Перевод: с английского на русский

с русского на английский

наиболее+значительный

  • 21 artist

    1. n художник,

    dedicated artist — художник, влюблённый в свою работу

    a soi-disant artist — человек, мнящий себя художником

    2. n редк. творческий работник в области изобразительных искусств; скульптор, гравировщик, архитектор

    op artist — художник или скульптор, работающий в стиле «оп-арт»

    3. n артист, актёр

    bump artist — трюковой артист, каскадёр

    4. n артист, мастер своего дела
    5. n амер. обманщик, плут
    Синонимический ряд:
    1. artisan (noun) adept; artificer; artisan; craftsman; craftswoman; inventor; worker
    2. artiste (noun) actor; actress; artiste; singer; thespian
    3. creator (noun) creator; maestro; master; painter; sculptor; sketcher; virtuoso
    4. expert (noun) authority; doyen; expert; master-hand; maven; passed master; past master; pro; professional; proficient; swell; whiz; wiz; wizard
    5. trickster (noun) con man; contriver; crook; designer; rascal; sharper; trickster

    English-Russian base dictionary > artist

  • 22 pavement artist

    1. уличный художник

    dedicated artist — художник, влюблённый в свою работу

    a soi-disant artist — человек, мнящий себя художником

    2. сл. агент, занимающийся слежкой

    English-Russian base dictionary > pavement artist

  • 23 graphic artist

    English-Russian big polytechnic dictionary > graphic artist

  • 24 charger

    1. узел зарядки
    2. обойма
    3. засыпной аппарат
    4. зарядный выпрямитель
    5. зарядный агрегат
    6. зарядное устройство источника бесперебойного питания
    7. зарядное устройство (в электротехнике)
    8. зарядное устройство
    9. загрузочная машина
    10. завалочная машина

     

    завалочная машина
    Машина для загрузки шихты в сталеплав. печь. Различают з. м.: напольные (рельсовые и безрельсовые) и подвесные. Напольные рельсовые з. м. используются в мартен. цехах с крупными печами (> 150 т). Напольные безрельсовые з. м. предназначены для обслуж. мартен. печей малой емкости (5—20 т). Подвесные з. м. работают, как правило, в цехах с печами средней емкости (20—150 т). М. такого типа состоит из мостового крана с гл. и вспомогат. тележками.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    загрузочная машина
    Машина для загрузки заготовок в нагреват. или термич. печи.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    зарядное устройство

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    устройство зарядное (в электротехнике)
    Устройство для зарядки электрических аккумуляторов и батарей конденсаторов.
    [РД 01.120.00-КТН-228-06]


    Зарядные устройства аккумуляторов

    Емкость и время работы аккумуляторных батарей очень сильно зависят от типа и качества зарядных устройств, применяемых для их заряда, которые обеспечивают определенный метод заряда и выбор режима разряда. Выбор хорошего зарядного устройства для пользователя аккумуляторов часто является вопросом второстепенной важности, особенно при использовании аккумуляторов в бытовой электронной технике. Однако это очень существенный вопрос, и решать его нужно сразу, чтобы впоследствии не удивляться, почему так быстро приходится менять аккумуляторы или почему они не держат заряд. В большинстве случаев деньги, вложенные в покупку хорошего зарядного устройства, оправдывают себя в результате эффективной работы и длительного срока службы аккумуляторов.

    Построение схемы простейшего зарядного устройства зависит от принципов заряда, которых, в общем, два: ограничение тока заряда и ограничение напряжения заряда. Принцип заряда с ограничением тока заряда используется при заряде никель-кадмиевых и никель-металлгидридных аккумуляторов, а принцип с ограничением напряжения заряда - при заряде свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторов.

    Весьма быстрое развитие электроники, совершенствование её элементной базы привели к созданию специализированных микросхем зарядных устройств, способные автоматически обеспечить заряд аккумулятора по заданному алгоритму и предназначенные для заряда аккумуляторов любого типа. Кроме того, отдельные типы микросхем помимо заряда обеспечивают измерение емкости аккумулятора или аккумуляторной батареи и степени разряда.

    Современные микросхемы зарядных устройств способны очень четкое прекращать процесса заряда практически по всем возможным характеристикам заряда: по скорости повышения температуры ΔТ/Δt, по пиковому напряжению на аккумуляторной батарее, по кратковременному понижению напряжения ΔU/Δt, по максимальной температуре, по сигналу таймера. Отдельные микросхемы обеспечивают контроль температуры окружающей среды и в зависимости от этого корректируют режим заряда и разряда. Например, такая коррекция происходит пошагово при изменении температуры на каждые 10 °С в пределах от -35 до +85 °С. На практике любая из этих схем, взятая за основу, обрастает дополнительными элементами, добавляющими зарядному устройству новые возможности, улучшая его характеристики.

    Зарядные устройства аккумуляторов, обеспечивающие постоянный ток ( гальваностатический режим заряда)
    Большая часть зарядных устройств обеспечивает заряд только постоянным током и потому пригодны лишь для заряда щелочных герметичных аккумуляторов (никель-металлгидридных и никель-кадмиевых). Простейшие бытовые зарядные устройства, осуществляющие заряд постоянным током, применяются для заряда от 1 до 4 аккумуляторов. Они различаются в основном конструкцией, а не принципиальной электрической схемой. Чаще всего такие зарядные устройства питаются через трансформатор от сети 220В и обеспечивают выпрямленный ток с невысоким уровнем его стабилизации. Ток практически всегда не регулируется, а время заряда определяется самим пользователем.

    Универсальность бытовых зарядных устройств, как правило, означает возможность установки в них аккумуляторов разных габаритов и обеспечение постоянного тока порядка 0,1С, по отношению к емкости, которую производитель зарядного устройства считает типичной для аккумуляторов такого типоразмера. Поэтому следует быть внимательным при установке в них аккумуляторов и правильно определять время заряда. За последние 5-7 лет быстрый прогресс промышленности привел к выпуску щелочных аккумуляторов одинаковых габаритов, но отличающихся по емкости в 3 раза. Стремление использовать простые универсальные зарядные устройства для заряда аккумуляторов все большей емкости может привести к очень продолжительному и, главное, малоэффективному заряду токами существенно меньше стандартного значения. Главным достоинством таких зарядных устройств является их низкая цена.

    Более дорогие зарядные устройства обеспечивают несколько режимов: доразряд (если он необходим), заряд и режим подзаряда. Доразряд щелочных аккумуляторов (до 1 В/ак) производится с целью снятия остаточной емкости. Однако следует учитывать, что в таких зарядных устройствах аккумуляторы, устанавливаемые в пружинные контакты, могут быть соединены последовательно, а контроль разряда выполняется по предельному разрядному напряжению U=(n х 1,0)В, где n - количество аккумуляторов в цепочке. Но после длительной эксплуатации аккумуляторы могут очень сильно различаться по емкости, и контроль по среднему напряжению для всей цепочки может привести к переразряду или переполюсованию наиболее слабых и их порче.

    Прекращение заряда или переключение в режим подзаряда (малым током для компенсации саморазряда) производится в таких зарядных устройствах автоматически в соответствии с некоторыми из тех параметров контроля, которые описаны в другой статье. При использовании таких зарядных устройств следует помнить, что не рекомендуется часто и надолго оставлять аккумуляторы в режиме компенсационного подзаряда, так как это укорачивает срок их службы.

    Некоторые зарядные устройства конструктивно оформлены так, что обеспечивают заряд как 1-4 отдельных аккумуляторов, так и 9 В батареи типоразмера 6E22 (E-BLOCK). Некоторые зарядные устройства имеют индивидуальный контроль процесса заряда (детекция -ΔU) в каждом канале, что дает возможность заряжать одновременно аккумуляторы разных типоразмеров.

    Следует заметить, что в том случае, когда пользователь может позволить себе длительный заряд никель-кадмиевых или никель-металлгидридных аккумуляторов стандартным током 0,1 С в течение 16 ч, можно использовать простейшие зарядные устройства с контролем процесса по времени. При этом, если нет уверенности в полном исчерпании емкости, следует очередной заряд сократить по времени: лучше некоторый недозаряд аккумуляторов, чем значительный перезаряд, который может привести к их деградации и преждевременном выходе из строя. Но вообще большая часть современных цилиндрических аккумуляторов может перенести случайный довольно значительный перезаряд без повреждения и последствий, хотя емкость их при последующем разряде и не повысится.

    Если же нужно максимально сократить время переподготовки аккумуляторов после исчерпания емкости, следует использовать зарядные устройства для быстрого заряда, но с высоким уровнем контроля процесса. При выборе зарядного устройства с разными параметрами контроля процесса следует учитывать, что контроль его по абсолютной величине конечного напряжения ненадежен, а из двух наиболее часто рекомендуемых производителями аккумуляторов параметров (-ΔU и ΔT/Δt) первый реализован уже во многих современных зарядных устройствах, второй - для обычных зарядных устройств редок, прежде всего из-за того, что требует наличия термодатчика, а его устанавливают только в батареях, но возможна установка термодатчика в место контакта аккумулятора с зарядным устройством. Не следует увлекаться и чересчур быстрым зарядом аккумуляторов (некоторые компании предлагают заряд за 15-30 мин). При плохом аппаратурном обеспечении даже надежного способа контроля заряда, столь быстрый заряд значительно сократит срок службы аккумулятора.

    Зарядные устройства аккумуляторов, обеспечивающие режим постоянного напряжения ( потенциостатический режим заряда) и комбинированный заряд
    Зарядные устройства для свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторных батарей должны осуществлять стабилизацию тока на первой стадии заряда и стабилизацию напряжения питания на второй. Кроме того, должен быть обеспечен контроль конца заряда, который в общем случае может выполняться либо по времени, либо по снижению тока до заданной минимальной величины.

    Зарядных устройств с такой стратегией заряда на рынке много меньше, чем зарядных устройств, реализующих режим постоянного тока (имеются ввиду зарядные устройства для непосредственного заряда аккумуляторов и батарей, а не блоки питания для сотовых телефонов, ноутбуков и т.п.).

    О зарядных устройствах никель-кадмиевых и никель-металлгидридных аккумуляторах
    Для никель-кадмиевых и никель-металлгидридных аккумуляторных батарей существует три типа зарядных устройств. К ним относятся:

    1. Зарядные устройства нормального (медленного) заряда
    2. Зарядные устройства быстрого заряда
    3. Зарядные устройства скоростного заряда

    1. Зарядные устройства нормального (медленного) заряда.

    Зарядные устройства этого типа, иногда называют ночными. Ток нормального заряда составляет 0,1С. Время заряда - 14...16 ч. При таком малом токе заряда трудно определить время окончания заряда. Поэтому обычно индикатор готовности батареи в зарядных устройствах для нормального заряда отсутствует. Они самые дешевые и предназначены только для зарядки никель-кадмиевых аккумуляторов. Для зарядки как никель-кадмиевых так и никель-металлгидридных аккумуляторов используются другие, более совершенные зарядные устройства. Если зарядный ток установлен правильно, полностью заряженная батарея становится чуть теплой на ощупь. В таком случае нет надобности немедленно отключать ее от зарядного устройства. В нем она может оставаться более чем на один день. Но все же ее отсоединение сразу после окончания заряда - лучший вариант. При применении таких зарядных устройствах проблемы возникают, если они используются для зарядки батарей малой емкости, в то время как рассчитаны для работы с более мощными батареями. В таком случае аккумуляторная батарея станет нагреваться уже по достижении 70% своей емкости. Поскольку возможность понизить ток заряда или прекратить его процесс вообще отсутствует, то во второй половине цикла заряда начнется процесс теплового разрушения аккумуляторов. Единственно возможный способ сохранить аккумуляторы, это отключить их, как только они станут горячими. В случае, если для зарядки мощной аккумуляторной батареи используется недостаточно мощное зарядное устройство, батарея в процессе заряда будет оставаться холодной и никогда не будет заряжена до конца. Тогда она потеряет часть своей емкости.

    2. Зарядные устройства быстрого заряда.
    Они позиционируются как зарядные устройства среднего класса как по скорости заряда, так и по цене. Заряд аккумуляторов в них происходит в течение 3...6 часов током около 0,ЗС. В качестве необходимого элемента эти зарядные устройства имеют схему контроля достижения аккумуляторами определенного напряжения в конце заряда и их отключения в этот момент. Такие зарядные устройства обеспечивают лучшее по сравнению с устройствами медленного заряда обслуживание аккумуляторов. В настоящее время они уступили свое место зарядным устройствам скоростного заряда.

    3. Зарядные устройства скоростного заряда.
    Такие зарядные устройства имеют несколько преимуществ перед зарядными устройствами других типов. Главное из них - меньшее время заряда. Хотя из-за большей мощности источника напряжения и необходимости использования специальных узлов контроля и управления такие зарядные устройства имеют наиболее высокие цены. Время заряда в зарядных устройствах такого типа зависит от тока заряда, степени разряда аккумуляторов, их емкости и типа. При токе заряда 1С разряженная никель-кадмиевая батарея заряжается в среднем менее чем за один час. Если же аккумуляторная батарея полностью заряжена, некоторые зарядные устройства переходят в режим подзарядки пониженным током заряда и с отключением по сигналу таймера.

    Современные устройства скоростного заряда обычно используются для зарядки как никель-кадмиевых, так и никель-металлгидридных аккумуляторных батарей. Поскольку этот процесс происходит при повышенном токе заряда и за ним необходим контроль, крайне важно, чтобы в конкретном зарядном устройстве заряжались только те аккумуляторы, которые рекомендованы для скоростного заряда производителем. Некоторые батареи маркируют электрически на заводах-изготовителях с той целью, чтобы зарядное устройство могло распознать их тип и основные электрические характеристики. После этого зарядное устройство автоматически установит величину тока и задаст алгоритм процесса заряда, соответствующие установленным в него аккумуляторам.

    Еще раз подчеркнем, что свинцово-кислотные и литий-ионные аккумуляторные батареи имеют алгоритмы заряда, не совместимые с алгоритмом заряда никель-кадмиевых и никель-металлгидридных аккумуляторов.

    [ http://www.powerinfo.ru/charge.php]

    Тематики

    EN

     

    зарядное устройство источника бесперебойного питания
    Часть ИБП, которая обеспечивает поддержание аккумуляторной батареи в заряженном состоянии. В современных ИБП зарядное устройство работает по сложному алгоритму, обеспечивающему максимальный срок эксплуатации аккумуляторной батареи ИБП, при условии рекомендованного диапазона температуры окружающей среды, и быстрый термокомпенсированный заряд.
    [ http://www.radistr.ru/misc/document423.phtml]

    EN

    battery charger
    Functional UPS module that converts the utility mains AC voltage to DC voltage for charging batteries, in order to restore the charge that was withdrawn during mains outage.
    Generally, system's Rectifier fulfills also the charging function.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Тематики

    Синонимы

    EN

     

    зарядный агрегат

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    зарядный выпрямитель

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    засыпной аппарат
    Устр-во для загрузки в домен, печь шихтовых материалов и их распределения по окружности и радиусу печи, выполняющее одноврем. ф-ции газ. затвора при давлении газа под колошником печи до 0,25 МПа. Пропускная способность з. а. совр. домен, печей достигает 1000 т/час. В конце XX в. получили наиб. распространение з. а.: конусный, конусный с подвижными колошниковыми плитами, бесконусный с лотковым распределителем шихты. Осн. конструктивные решения конусного з. а., предлож. англ. инж. Парри (неподвижная воронка и подвижный конус) в 1850 г. и амер. инж. Мак-Ки (вращающийся распределитель с малым конусом) в 1906 г., сохранились в совр. з. а. этого типа и в конусных з. а. с подвижными колошниковыми плитами, выполняющими ф-ции распределителя шихты (рис. 1). Осн. конструктивные решения, определ. более широкие возможности управляемого распределения шихты и герметизации печи (система запирающих клапанов, центр, течка, вращающ. распределит, лоток) применяются в бесконусном з. а. (БЗА) фирмы «Paul Wurt» с 1970-х гг. В мире установлено более 150 БЗА ф. «Paul Wurt», из них около 100 устройств однотрактовые. В 1990-х гг. было создано (Гипромез, ВНИИметмаш и др.) и установлено на доменных печах несколько типов одно- и двухтрактовых отечеств. БЗА.
    Установка БЗА с автоматизир. средствами контроля и управления, широкими возможностями управления радиальным и окружным распределением шихты, высокой долговечностью и ремонтопригодностью на всех вновь строящихся и реконструируемых печах стала одним из перспективных направлений повышения эффективности домен. произ-ва.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    обойма
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    charger
    Another term for (cartridge) clip.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    узел зарядки
    электризатор

    Техническое средство для нанесения электростатических зарядов на поверхность ЭФГ-фоторецептора.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > charger

  • 25 considerable

    kənˈsɪdərəbl
    1. прил.
    1) достойный, почитаемый, уважаемый( о человеке) considerable man ≈ человек, пользующийся уважением the daughter of a considerable potterдочь почтеного гончара Some of the most considerable citizens were banished. ≈ Были изгнаны некоторые наиболее уважаемые граждане. Syn: worthy
    2) значительный;
    важный, заслуживающий внимания, существенный to a considerable extent ≈ в значительной мере considerable movement in the market ≈ значительное оживление на рынке Syn: important
    3) большой, немалый a considerable amount of timeнемало времени considerable proportionзначительная доля considerable proportion ≈ значительная доля, значительная часть
    4) амер.;
    разг. в большом количестве, много, изрядно considerable lumberмасса пиломатериалов Syn: much
    2. сущ.;
    амер.;
    разг. масса, много, множество, изрядное количество Syn: multitude, great number, fair amount (американизм) (разговорное) масса, множество;
    значительное количество - he has done * for the disabled он много сделал для инвалидов - he has earned * он здорово заработал значительный;
    большой - * part значительная часть - * number значительное число - * weight большой вес - I have given * thought to the matter я много думал об этом деле важный, видный - * citizens видные граждане - to become a * personage сделаться важной персоной considerable большой;
    a considerable amount of time немало времени ~ большой ~ важный ~ видный ~ значительный;
    важный ~ значительный ~ амер. разг. множество, много considerable большой;
    a considerable amount of time немало времени

    Большой англо-русский и русско-английский словарь > considerable

  • 26 alarm management

    1. управление аварийными сигналами

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > alarm management

  • 27 ПРЕДИСЛОВИЕ

    В связи с непрерывным развитием геологоразведочного и эксплуата-ционного бурения и внедрением в практику геологоразведочных работ новых методов проходки скважин, а также в связи с переходом в широких масштабах на алмазное бурение вполне естествен тот интерес, который проявляют буровики-производственники, конструкторы и научные работники к зарубежной литературе, освещающей данные отрасли техники.
    В течение ряда лет отделом научно-технической информации Всесоюзного научно-исследовательского института методики и техники разведки (ВИТР) был выполнен значительный объем работ по переводу современной английской и американской технической литературы. В процессе этих работ возникали трудности при переводе технических терминов, что лишний раз подчеркнуло необходимость создания специального англо-русского терминологического словаря по бурению.
    На основе проделанной работы стало возможным составить словарь терминов, относящихся к роторному, алмазному, ударно-канатному и другим видам бурения. Кроме того, в словарь включены слова, охватывающие основные понятия, относящиеся к бурению шпуров, подземному, термическому, турбинному бурению и инклинометрии. Большое внимание при составлении словаря уделялось и новым методам проходки скважин, в частности бурению с продувкой забоя воздухом.
    За последние годы в американскую и, частично, английскую техническую литературу все чаще стали проникать затрудняющие перевод профессиональные и специфические выражения. Для отражения этой тенденции в словарь включены термины, имеющие разговорный характер. Чтобы выделить эти термины, перед переводом их сделана оговорка (разг. — разговорный).
    В основной текст словаря включены также буквенные обозначения существующих стандартов и серий, относящихся к алмазному оборудованию. Это вызвано тем, что в странах английского языка прочно вошла в практику система обозначения диаметров и особенностей конструкций бурового инструмента определенными буквами латинского алфавита. В словаре расшифрованы наиболее часто встречающиеся индексы буровых стандартов и серий и приведен диаметр бурового инструмента в дюймах. В скобках указана страна, где этот стандарт распространен.
    Из названий фирменных материалов и видов оборудования приводятся лишь те, которые наиболее прочно вошли в периодическую и учебную литературу.
    В разделе Сокращения приведен ряд наиболее часто встречающихся в технической литературе сокращений. Кроме того, сюда же вошли некоторые сокращения, взятые из сменных рапортов буровых бригад.
    За основу принята английская орфография. Термины расположены по первому слову словосочетания. В большинстве случаев даются ссылки на синонимы. Термины, имеющие одинаковое или очень близкое значение, отделены запятой. Совершенно различные значения отделяются точкой с запятой. В ряде случаев для более точного перевода в скобках даны пояснения, касающиеся существа данного понятия.
    Авторы выражают глубокую признательность за товарищескую помощь при составлении еловаря сотрудникам ВИТР И. Я. Серебрину, Г. И. Ширко, Т. Л. Орлоблиной, Н. И. Степановой, Н. Н. Алексееву.
    При составлении словаря кроме периодической литературы были использованы следующие источники.
    - Израилева Е. Ю. Англо-русский словарь по нефтепромысловому делу. Гостоптехиздат, М., 1959.
    - Гольд Б. В., К у гель Р. В. Англо-русский автотракторный словарь. Гостехтеориздат, М., 1954.
    - Белькинд Л. Д. Англо-русский политехнический словарь. Гос-Техиздат, М., 1946.
    - Алешин Е. В., Блувштейн В. О., Семенов Ю. В. Словарь английских и американских сокращении. Гос. изд-во иностр. и нац. словарей, М.; 1954; 1957.
    - Софиано Т. А. Англо-русский геологический словарь. Гостех-теориздат, М., 1957.
    - Косминский Б. М., Матвеев С. Д., Терпигорева В. Д. Англо-русский горнотехнический словарь. Углетехиздат, М., 1958.
    - Барон Л. И., Ершов Н. Н. Англо-русский горный словарь. Физматгиз, М., 1958.
    - Long A. A Glossary of the Diamond Drilling Industry. United States Department of the Interior, Bureau of Mines, Bull. 583, Washington, 1960.
    - Boone L. Ph. Petroleum Dictionary. Univ. Oklahoma Press, Norman, 1952.
    - Camming J. D. Diamond Drill Handbook. Published by J. K. Smit of Canada, Ltd., Toronto, Ontario, 1956.
    - LeRoy L. W., Haun J. D. Subsurface Geology in Petroleum Exploration. Colorado School of Mines, Golden, Colorado, 1958.
    - Uren L. C. Oil Field Development. N. Y., 1956.
    - Diccionario Minero-Metalurgico-Geologico-Mineralogico-Petrografico у de Petroleo. Ingles-Espanol, Frances, Aleman, Ruso. por Alejandro Novitzky, Buenos Aires., 1951.

    English-Russian dictionary of terms for geological exploration drilling > ПРЕДИСЛОВИЕ

  • 28 economic model

    1. экономико-математическая модель

     

    экономико-математическая модель
    Математическое описание экономического процесса или объекта, произведенное в целях их исследования и управления ими: математическая запись решаемой экономической задачи (поэтому часто термины “модель” и “задача” употребляются как синонимы). Существует еще несколько вариантов определения этого термина. В самой общей форме модель — условный образ объекта исследования, сконструированный для упрощения этого исследования. При построении модели предполагается, что ее непосредственное изучение дает новые знания о моделируемом объекте (см. Моделирование). Все это полностью относится и к Э.-м.м. В принципе в экономике применимы не только математические (знаковые), но и материальные модели. Например, гидравлические (в которых потоки воды имитируют потоки денег и товаров, а резервуары отождествляются с такими экономическими категориями, как объем промышленного производства, личное потребление и др.) и электрические (в США была известна модель «Эконорама», представлявшая собой сложную электрическую схему, в которой имитировались экономические процессы). Но все эти попытки имели лишь демонстрационное применение, а не служили средством изучения закономерностей экономики. С развитием же электронно-вычислительной техники потребность в них, по-видимому, и вовсе отпала. Э.-м.м. оказывается в этих условиях основным средством модельного исследования экономики. Модель может описывать либо внутреннюю структуру объекта, либо, если структура неизвестна, — его поведение, т.е. реакцию на воздействие известных факторов (принцип «черного ящика«). Один и тот же объект может быть описан различными моделями в зависимости от исследовательской или практической потребности, возможностей математического аппарата и т.п. Поэтому всегда необходима оценка модели и области, в которой выводы из ее изучения могут быть достоверны. Во всех случаях необходимо, чтобы модель содержала достаточно детальное описание объекта, позволяющее, в частности, осуществлять измерение экономических величин и их взаимосвязей, чтобы были выделены факторы, воздействующие на исследуемые показатели. Например, формула, по которой определяется на заводе потребность в материалах, исходя из норм расхода, есть Э.-м.м. Если количество видов изделий обозначить через n, нормативы расхода — ai, количество изделий каждого вида — xi, то модель запишется так: где i = 1, 2, …, n. Кроме того, полезно записать условия, в которых она действительна, т.е. ограничения модели (например, лимиты на те или иные материалы). Строго говоря, расчет по такой формуле не даст точного результата: потребность в материалах может зависеть также от случайных изменений в размерах брака и отходов, от страховых запасов и т.д. Но в общем, она зависит именно от указанных двух видов величин: норм расхода материала и объемов выпуска продукции. Первые из них в данном случае называются параметрами модели, вторые — переменными модели. Такая модель называется описательной, или дескриптивной; она описывает зависимость расхода (потребности в материале), от двух факторов: количества изделий и расходных норм. Большое значение в экономике имеют оптимизационные модели (или оптимальные). Они представляют собой системы уравнений, равенств и неравенств, которые кроме ограничений (условий) включают также особого рода уравнение, называемое функционалом или критерием оптимальности. С помощью такого критерия находят решение, наилучшее по какому-либо показателю, например, минимум затрат на материалы при заданном объеме продукции, или, наоборот, максимум продукции (или прибыли) при заданных ограничениях по ресурсам и т.д. Например, можно попытаться найти такой план работы цеха, который при заданном объеме материалов (т.е. их расход не должен быть больше какой-то величины, допустим, B) гарантирует наибольший объем продукции. Единственное, что надо при этом знать дополнительно — цену единицы продукции — pi. Тогда модель будет записываться так при условии Кроме того, обязательно надо учесть, что искомые величины объемов производства каждого изделия не должны быть отрицательными: xi ? 0, i = 1, 2, …, n. Мы получили элементарную оптимизационную модель, относящуюся к типу моделей линейного программирования. Решив эту модель, т.е. узнав значения всех xi от 1-го до n-го, мы получим искомый план. Важное свойство Э.-м.м. — их применимость к разным, на первый взгляд непохожим ситуациям. Например, если в приведенном примере через ai обозначить нормы внесения удобрений, а через xi — размеры участков, то та же самая формула покажет общий объем потребности в удобрениях. Точно такую же формулу можно применить к расчету затрат семьи на покупку разных продуктов, и во многих других случаях. Модель может быть сформулирована тремя способами: в результате прямого наблюдения и изучения некоторых явлений действительности (феноменологический способ), вычленения из более общей модели (дедуктивный способ), обобщения более частных моделей (индуктивный способ). Подобные модели, в которых описывается моментное состояние экономики, называются статическими (от слова «статика»). Те же, которые показывают развитие объекта моделирования, — динамическими. Модели могут строиться не только в виде формул, как рассмотренные здесь (это называется аналитическое представление модели; см. Аналитическая модель), но и в виде числовых примеров (численное представление) и в форме таблиц (матричное представление), и в форме особого рода графов (сетевое представление модели). Соответственно различают модели числовые, аналитические, матричные, сетевые. Экономическая наука давно пользуется моделями. Одной из первых была модель воспроизводства, разработанная французским ученым Ф.Кенэ еще в XYIII в. А в XX в. первая общая модель развивающейся экономики была сконструирована Дж. фон Нейманом. Значительный опыт построения э.-м. моделей накоплен учеными СССР, применявшими их для анализа экономических процессов, прогнозирования и планирования во всех звеньях и на всех уровнях экономики, вплоть до планирования развития народного хозяйства страны в целом, особенно — перспективного. Принято подразделять Э-м.м. на две большие группы: модели, отражающие преимущественно производственный аспект экономики; модели, отражающие преимущественно социальные аспекты экономики. Разумеется, такое деление в значительной степени условно, поскольку в каждой из моделей в той или иной степени сочетаются производственный и социальный аспекты. Из моделей первой группы можно назвать: модели долгосрочного прогноза сводных показателей экономического развития; межотраслевые модели; отраслевые модели оптимального планирования и размещения производства, а также модели оптимизации структуры производства в отраслях. Из моделей второй группы наиболее разработаны модели, связанные с прогнозированием и планированием доходов и потребления населения, демографических процессов. Существует большое число классификаций типов Э.-м.м., которые, однако, носят фрагментарный характер. И это, по-видимому, неизбежно, так как нереально охватить все многообразие социально-экономических задач, объектов и процессов, описываемых различными моделями. Представленные в нашем словаре модели можно условно классифицировать следующим образом 1. Наиболее общее деление моделей — по способу отражения действительности: Аналоговая модель Иконическая модель (то же: портретная модель) Концептуальная модел Структурная модель Функциональная модель. 2. По предназначению (цели создания и применения) модели: Балансовая модель Дескриптивная модель (то же: Описательная) Имитационная модель Информационная модель Нормативная модель (то же: Прескриптивная модель), в т.ч. Оптимальная модель (то же: Оптимизационная модель). 3. По способу логико-математического описания моделируемых экономических систем: Аналитическая модель Вероятностная модель (то же: Стохастическая модель) Детерминированная модель Дискретная модель Линейная модель Математико-статистическая модель Матричная модель Нелинейная модель Непрерывная модель Модель равновесия Неравновесная модель Регрессионная модель Сетевая модель Числовая модель Эконометрическая модель. - дискретного выбора - непрерывной длительности (выживания) -логит-иодель -пробит-модель - тобит-модель.. 4. По временному и пространственному признаку: Гравитационная модель Динамическая модель (см. Динамические модели экономики) Модели с «бесконечным временем» Статическая модель Точечная модель Трендовая модель и др.. 5. По уровню моделируемого объекта в хозяйственной иерархии: Глобальная модель Макроэкономическая модель (то же: Агрегатная модель) Модели мезоэкономики Микроэкономическая модель 6. По внутренней структуре модельного описания системы: Автономная модель Закрытая модель Комплекс моделей Многосекторная модель (многоотраслевая, многопродуктовая) Однопродуктовая модель Открытая модель Система моделей (в том числе многоуровневая или многоступенчатая). 7.. По сфере применения. Выше было указано на необозримость областей применения Э.-м.м.; поэтому мы не даем здесь их перечисления, а отсылаем к соответствующим статьям словаря: например, о прогнозных моделях — к статье Прогнозирование, об отраслевых — к статье Отраслевые задачи оптимального планирования развития и размещения производства, и т.д. Наиболее развитая типология социально-экономических задач и моделей представлена в кн.: Вилкас Э.Й., Майминас Е.З. Решения: теория, информация, моделирование. — М.: “Радио и связь”, 1981.При разработке приведенной выше условной классификации учитывались материалы этой книги.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > economic model

  • 29 economico-mathematical model

    1. экономико-математическая модель

     

    экономико-математическая модель
    Математическое описание экономического процесса или объекта, произведенное в целях их исследования и управления ими: математическая запись решаемой экономической задачи (поэтому часто термины “модель” и “задача” употребляются как синонимы). Существует еще несколько вариантов определения этого термина. В самой общей форме модель — условный образ объекта исследования, сконструированный для упрощения этого исследования. При построении модели предполагается, что ее непосредственное изучение дает новые знания о моделируемом объекте (см. Моделирование). Все это полностью относится и к Э.-м.м. В принципе в экономике применимы не только математические (знаковые), но и материальные модели. Например, гидравлические (в которых потоки воды имитируют потоки денег и товаров, а резервуары отождествляются с такими экономическими категориями, как объем промышленного производства, личное потребление и др.) и электрические (в США была известна модель «Эконорама», представлявшая собой сложную электрическую схему, в которой имитировались экономические процессы). Но все эти попытки имели лишь демонстрационное применение, а не служили средством изучения закономерностей экономики. С развитием же электронно-вычислительной техники потребность в них, по-видимому, и вовсе отпала. Э.-м.м. оказывается в этих условиях основным средством модельного исследования экономики. Модель может описывать либо внутреннюю структуру объекта, либо, если структура неизвестна, — его поведение, т.е. реакцию на воздействие известных факторов (принцип «черного ящика«). Один и тот же объект может быть описан различными моделями в зависимости от исследовательской или практической потребности, возможностей математического аппарата и т.п. Поэтому всегда необходима оценка модели и области, в которой выводы из ее изучения могут быть достоверны. Во всех случаях необходимо, чтобы модель содержала достаточно детальное описание объекта, позволяющее, в частности, осуществлять измерение экономических величин и их взаимосвязей, чтобы были выделены факторы, воздействующие на исследуемые показатели. Например, формула, по которой определяется на заводе потребность в материалах, исходя из норм расхода, есть Э.-м.м. Если количество видов изделий обозначить через n, нормативы расхода — ai, количество изделий каждого вида — xi, то модель запишется так: где i = 1, 2, …, n. Кроме того, полезно записать условия, в которых она действительна, т.е. ограничения модели (например, лимиты на те или иные материалы). Строго говоря, расчет по такой формуле не даст точного результата: потребность в материалах может зависеть также от случайных изменений в размерах брака и отходов, от страховых запасов и т.д. Но в общем, она зависит именно от указанных двух видов величин: норм расхода материала и объемов выпуска продукции. Первые из них в данном случае называются параметрами модели, вторые — переменными модели. Такая модель называется описательной, или дескриптивной; она описывает зависимость расхода (потребности в материале), от двух факторов: количества изделий и расходных норм. Большое значение в экономике имеют оптимизационные модели (или оптимальные). Они представляют собой системы уравнений, равенств и неравенств, которые кроме ограничений (условий) включают также особого рода уравнение, называемое функционалом или критерием оптимальности. С помощью такого критерия находят решение, наилучшее по какому-либо показателю, например, минимум затрат на материалы при заданном объеме продукции, или, наоборот, максимум продукции (или прибыли) при заданных ограничениях по ресурсам и т.д. Например, можно попытаться найти такой план работы цеха, который при заданном объеме материалов (т.е. их расход не должен быть больше какой-то величины, допустим, B) гарантирует наибольший объем продукции. Единственное, что надо при этом знать дополнительно — цену единицы продукции — pi. Тогда модель будет записываться так при условии Кроме того, обязательно надо учесть, что искомые величины объемов производства каждого изделия не должны быть отрицательными: xi ? 0, i = 1, 2, …, n. Мы получили элементарную оптимизационную модель, относящуюся к типу моделей линейного программирования. Решив эту модель, т.е. узнав значения всех xi от 1-го до n-го, мы получим искомый план. Важное свойство Э.-м.м. — их применимость к разным, на первый взгляд непохожим ситуациям. Например, если в приведенном примере через ai обозначить нормы внесения удобрений, а через xi — размеры участков, то та же самая формула покажет общий объем потребности в удобрениях. Точно такую же формулу можно применить к расчету затрат семьи на покупку разных продуктов, и во многих других случаях. Модель может быть сформулирована тремя способами: в результате прямого наблюдения и изучения некоторых явлений действительности (феноменологический способ), вычленения из более общей модели (дедуктивный способ), обобщения более частных моделей (индуктивный способ). Подобные модели, в которых описывается моментное состояние экономики, называются статическими (от слова «статика»). Те же, которые показывают развитие объекта моделирования, — динамическими. Модели могут строиться не только в виде формул, как рассмотренные здесь (это называется аналитическое представление модели; см. Аналитическая модель), но и в виде числовых примеров (численное представление) и в форме таблиц (матричное представление), и в форме особого рода графов (сетевое представление модели). Соответственно различают модели числовые, аналитические, матричные, сетевые. Экономическая наука давно пользуется моделями. Одной из первых была модель воспроизводства, разработанная французским ученым Ф.Кенэ еще в XYIII в. А в XX в. первая общая модель развивающейся экономики была сконструирована Дж. фон Нейманом. Значительный опыт построения э.-м. моделей накоплен учеными СССР, применявшими их для анализа экономических процессов, прогнозирования и планирования во всех звеньях и на всех уровнях экономики, вплоть до планирования развития народного хозяйства страны в целом, особенно — перспективного. Принято подразделять Э-м.м. на две большие группы: модели, отражающие преимущественно производственный аспект экономики; модели, отражающие преимущественно социальные аспекты экономики. Разумеется, такое деление в значительной степени условно, поскольку в каждой из моделей в той или иной степени сочетаются производственный и социальный аспекты. Из моделей первой группы можно назвать: модели долгосрочного прогноза сводных показателей экономического развития; межотраслевые модели; отраслевые модели оптимального планирования и размещения производства, а также модели оптимизации структуры производства в отраслях. Из моделей второй группы наиболее разработаны модели, связанные с прогнозированием и планированием доходов и потребления населения, демографических процессов. Существует большое число классификаций типов Э.-м.м., которые, однако, носят фрагментарный характер. И это, по-видимому, неизбежно, так как нереально охватить все многообразие социально-экономических задач, объектов и процессов, описываемых различными моделями. Представленные в нашем словаре модели можно условно классифицировать следующим образом 1. Наиболее общее деление моделей — по способу отражения действительности: Аналоговая модель Иконическая модель (то же: портретная модель) Концептуальная модел Структурная модель Функциональная модель. 2. По предназначению (цели создания и применения) модели: Балансовая модель Дескриптивная модель (то же: Описательная) Имитационная модель Информационная модель Нормативная модель (то же: Прескриптивная модель), в т.ч. Оптимальная модель (то же: Оптимизационная модель). 3. По способу логико-математического описания моделируемых экономических систем: Аналитическая модель Вероятностная модель (то же: Стохастическая модель) Детерминированная модель Дискретная модель Линейная модель Математико-статистическая модель Матричная модель Нелинейная модель Непрерывная модель Модель равновесия Неравновесная модель Регрессионная модель Сетевая модель Числовая модель Эконометрическая модель. - дискретного выбора - непрерывной длительности (выживания) -логит-иодель -пробит-модель - тобит-модель.. 4. По временному и пространственному признаку: Гравитационная модель Динамическая модель (см. Динамические модели экономики) Модели с «бесконечным временем» Статическая модель Точечная модель Трендовая модель и др.. 5. По уровню моделируемого объекта в хозяйственной иерархии: Глобальная модель Макроэкономическая модель (то же: Агрегатная модель) Модели мезоэкономики Микроэкономическая модель 6. По внутренней структуре модельного описания системы: Автономная модель Закрытая модель Комплекс моделей Многосекторная модель (многоотраслевая, многопродуктовая) Однопродуктовая модель Открытая модель Система моделей (в том числе многоуровневая или многоступенчатая). 7.. По сфере применения. Выше было указано на необозримость областей применения Э.-м.м.; поэтому мы не даем здесь их перечисления, а отсылаем к соответствующим статьям словаря: например, о прогнозных моделях — к статье Прогнозирование, об отраслевых — к статье Отраслевые задачи оптимального планирования развития и размещения производства, и т.д. Наиболее развитая типология социально-экономических задач и моделей представлена в кн.: Вилкас Э.Й., Майминас Е.З. Решения: теория, информация, моделирование. — М.: “Радио и связь”, 1981.При разработке приведенной выше условной классификации учитывались материалы этой книги.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > economico-mathematical model

  • 30 protuberant

    prəˈtju:bərənt прил.
    1) выпуклый, выдающийся вперед, выступающий, торчащий protuberant nose ≈ торчащий нос
    2) перен. выдающийся, заметный, значительный protuberant ugliness ≈ выдающееся уродство Syn: prominent выпуклый, выступающий вперед;
    выпяченный - * eyes выпуклые глаза;
    глаза навыкате выдающийся, значительный - the most * facts наиболее значительные события protuberant выпуклый, выдающийся вперед

    Большой англо-русский и русско-английский словарь > protuberant

  • 31 Roosevelt, Franklin Delano (FDR)

    (1882-1945) Рузвельт, Франклин Делано
    32-й президент США [ President, U.S.] (в 1933-45). Юрист по образованию, учился в Гарвардском [ Harvard University] и Колумбийском [ Columbia University] университетах. В 1905 женился на дальней родственнице, племяннице Теодора Рузвельта [ Roosevelt, Theodore (Teddy)] Элеаноре Рузвельт [ Roosevelt, Anna Eleanor]. Начав политическую карьеру в 1910 как демократ [ Democratic Party], выступил против засилья партийной машины Таммани-холла [ Tammany Hall; bossism]. В 1913-20 помощник министра Военно-морского флота [Assistant Secretary of the Navy (Secretary of the Navy)] в администрации В. Вильсона [ Wilson, (Thomas) Woodrow]. В 1921 заболел полиомиелитом, до конца жизни страдал параличом ног, передвигался в коляске. В 1928-32 губернатор штата Нью-Йорк, на этом посту снизил налоги на фермеров, создал в начале экономического кризиса первое в стране агентство по оказанию помощи безработным, провел ряд социально-экономических мер в штате. За время между избранием на пост президента и вступлением в должность [ inauguration] разработал с помощью "мозгового треста" [ brain trust] меры по выводу страны из глубокого кризиса [ Great Depression]. В инаугурационном послании к стране, бывшей на грани всеобщей паники, он произнес знаменитую фразу: "Единственное, чего нам следует бояться, это сам страх" ["The only thing we have to fear is fear itself"]. За первые "сто дней" [ Hundred Days] были приняты решительные антикризисные меры, в частности созданы многочисленные госучреждения по управлению экономикой, т.н. "алфавитные агентства" [ alphabet agencies]. Социально-экономические реформы администрации Ф. Д. Рузвельта получили название "Новый курс" [ New Deal] и ознаменовали собой введение государственного регулирования экономики США. Для проведения "Нового курса" и отказа от внешнеполитического изоляционизма потребовались выдающиеся способности Рузвельта как политика, так как число сторонников "Нового курса" в стране временами ненамного превышало число его противников. До начала второй мировой войны политика Рузвельта во многом была обращена на решение внутренних проблем. Стремление к реализму во внешней политике привело США к установлению в 1933 дипломатических отношений с СССР и проведению политики "доброго соседа" [ Good Neighbor Policy] с латиноамериканскими странами. С начала второй мировой войны Ф. Д. Рузвельт выступил с поддержкой Великобритании, Франции и СССР в их борьбе с фашистской Германией. Внес значительный вклад в создание антигитлеровской коалиции. В августе 1941 на встрече с английским премьером У. Черчиллем была принята "Атлантическая хартия" [ Atlantic Charter], в которой были провозглашены демократические цели войны. После нападения Японии на Перл-Харбор [ Pearl Harbor] США объявили войну Японии и Германии. В 1944 был избран на четвертый президентский срок, чего никогда не случалось ранее в истории США, но вскоре, 12 апреля 1945, умер. Несомненно оставил значительный след в истории США и в истории мира как один из наиболее выдающихся президентов США

    English-Russian dictionary of regional studies > Roosevelt, Franklin Delano (FDR)

  • 32 considerable

    [kən'sɪd(ə)rəbl] 1. прил.
    1) значительный; важный, заслуживающий внимания, существенный
    Syn:
    2) большой, значительный
    3) достойный, почитаемый, уважаемый ( о человеке)

    considerable man — человек, пользующийся уважением

    Some of the most considerable citizens were banished. — Были изгнаны некоторые наиболее уважаемые граждане.

    Syn:
    worthy 1.
    2. сущ.; амер.; разг.
    масса, много, множество, изрядное количество
    Syn:

    Англо-русский современный словарь > considerable

  • 33 three-phase UPS

    1. трехфазный источник бесперебойного питания (ИБП)

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > three-phase UPS

  • 34 protuberant

    [prəʹtju:b(ə)rənt] a
    1. выпуклый, выступающий вперёд; выпяченный

    protuberant eyes - выпуклые глаза; глаза навыкате

    2. выдающийся, значительный

    НБАРС > protuberant

  • 35 exposure potential

    1) общ. потенциальное потребление* (показатель общего количества химического вещества, которое может быть усвоено организмом)
    2) рекл. потенциал рекламных контактов [рекламного охвата\]*, потенциальный рекламный охват* (общее количество рекламной аудитории, на которое может воздействовать данная реклама; зависит от размеров рекламного объявления и от его доступности, т. е. от того, в каком месте оно расположено или каким образом демонстрируется)

    More important than size is the accessibility of an ad. The placement and number of links to an ad is critical in measuring it's exposure potential. — Доступность рекламы более важна, чем размер рекламного объявления. Размещение рекламы и количество ссылок на нее представляют собой наиболее важные факторы при измерении потенциала рекламного охвата.

    The advertising sign will rotate every 8 weeks to a new location to maximize exposure potential. — Рекламный щит будет менять свое местоположение каждые восемь недель для максимизации потенциала рекламного охвата.

    See:

    Англо-русский экономический словарь > exposure potential

  • 36 fertile market

    марк. доходный рынок (наиболее прибыльный рынок сбыта, т. е. тот, на котором компания получает значительный уровень спроса на свой товар и, соответственно, большой объем продаж)
    See:

    Англо-русский экономический словарь > fertile market

  • 37 vocal

    влиятельный, значительный

    На практике, потребительские и экологические группы, многие из которых были сформированы в 1960-е годы, находятся среди наиболее влиятельных и эффективных групп по интересам, которые лоббируют Конгресс и стараются мобилизовать общественное мнение через средства информации — In fact, consumer and environmental groups, many formed in the 1960s, are among the most vocal and effective interest groups who lobby Congress and try to mobilize public opinion through the news media.

    Англо-русский универсальный дополнительный практический переводческий словарь И. Мостицкого > vocal

  • 38 Osborn, Henry Fairfield

    (1857-1935) Осборн, Генри Фэрфилд
    Палеонтолог. С 1908 президент Американского музея естественной истории [ American Museum of Natural History] в г. Нью-Йорке, внес значительный вклад в его становление как крупнейшего научно-исследовательского центра с одним из наиболее значительных в мире собраний ископаемых животных

    English-Russian dictionary of regional studies > Osborn, Henry Fairfield

  • 39 best

    [best] 1. прил.
    1) превосх. ст. от good лучший, наилучший

    She makes the best appearance possible. — Она старается выглядеть как можно лучше.

    the best friend — самый близкий друг, лучший друг

    I wish we could be best friends. — Мне бы хотелось, чтобы мы стали близкими друзьями.

    She is my best girl. — Она - моя любимая девушка.

    3) лучший, самый подходящий

    It's not the best place to live if you wish to develop your knowledge and love of mountains. — Эти края - не самое подходящее пристанище для того, кто хочет лучше узнать и полюбить горы.

    4) бо́льший, значительный

    the best part of the week — бо́льшая часть недели

    It rained for the best part of their vacation. — Почти всё время, что они были на отдыхе, лил дождь.

    ••

    to put one's best foot / leg foremost — делать всё от себя зависящее

    2. нареч.; превосх. ст. от well I 1.
    лучше всего; больше всего

    He is best forgotten. — О нём лучше не вспоминать.

    The man who does best what multitudes do well. — Человек, который делает наилучшим образом то, что многие другие делают просто хорошо.

    3. сущ.
    1) самое лучшее; лучшая часть (состояние) (чего-л.)

    at best / if the best happened — в лучшем случае, при наилучшем стечении обстоятельств

    to be / turn out for the best — складываться к лучшему, пойти на пользу (кому-л.)

    It turned out for the best. — Всё оказалось к лучшему.

    The technique is at best ineffective and at worst dangerous. — Эта методика, в лучшем случае, неэффективна, а в худшем - опасна.

    He's not in the best of health. — Он чувствует себя не лучшим образом.

    She is not at her best in the morning. — С утра у неё не лучшее настроение.

    - level best
    - look one's best
    2) парадная одежда, лучший наряд

    Sunday best — лучшее платье, выходной костюм ( который надевают по особым случаям)

    3) всё возможное; наибольшее достижение; самая высокая степень (мастерства, умения, искусства)

    to beat the best — выдать лучший результат, побить рекорд, быть первым, победить

    She tried her best to finish the job on time. — Она сделала всё возможное, чтобы закончить работу вовремя.

    She equalled the world's record and beat the British best. — Она повторила мировой рекорд и улучшила рекорд Великобритании.

    ••

    to be at one's best — быть на высоте; быть в ударе

    to get / have the best of it — победить, взять верх

    to give best to smb. — признать превосходство кого-л.; быть побеждённым

    to make the best of one's way — идти как можно скорее, спешить

    to send one's best to smb. — передавать, посылать привет кому-л.

    to the best of one's ability — в полную меру сил, способностей

    The best is the enemy of the good. — посл. Лучшее - враг хорошего.

    - do one's best
    - make the best of smth. 4. гл.; разг.
    1) взять верх над кем-л.
    2) перехитрить, провести

    The broker piled up money by besting his clients. — Брокер накапливал деньги, обманывая своих клиентов.

    Англо-русский современный словарь > best

  • 40 protuberant

    1. a выпуклый, выступающий вперёд; выпяченный

    protuberant eyes — выпуклые глаза; глаза навыкате

    2. a выдающийся, значительный
    Синонимический ряд:
    high (adj.) elevated; eminent; extended; extrusive; high; lofty; projecting; prominent; protruding; raised; tall

    English-Russian base dictionary > protuberant

См. также в других словарях:

  • наиболее значительный — прил., кол во синонимов: 35 • важнейший (42) • ведущий (57) • гвоздевой (33) • …   Словарь синонимов

  • наиболее важный — прил., кол во синонимов: 35 • важнейший (42) • ведущий (57) • гвоздевой (33) • …   Словарь синонимов

  • наиболее существенный — прил., кол во синонимов: 35 • важнейший (42) • ведущий (57) • гвоздевой (33) • …   Словарь синонимов

  • Наиболее распространенные патроны для винтовок и автоматов —         СОВРЕМЕННЫЕ ВИНТОВОЧНЫЕ И АВТОМАТНЫЕ ПАТРОНЫ. ВЫБОР ПАТРОНА.         Настоящая статья является в первую очередь обзором некоторых существующих боеприпасов, а не пособием по выбору патронов для вашей охоты, однако я, тем не менее, хочу… …   Энциклопедия стрелкового оружия

  • самый значительный — прил., кол во синонимов: 35 • важнейший (42) • ведущий (57) • гвоздевой (33) • …   Словарь синонимов

  • Список наиболее значимых игроков ПФК ЦСКА Москва — Дуду Сеаренсе вместе с ЦСКА дважды становился чемпионом России и дважды обладателем кубка России …   Википедия

  • Список наиболее значимых игроков ФК «Кубань» — Андрей Топчу  воспитанник кубанского футбола, в составе «Кубани» выступал (с небольшим перерывом) с 2002 по 2009 год, был капитаном команды …   Википедия

  • Список наиболее значимых игроков ФК «Милан» — Паоло Мальдини рекордсмен «Милана» по количеству проведённых матчей …   Википедия

  • Список наиболее значимых игроков ФК «Томь» — В данном списке собраны футболисты, сыгравшие значительную роль в истории футбольного клуба «Томь», который в разные годы носил название «Буревестник» (1957), «Томич» (1958, 1961 1963), «Сибэлектромотор» (1959 1960), «Торпедо» (1964 1967, 1974… …   Википедия

  • Великобритания (государство) — Великобритания (Great Britain); официальное название ‒ Соединённое Королевство Великобритании и Северной Ирландии (The United Kingdom of Great Britain and Northern Ireland). I. Общие сведения В. ‒ островное государство на С. З. Европы; занимает… …   Большая советская энциклопедия

  • Германия — (лат. Germania, от Германцы, нем. Deutschland, буквально страна немцев, от Deutsche немец и Land страна)         государство в Европе (со столицей в г. Берлин), существовавшее до конца второй мировой войны 1939 45.          I. Исторический очерк …   Большая советская энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»