств.

    1. Во-первых, диапазон емкостей аккумуляторов находится в пределах от единиц ампер-часов до десятков килоампер-часов, что позволяет обеспечивать комплектацию батарей любого необходимого резерва.
    2. Во-вторых, соотношение между конечными зарядным и разрядным напряжениями при зарядах и разрядах свинцово-кислотных аккумуляторов имеет наименьшее значение из всех электрохимических систем источников тока, что позволяет обеспечивать низкий перепад напряжения на нагрузке во всех режимах работы электропитающей установки.
    3. В-третьих, свинцово-кислотные аккумуляторы отличаются низкой величиной саморазряда и возможностью сохранения заряда (емкости) при длительном подзаряде.
    4. В-четвертых, свинцово-кислотные аккумуляторы обладают сравнительно низким внутренним сопротивлением, что обуславливает достаточную стабильность напряжения питания при динамических изменениях сопротивления нагрузки.

    Вместе с тем свинцово-кислотным аккумуляторам присущи недостатки, ограничивающие сферу их применения и усложняющие организацию их эксплуатации.

    Из-за низкой удельной плотности запасаемой энергии свинцово-кислотные аккумуляторы имеют достаточно большие массогабаритные параметры. Однако для стационарного применения этот показатель не имеет главенствующего значения в отличие от применения аккумуляторов для питания мобильных устройств.

    Поскольку в установках свинцово-кислотных аккумуляторов происходит газообразование, для обеспечения взрывобезопасности должна быть налажена естественная или принудительная вентиляция - в зависимости от условий применения и типа аккумуляторов. По этой же причине аккумуляторные установки нельзя размещать в герметичных шкафах, отсеках и т.д.

    Разряженные свинцово-кислотные аккумуляторы требуют немедленного заряда. В противном случае переход мелкокристаллического сульфата свинца на поверхности электродов в крупнокристаллическую фазу может привести к безвозвратной потере емкости аккумуляторов. В связи с этим при длительном хранении такие аккумуляторы (кроме сухозаряженных) необходимо периодически дозаряжать.

    Типы аккумуляторов

    По исполнению

    Согласно классификации МЭК (стандарт МЭК 50 (486)-1991) свинцово-кислотные аккумуляторы выпускаются в открытом и закрытом исполнении.

    Открытые аккумуляторы - это аккумуляторы, имеющие крышку с отверстием, через которое могут удаляться газообразные продукты, заливаться электролит, производиться замер плотности электролита. Отверстия могут быть снабжены системой вентиляции.

    Закрытые аккумуляторы - это аккумуляторы, закрытые в обычных условиях работы, но снабженные устройствами, позволяющими выделяться газу, когда внутреннее давление превышает установленное значение. Дополнительная доливка воды в такие аккумуляторы невозможна. Эти аккумуляторы остаются закрытыми, имеют низкое газообразование при соблюдении условий эксплуатации, указанных изготовителем, и предназначены для работы в исходном герметизированном состоянии на протяжении всего срока службы. Их еще называют аккумуляторами с регулируемым клапаном, герметизированными или безуходными.

    В свинцово-кислотных аккумуляторах во всех режимах их работы, в том числе и при разомкнутой цепи нагрузки (холостой ход), происходит сульфатация поверхности электродов и газообразование с расходом на эти реакции воды, входящей в состав электролита. Это вынуждает при эксплуатации обычных открытых аккумуляторов производить периодический контроль уровня и плотности электролита, доливку дистиллированной воды с проведением уравнительных зарядов, что является довольно трудоемким процессом.

    В герметизированных аккумуляторах за счет применения материалов с пониженным содержанием примесей, иммобилизации электролита и других конструктивных особенностей интенсивность сульфатации и газообразования существенно снижена, что позволяет размещать такие аккумуляторы вместе с питаемым оборудованием.

    По конструкции электродов

    Область применения и особенности эксплуатации свинцово-кислотных аккумуляторов определяются их конструкцией. По типу конструкции положительных электродов (пластин) различают следующие типы аккумуляторов:

    • с электродами большой поверхности (по классификации немецкого стандарта DIN VDE 510 - GroE);
    • с панцирными (трубчатыми) положительными электродами (по классификации DIN - OPzS и OPzV);
    • с намазными и стержневыми положительными электродами (по классификации DIN - Ogi).

    Герметизированные аккумуляторы, как правило, имеют намазные положительные и отрицательные электроды (за исключением аккумуляторов OPzV).

    Критерии выбора

    При выборе типа стационарного свинцово-кислотного аккумулятора, наиболее пригодного для конкретной области применения, необходимо руководствоваться следующими критериями:

    • режим разряда и отдаваемая при этом емкость;
    • особенности размещения;
    • особенности эксплуатации;
    • срок службы;
    • стоимость.

    Режим разряда

    При выборе аккумуляторов для определенного режима разряда следует учитывать, что при коротких режимах разряда коэффициент отдачи аккумуляторов по емкости меньше единицы. При одинаковой емкости отдача элементов с электродами большой поверхности выше в два раза, чем для элементов с панцирными электродами, и в полтора раза - чем для элементов с намазными электродами.

    Стоимость

    Стоимость аккумулятора зависит от его типа: как правило, аккумуляторы с электродами большой поверхности дороже панцирных, а намазные - дешевле и тех и других. Герметизированные аккумуляторы стоят больше, чем открытые.

    Срок службы

    Самыми долговечными при соблюдении правил эксплуатации являются аккумуляторы с электродами большой поверхности, для которых срок службы составляет 20 и более лет. Второе место по сроку службы занимают аккумуляторы с панцирными электродами - примерно 16-18 лет. Срок службы аккумуляторов с намазными электродами достигает 10-12 лет. Примерно такие же сроки эксплуатации имеют герметизированные аккумуляторы.

    Однако ряд производителей выпускает герметизированные аккумуляторы и с меньшим сроком службы, но более дешевые. По классификации европейского объединения производителей аккумуляторов EUROBAT эти герметизированные аккумуляторы подразделяются на 4 класса по характеристикам и сроку службы:

    • более 12 лет;
    • 10-12 лет;
    • 6-9 лет;
    • 3-5 лет.

    Аккумуляторы с короткими сроками службы, как правило, дешевле остальных и предназначены в основном для использования в качестве резервных источников тока в установках бесперебойного питания переменным током (UPS) и на временных объектах связи.

    Следует учитывать, что указанные выше значения срока службы соответствуют средней температуре эксплуатации 20 °С. При увеличении температуры эксплуатации на каждые 10 °С за счет увеличения скорости электрохимических процессов в аккумуляторах их срок службы будет сокращаться в 2 раза.

    Размещение

    По величине занимаемой площади при эксплуатации преимущество имеют герметизированные аккумуляторы. За ними в порядке возрастания занимаемой площади следуют аккумуляторы открытых типов с намазными электродами, панцирными электродами и с электродами большой поверхности.

    Размещать герметизированные аккумуляторы при эксплуатации, как правило, допускается и в вертикальном, и в горизонтальном положении - это позволяет более экономно использовать площадь под размещение электрооборудования. При горизонтальном размещении герметизированных аккумуляторов, если нет других предписаний производителя, аккумуляторы устанавливаются таким образом, чтобы пакеты электродных пластин занимали вертикальное положение.

    Эксплуатация

    Минимальных трудовых затрат при эксплуатации требуют герметизированные аккумуляторы. Остальные типы аккумуляторов требуют больших трудозатрат обслуживающего персонала, особенно те устройства, у которых величина примеси сурьмы в положительных решетках превышает 3%.

    Качество сборки, а также укупорка соединения крышки с транспортировочной пробкой (для аккумуляторов открытых типов) или предохранительным клапаном (для герметизированных аккумуляторов) должны обеспечивать герметизацию аккумуляторов при избыточном или пониженном на 20 кПа (150 мм рт. ст.) атмосферном давлении и исключать попадание внутрь атмосферного кислорода и влаги, способных ускорять сульфатацию электродов и коррозию токосборов и борнов у сухозаряженных аккумуляторов при хранении, а также исключать выход изнутри кислоты и аэрозолей при их эксплуатации. Для герметизированных аккумуляторов, кроме того, качество укупорки должно обеспечивать нормальные условия рекомбинации кислорода и ограничивать выход газа при заданных изготовителем эксплуатационных режимах работы.

    Электрические характеристики

    Емкость

    Основным параметром, характеризующим качество аккумулятора при заданных массогабаритных показателях, является его электрическая емкость, определяемая по числу ампер-часов электричества, получаемого при разряде аккумулятора определенным током до заданного конечного напряжения.

    По классификации ГОСТ Р МЭК 896-1-95, номинальная емкость стационарного аккумулятора10) определяется по времени его разряда током десятичасового режима разряда до конечного напряжения 1,8 В/эл. при средней температуре электролита при разряде 20 °С. Если средняя температура электролита при разряде отличается от 20 °С, полученное значение фактической емкости (Сф) приводят к температуре 20 °С, используя формулу:

    С = Сф / [1 + z(t - 20)]

    где z - температурный коэффициент емкости, равный 0,006 °С-1 (для режимов разряда более часа) и 0,01 °С-1 (для режимов разряда, равных одному часу и менее); t - фактическое значение средней температуры электролита при разряде, °С.

    Емкость аккумуляторов при более коротких режимах разряда меньше номинальной и при температуре электролита (20 ± 5) °С для аккумуляторов с разными типами электродов должна быть не менее указанных в таблице значений (с учетом обеспечения приемлемых пределов изменения напряжения на аппаратуре связи).

    Как правило, при вводе в эксплуатацию аккумуляторов с малым сроком хранения на первом цикле разряда батарея должна отдавать не менее 95% емкости, указанной в таблице для 10-, 5-, 3- и 1-часового режимов разряда, а на 5-10-м цикле разряда (в зависимости от предписания изготовителя) -не менее 100% емкости, указанной в таблице для 10-, 5-, 3-, 1- и 0,5-часового режимов разряда.

    При выборе аккумуляторов следует обращать внимание на то, при каких условиях задается изготовителем значение номинальной емкости. Если значение емкости задается при более высокой температуре, то для сравнения данного типа аккумулятора с другими необходимо предварительно пересчитать емкость на температуру 20 °С. Если значение емкости задается при более низком конечном напряжении разряда, необходимо пересчитать емкость по данным разряда аккумуляторов постоянным током, приводимую в эксплуатационной документации или рекламных данных производителя для данного режима разряда, до конечного напряжения, указанного в таблице.

    Кроме того, при оценке аккумулятора следует учитывать исходное значение плотности электролита, при которой задается емкость: если исходная плотность повышена, то весьма вероятно, что срок службы аккумулятора сократится.

    Пригодность к буферной работе

    Другим параметром, характеризующим стационарные свинцово-кислотные аккумуляторы, является их пригодность к буферной работе. Это означает, что предварительно заряженная батарея, подключенная параллельно с нагрузкой к выпрямительным устройствам, должна сохранять свою емкость при указанном изготовителем напряжении подзаряда и заданной его нестабильности. Обычно напряжение подзаряда Uпз указывается для каждого типа аккумулятора и находится в пределах 2,18-2,27 В/эл. (при 20 °С). При эксплуатации с другими климатическими условиями следует учитывать температурный коэффициент изменения напряжения подзаряда.

    Нестабильность подзарядного напряжения для основных типов аккумуляторов не должна превышать 1%, что накладывает определенные требования на выбор выпрямительных устройств при проектировании электропитающих установок связи.

    При буферной работе для достижения приемлемого срока службы свинцово-кислотных аккумуляторов необходимо не превышать допустимый ток их заряда, который задается различными производителями в пределах 0,1-0,3 С10. При этом следует помнить, что ток заряда аккумуляторов с напряжением, превосходящим 2,4 В/эл., не должен превышать величину 0,05 С10.

    Разброс напряжения элементов

    Важным параметром, определяемым технологией изготовления аккумуляторов, является разброс напряжения отдельных элементов в составе батареи при заряде, подзаряде и разряде. Для открытых типов аккумуляторов этот параметр задается изготовителем, как правило, в пределах ± 2% от среднего значения. При коротких режимах разряда (1-часовом и менее) разброс напряжений не должен превышать +5%. Обычно для аккумуляторов с содержанием более 2% сурьмы в основе положительных электродов разброс напряжений отдельных элементов в батарее значительно ниже вышеуказанного и не приводит к осложнениям в процессе эксплуатации аккумуляторных установок.

    Для аккумуляторов с меньшим содержанием сурьмы в основе положительных электродов или с безсурьмянистыми сплавами указанный разброс напряжения элементов значительно больше и в первый год после ввода в действие может составлять +10% от среднего значения с последующим снижением в процессе эксплуатации.

    Отсутствие тенденции к снижению величины разброса напряжения в течение первого года после ввода в действие или увеличение разброса напряжения при последующей эксплуатации свидетельствует о дефектах устройства или о нарушении условий эксплуатации.

    Особенно опасно длительное превышение напряжения на отдельных элементах в составе батареи, превышающее 2,4 В/эл., поскольку это может привести к повышенному расходу воды в отдельных элементах при заряде или подзаряде батареи и к сокращению срока ее службы или повышению трудоемкости обслуживания (для аккумуляторов открытых типов это означает более частые доливки воды). Кроме того, значительный разброс напряжения элементов в батарее может привести к потере ее емкости вследствие чрезмерно глубокого разряда отдельных элементов при разряде батареи.

    Саморазряд

    Качество технологии изготовления аккумуляторов оценивается также и по такой характеристике, как саморазряд.

    Саморазряд (по определению ГОСТ Р МЭК 896-1-95 - сохранность заряда) определяется как процентная доля потери емкости бездействующим аккумулятором (при разомкнутой внешней цепи) при хранении в течение заданного промежутка времени при температуре 20 °С. Этот параметр определяет продолжительность хранения батареи в промежутках между очередными зарядами, а также величину подзарядного тока заряженной батареи.

    Величина саморазряда в значительной степени зависит от температуры электролита, поэтому для уменьшения подзарядного тока батареи в буферном режиме ее работы или для увеличения времени хранения батареи в бездействии целесообразно выбирать помещения с пониженной средней температурой.

    Обычно среднесуточный саморазряд открытых типов аккумуляторов при 90-суточном хранении при температуре 20 ° С не должен превышать 1% номинальной емкости, с ростом температуры на 10 °С это значение удваивается. Среднесуточный саморазряд герметизированных аккумуляторов при тех же условиях хранения, как правило, не должен превышать 0,1% номинальной емкости.

    Внутреннее сопротивление и ток короткого замыкания

    Для расчета цепей автоматики и защиты аккумуляторных батарей ГОСТ Р МЭК 896-1-95 регламентирует такие характеристики аккумуляторов как их внутреннее сопротивление и ток короткого замыкания. Эти параметры определяются расчетным путем по установившимся значениям напряжения при разряде батарей токами достаточно большой величины (обычно равными 4 С10 и 20 С10) и должны приводиться в технической документации производителя. По этим данным может быть рассчитан такой выходной динамический параметр электропитающей установки (ЭПУ), как нестабильность ее выходного напряжения при скачкообразных изменениях тока нагрузки, поскольку в буферных ЭПУ выходное сопротивление установки в основном определяется внутренним сопротивлением батареи.

    Примечание:

    "Бумажная" версия статьи содержит сводную таблицу характеристик аккумуляторов (стр. 126-128). Так как формат таблицы очень неудобен для размещения на сайте, здесь эта таблица не приводится.

    Об авторах: О.П. Чекстер, начальник лаборатории ФГУП ЛОНИИС; И.М. Джосан, ведущий инженер ФГУП ЛОНИИС

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > свинцово-кислотная аккумуляторная батарея

  • 31 оптимум

    1. optimum, optimality

     

    оптимум
    оптимальность

    С точки зрения математики, оптимум функции есть такое ее экстремальное значение (см. Экстремум функции), которое больше других значений той же функции — тогда это глобальный или, лучше, абсолютный максимум, или меньше других значений — тогда это глобальный (абсолютный) минимум. Если трактовать наибольшее или наименьшее значение каких-то экономических характеристик как наилучшее (в том или ином смысле), то мы придем к фундаментальным понятиям экономико-математических методов — понятиям оптимума и оптимальности. Термин «оптимум» употребляется по меньшей мере в трех значениях: 1) наилучший вариант из возможных состояний системы — его ищут, «решая задачи на О.»; 2) наилучшее направление изменений (поведения) системы («выйти на О.»); 3) цель развития, когда говорят о «достижении О.». Термин «оптимальность», «оптимальный» означает характеристику качества принимаемых решений (оптимальное решение задачи, оптимальный план, оптимальное управление), характеристику состояния системы или ее поведения (оптимальная траектория, оптимальное распределение ресурсов, оптимальное функционирование системы) и т.п. Это не абсолютные понятия: нельзя говорить об оптимальности вообще, вне условий и без точно определенных критериев оптимальности. Решение, наилучшее в одних условиях и с точки зрения одного критерия, может оказаться далеко не лучшим в других условиях и по другому критерию. К тому же следует оговориться, что в реальной экономике, поскольку она носит вероятностный характер, оптимальное решение на самом деле не обязательно наилучшее. Приходится учитывать также фактор устойчивости решения. Может оказаться так, что оптимальный расчетный план неустойчив: любые, даже незначительные отклонения от него могут привести к резко отрицательным последствиям. И целесообразно будет принять не оптимальный, но зато устойчивый план, отклонения от которого окажутся не столь опасными. (Нетрудно увидеть, что здесь происходит некоторая замена критериев: вместо критерия максимума рассматриваемого показателя вводится критерий надежности плана). · В общей задаче математического программирования вектор инструментальных переменных является точкой глобального О. (решением задачи), если он принадлежит допустимому множеству и целевая функция принимает на этом множестве значение не меньшее (при задаче на максимум) или не большее (при задаче на минимум), чем в любой другой допустимой точке (см. Экстремум функции). Соответственно точкой локального О. является вектор инструментальных переменных, принадлежащий допустимому множеству, на котором значение функции больше (меньше) или равно значениям функции в некоторой малой окрестности этого вектора. Очевидно, что глобальный О. является и локальным, обратное же утверждение было бы неверным. Для функции одной переменной это можно показать на рис. 0.9, где F (x) = y — целевая функция, x — инструментальная переменная. Проверка оптимальности, вытекающая из сказанного: если небольшое передвижение от проверяемой точки сокращает (для задачи максимизации) целевую функцию (функционал), то это — О. Такое правило, однако, относится лишь к выпуклой области допустимых решений. Если она невыпуклая, то данная точка может оказаться лишь локальным О. (см. Градиентные методы). Выделяется два типа оптимальных точек: внутренний и граничный О. (на рис. 0.9 точка x3 — локальный граничный О., точки x1, x2 — внутренние локальные, а x* — внутренний глобальный О.). В первом случае возможно нахождение О. путем дифференцирования функции и приравнивания нулю производной (или частных производных для функции многих переменных). Во втором случае этот метод неприменим (он не применим также в случае, если функция негладкая (см. Гладкая функция). Если оптимальная точка — единственная, то имеем сильный О., в противоположном случае — слабый О. Соответствующие термины применяются как к глобальному (абсолютному), так и к локальному О. См. Глобальный критерий, Народнохозяйственный критерий оптимальности, Оптимальное функционирование экономической системы, Оптимальность по Парето, Принцип оптимальности, Социально-экономический критерий оптимальности. Рис. О.9 Глобальный и локальные оптимумы
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    • optimum, optimality

    Русско-английский словарь нормативно-технической терминологии > оптимум

  • 32 минимальная нагрузка диапазона измерений

    1. minimum load of the measuring range

    3.1.21 минимальная нагрузка диапазона измерений (minimum load of the measuring range) Dmin: Наименьшее значение величины (массы), которое прикладывается к весоизмерительному датчику в процессе испытания или применения. Это значение не должно быть менее Emin (см. 3.1.18). Об ограничениях по Dmin в период испытания см. А.3.2.4 (приложение А).

    Источник: ГОСТ Р 8.726-2010: Государственная система обеспечения единства измерений. Датчики весоизмерительные. Общие технические требования. Методы испытаний оригинал документа

    Русско-английский словарь нормативно-технической терминологии > минимальная нагрузка диапазона измерений

  • 33 предел измерения

    Универсальный русско-английский словарь > предел измерения

  • 34 предел измерения

    Русско-английский исловарь по машиностроению и автоматизации производства > предел измерения

  • 35 точка кипения

    boiling point
    Температура жидкости, кипящей при давлении окружающей атмосферы 101,3 кПа (1013 мбар).
    Примечание - Для смесей жидкостей за начальную точку кипения принимают наименьшее значение точки кипения одной из жидкостей в представленном диапазоне, определенную при стандартной лабораторной дистилляции без фракционирования.

    Русско-английский словарь по электротехнике > точка кипения

  • 36 порог


    emergency exit step-down
    аварийного выхода (над крылом) (рис.102) — а step-down outside the airplane of not more than (27) inches.
    - аварийного выхода над полом кабины (рис.102) — emergency exit step-up. а step-цр inside the airplane of not more than (20) inches
    - возникновения юза (колеc)skid threshold
    система автоматического торможения (растормаживания) модулирует давление в тормозах для определения порога возникновения юза. — the anti-skid system modulates the applied brake pressure to determine the skid threshold.
    - двериdoor sill
    - слышимостиthreshold of audibility
    - срабатыванияthreshold of response
    - чувствительности (прибора)threshold of sensitivity
    наименьшее значение измеряемой величины, способное вызвать заметное изменение показаний прибора или срабатывание устройства. — the smallest signal that will result in a detectable output.
    высота п. аварийного выхода над крылом — emergency exit stepdown (height) outside the airplane

    the base of the opening meets the specified step-up and step-down heights.
    высота п. аварийного выхода над полом кабины — emergency exit step-up inside the airplane

    Русско-английский сборник авиационно-технических терминов > порог

  • 37 аналитическая модель

    1. analytical model

     

    аналитическая модель
    Формула, представляющая математические зависимости в экономике и показывающая, что результаты (выходы) находятся в функциональной зависимости от затрат (входов). В самом общем виде ее можно записать так: U = f(x). Здесь x — совокупность (вектор) выходов, f — функция, которая в случае, если она известна, может быть раскрыта в явной форме. В моделях оптимизационных (а их большинство в экономико-математических исследованиях, в исследовании операций и т.д.) отыскивается такой вектор переменных xi (i — «номер» из числа рассматриваемых векторов), при котором критерий, характеризующий качество функционирования системы — обычно это скаляр, а не вектор — получает наибольшее или наименьшее значение (либо вообще достигает какого-то желательного уровня). Это записывается, например, для первого случая (максимизации) так: u = f (xi,yi) ? max. Здесь yi — переменные, не поддающиеся управлению, но влияющие на u; f — функция, задающая отношения между всеми указанными величинами. Если она известна, то может быть найдено аналитическое решение данного уравнения.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > аналитическая модель

  • 38 координация характеристик предохранителя и трансформатора

    1. coordination between fuse and transformer circuit

     

    координация характеристик предохранителя и трансформатора
    -


    0655
    Рис. LS Industrial Systems

    Параллельные тексты EN-RU

    1

    Full load current of a transformer

    Ток трансформатора при полной нагрузке

    2

    The lowest interrupting current of the secondary circuit breaker

    Наименьшее значение отключаемого тока выключателя вторичной обмотки трансформатора

    3

    Permissible overload current of a transformer

    Допустимый ток перегрузки трансформатора

    4

    Rated current of a fuse

    Номинальный ток предохранителя

    5

    Lowest blow-out current of a fuse

    Наименьший ток плавления предохранителя

    6

    Lowest interrupting current of a fuse

    Наименьший ток отключения предохранителя

    7

    Inrush current at no load of a transformer

    Пусковой ток ненагруженного трансформатора

    8

    Secondary short-circuit current

    Ток короткого замыкания вторичной обмотки

    9

    Rated interrupting current of a secondary circuit breaker

    Номинальный ток отключения выключателя вторичной обмотки

    10

    Primary short-circuit current

    Ток короткого замыкания первичной обмотки

    11

    Rated interrupting current of a fuse

    Номинальный ток отключения предохранителя

    a

    Characteristic curve of a secondary circuit breaker or low voltage fuse (Converted into the primary values)

    Характеристика выключателя вторичной обмотки или низковольтного предохранителя (приведенная к значениям первичной обмотки)

    b

    Permissible overload characteristic curve of a transformer

    Кривая допустимой перегрузки трансформатора

    c

    Time/Current characteristic curve of a Fuse

    Время-токовая характеристика предохранителя

    d

    Blow-out characteristic curve of a Fuse

    Время-токовая характеристика плавления предохранителя

    e

    Operation characteristic curve of a Fuse

    Рабочая характеристика предохранителя

     

    [LS Industrial Systems]

    [Перевод Интент]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > координация характеристик предохранителя и трансформатора

  • 39 критическая толщина смазочного слоя

    1. minimum permissible lubricant film thickness

     

    критическая толщина смазочного слоя
    h
    lim, tr
    Наименьшее значение минимальной толщины смазочного слоя, при которой еще обеспечивается полное разделение поверхностей смазочным слоем (переход к смешанной смазке).
    [ ГОСТ ИСО 4378-4-2001]

    Тематики

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > критическая толщина смазочного слоя

  • 40 критический кавитационный коэффициент гидравлической турбины

    1. critical cavitation coefficient

     

    критический кавитационный коэффициент гидравлической турбины
    критический кавитационный коэффициент

    Наименьшее значение кавитационного коэффициента установки гидравлической турбины, при котором допускается ее эксплуатация.
    [ ГОСТ 23956-80

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > критический кавитационный коэффициент гидравлической турбины

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»