Перевод: со всех языков на английский

с английского на все языки

магнитное+отношение

  • 1 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 2 сопротивление


    resistance
    (величина эл. сопротивления)
    сопротивление, которое оказывает электрическая цепь (проводник) движущимся в ней электрическим зарядам, выражается в омах. — а property of conductors which, depending on their dimensions, material, and temperature, determines the current produced by a given difference of potential. the practical unit of resistance is ohm.
    - (механическое, как мера прочности) — strength
    - (элемент, создающий электрическое сопротивление) — resistor
    устройство, включенное в эл. цепь для создания сопротивления протекающему току, сопротивления бывают постоянными и переменными. — а device connected into an electrical circuit to resist the flow of electric current in a circuit. there are two types - fixed and variable.
    -, активное (эл.) — resistance
    -, аэродинамическое — drag (d)
    -, балансировочное — trim drag
    -, буксировочное — tawing drag
    -, включенное в цепь — resistor connected in circuit
    -, волновое — wave drag
    -, выносное (эл.) — remote resistor
    -, гидравлическое — hydraulic resistance
    -, добавочное (омическое) — additional resistance
    -, дополнительное лобовое — additional drag
    -, емкостное (эл.) — capacitive reactance

    opposition offered by capacitors.
    - жидкостиresistance of fluid
    жидкость поглощает основную часть энергии амортстойки, преодолевая сопротивление жидкости, проходящей no каналам. — fluid absorbs most of impact energy of the shock strut, in overcoming resistance of fluid flowing through passages.
    - изоляцииinsulation resistance
    -, индуктивное (аэродин.) — induced drag
    составляющая полного лобового сопротивления крыла, изменяющаяся в зависимости от подъемной силы. — the part of the drag associated with the lift.
    -, индуктивное (эл.) — inductive reactance
    электрическое сопротивление, обусловленное индукционностью цепи синусоидального тока. — opposition to flow of alterhating or pulsating current by the inductance of a circuit.
    -, кажущееся лобовое — apparent drag
    - коррозииresistance to corrosion
    -, лобовое — drag (d)
    проекция полной аэродинамической силы на направление полета (потока) или составляющая этой силы, направленная против движения самолета. — а retarding force acting upon а body in motion through а fluid (air) parallel to the direction of motion of the body.
    -, магнитное — reluctance
    отношение магнитодвижущей силы к магнитному потоку. — resistance of а magnetic path to flow of magnetic lines of force.
    - материаловstrength of materials
    -, нелинейное — nonlinear resistance
    -, общее (напр., потенциометpa) — total resistance. ratio of output resistance to total resistance.
    -, омическое — ohmic resistance
    сопротивление постоянному — resistance to direct current.
    -, относительное (отношение активного сопротивления к омическому) — resistance ratio, relative resistаnce
    -, относительное, выходное — output resistance ratio
    -, переменное — variable resistor
    резистор с изменяемым cопротивлением. напр., реостат, потенциометр. — resistor, the resistance of which may be changed. (rheostat and potentiometer)
    -, переходное (эл.) — contact resistance
    - переходного контактаcontact resistance
    - поверхностного тренияsurface-friction drag

    the part of the drag due to the tangential forces on the surface.
    -, подборное (регулируемое) — adjustable resistor
    -, полное (эл.) — impedance
    полное сопротивление (омическое и реактивное), создаваемое цепью при прохождении переменного тока. измеряется в омах. — the total opposition (i.e. resistance and reactance) a circult offers to a.c. flow. measured in ohms.
    -, полное лобовое — total drag
    -, постоянное (резистор) — fixed resistor
    нерегулируемый резистор, создающий заданную величину сопротивления в электрической цепи. — а resistor designed to introduce only а predetermined amount of resistance into ал electrical circuit and not adjustable.
    - при нулевой подъемной силе, лобовое — zero-lift drag
    правило площадей применяется при расчетах конструкции для получения минимального сопротивления при нулевой подъемной силе. — area rule is а method of design for obtaining minimum zero-lift drag.
    -, профильное — profile drag

    the sum of the surface-friction and form drags.
    -, развязывающее — decoupling resistor
    -, реактивное (эл.) — reactance

    opposition to ас flow.
    -, регулируемое — adjustable resistor

    the resistor which can be adjusted occasionally by the user (by means of a screw).
    - с отводом (эл.) — tapped resistor
    -, суммарное лобовое — total drag
    - тренияsurface-friction drag
    -, угольное (регулятора напряжений) — carbon pile resistor
    - (лобового стекла) удару при столкновении с птицей (прочность)bird strike resistance (of windscreen)
    -, удельное (эл.) — specific resistance

    resistance of а conductor expressed in ohms per unit length per unit area.
    - формы (аэродинамического профиля, тела) — form drag. pressure drag less induced
    -, электрическое — electric resistance

    an ohmmeter is an instrument for measuring electric resistance.
    включать с. (в эл. цепь) — connect the resistor (in circuit)
    оказывать с. (эл.) — offer opposition

    capacitive reactance is opposition offered by capacitors.

    Русско-английский сборник авиационно-технических терминов > сопротивление

  • 3 намагниченность

    fr\ \ \ aimantation
    характеристика состояния металла (изделия), помещенного в магнитное поле, определяемая как отношение суммы магнитных моментов атомов, находящихся в изделии, к его объему

    Терминологический словарь "Металлы" > намагниченность

См. также в других словарях:

  • Магнитное число Прандтля — (Prm)  критерий подобия в магнитной гидродинамике, выражающий отношение сил внутреннего трения к магнитной силе. Оно определяется следующим образом: где:   электропроводность;   магнитная проницаемость;   …   Википедия

  • Магнитное склонение — угол между географическим и магнитным меридианами в точке земной поверхности. Магнитное склонение считается положительным, если северный конец стрелки магнитного компаса отклонен к востоку от географического меридиана, и отрицательным если к… …   Энциклопедия туриста

  • МАГНИТНОЕ ОХЛАЖДЕНИЕ — метод получения темп р ниже 1 К путём адиабатич. размагничивания парамагн. в в. Предложен П. Дебаем и амер. физиком У. Джиоком (1926); впервые осуществлён в 1933. М. о. один из двух практически применяемых методов получения темп р ниже 0,3 К… …   Физическая энциклопедия

  • МАГНИТНОЕ ПОЛЕ — силовое поле, действующее на движущиеся электрич. заряды и на тела, обладающие магнитным моментом (независимо от состояния их движения). М. п. характеризуется вектором магнитной индукции В. Значение В определяет силу, действующую в данной точке… …   Физическая энциклопедия

  • МАГНИТНОЕ СОПРОТИВЛЕНИЕ — характеристики магнитной цепи, отношение магнитодвижущей силы в цепи к созданному в ней магнитному потоку …   Большой Энциклопедический словарь

  • Магнитное поле —         силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом (См. Магнитный момент), независимо от состояния их движения. М. п. характеризуется вектором магнитной индукции В, который определяет:… …   Большая советская энциклопедия

  • Магнитное склонение — У этого термина существуют и другие значения, см. Склонение. Не следует путать с магнитным наклонением. Изменение магнитных склонений за 1590 1990 гг. Магнитное склонение  угол между географическим и магнитным меридианами в точке земной …   Википедия

  • магнитное сопротивление — характеристика магнитной цепи, отношение магнитодвижущей силы в цепи к созданному в ней магнитному потоку. * * * МАГНИТНОЕ СОПРОТИВЛЕНИЕ МАГНИТНОЕ СОПРОТИВЛЕНИЕ, характеристики магнитной цепи, отношение магнитодвижущей силы в цепи к созданному в… …   Энциклопедический словарь

  • ОТНОШЕНИЕ КЕНИГСБЕРГЕРА — (Qn) – отношение естественной остаточной намагниченности образца природного материала к его индуктивной намагниченности, созданной в геомагнитном поле: Qn=Jn/Ji. Отношение Кенигсбергера широко используется для оценки вклада Jn и Ji в магнитные… …   Палеомагнитология, петромагнитология и геология. Словарь-справочник.

  • Магнитное обогащение полезных ископаемых — (англ. magnetic separation, magnetic concentration of minerals; нем. magnetische Aufbereitung f der Bodenschätze)  обогащение полезных ископаемых, основывающееся на действии неоднородного магнитного поля на минеральные частички с… …   Википедия

  • МАГНИТНОЕ СОПРОТИВЛЕНИЕ — характеристика магн. цепи, отношение магнитодвижущей силы в цепи к созданному в ней магн. потоку …   Естествознание. Энциклопедический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»