Перевод: со всех языков на английский

с английского на все языки

допустимое+множество

  • 1 допустимое множество

    1) Computers: feasible set
    3) Economy: permissible set

    Универсальный русско-английский словарь > допустимое множество

  • 2 допустимое множество

    admissible set мат., allowable set, feasible set, opportunity set

    Русско-английский научно-технический словарь Масловского > допустимое множество

  • 3 допустимое множество

    Русско-Английский новый экономический словарь > допустимое множество

  • 4 допустимое множество игроков

    Универсальный русско-английский словарь > допустимое множество игроков

  • 5 допустимое множество портфелей

    Универсальный русско-английский словарь > допустимое множество портфелей

  • 6 допустимое множество игроков

    Русско-английский научно-технический словарь Масловского > допустимое множество игроков

  • 7 допустимое слева множество

    Mathematics: left admissible set

    Универсальный русско-английский словарь > допустимое слева множество

  • 8 допустимое справа множество

    Универсальный русско-английский словарь > допустимое справа множество

  • 9 допустимое слева множество

    Русско-английский научно-технический словарь Масловского > допустимое слева множество

  • 10 допустимое справа множество

    Русско-английский научно-технический словарь Масловского > допустимое справа множество

  • 11 область допустимых решений

    1. opportunity set
    2. feasible space
    3. feasible set
    4. feasible region
    5. constraint region

     

    область допустимых решений

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    область допустимых решений
    допустимое множество
    множество возможностей
    множество допустимых решений
    область допустимых значений
    область свободы решений

    Понятие математического программирования, область (см. рис. к статье Линейное программирование или рис. к статье Нелинейное программирование), в пределах которой осуществляется выбор решений. В принципе она может быть определена разными способами, вплоть до прямого перечисления входящих в нее элементов. В экономических задачах эта область ограничена (отсюда и происходит термин «ограничения«) условиями задачи, наличными ресурсами. Эти ограничения могут быть более жесткими и менее жесткими, соответственно область свободы — более или менее широкой. Она является нулевой, если определяющие ее ограничения составляют несовместную систему уравнений. В линейном программировании область допустимых решений (допустимый многогранник) всегда выпукла и всегда находится в неотрицательном подпространстве многомерного (n-мерного) векторного пространства решений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > область допустимых решений

  • 12 допустимый план

    1. feasible plan

     

    допустимый план
    допустимое решение

    Такой вариант плана, который удовлетворяет всем заданным ограничениям задачи, но не обязательно оптимальный. Например, на рис.Л.1 (к статье Линейное программирование) - это любая точка в пределах области допустимых решений. Поскольку план выражается в виде вектора (совокупности значений переменных модели), то часто вместо термина «Д.п.» говорят «допустимый вектор». Совокупность всех допустимых векторов образует множество возможностей, или допустимое множество, или область допустимых решений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > допустимый план

  • 13 ограничения модели

    1. model constraints

     

    ограничения модели
    Запись условий, в которых действительны расчеты, использующие эту модель. Обычно представляя собою систему уравнений и неравенств, они в совокупности определяют область допустимых решений (допустимое множество). Совместность системы ограничений — обязательное условие разрешимости модели: в случае несовместности этой системы допустимое множество является пустым. На практике в качестве О.м. часто выступают ресурсы сырья и материалов, капиталовложения, возможные варианты расширения предприятий, потребности в готовой продукции и т.п. Как правило, если снять ограничения задачи, то показатели ее решения окажутся лучше, чем при решении, соответствующем реальным условиям. И, наоборот, если сделать ограничения более жесткими и тем самым сократить возможности выбора вариантов, то решение окажется, как правило, хуже. В первом случае оно будет оптимистичным, во втором — пессимистичным. Это, между прочим, открывает возможность приблизительного, прикидочного решения некоторых оптимизационных задач: меняя ограничения, можно оценить диапазон значений, в пределах которых находятся решения задачи. На рис.O.3 а, б показаны некоторые важнейшие типы О.м., определяющих область допустимых решений в задачах математического программирования. (Для наглядности — в 2-мерном пространстве, в его первом квадранте). Ограничения I, II, Y — линейные, III, IY, YI — нелинейные. Линейными ограничениями являются на рис. O.3а также оси координат; иначе говоря, в область допустимых решений здесь входят все точки, удовлетворяющие I и II, но кроме того, отвечающие условию  x1  ? 0, x2 ? 0 (см. Неотрицательность значений). Кривая IY — ограничение переменной x2 сверху, YI — ограничение той же переменной снизу. Запись типа  a? x ?b  называется двусторонним ограничением. Все показанные ограничения относятся к типу ограничений-неравенств. Что касается ограничений-равенств, то они определяют область допустимых решений как точку (в одномерном пространстве), как линию (в двумерном пространстве), как гиперповерхность (в многомерном пространстве). Экономико-математические ограничения разделяются также на детерминированные (см. рис. O.3 а, б) и стохастические (см. рис.O.3 в). В последнем случае серия кривых АВС отображает возможные случайные реализации стохастического ограничения. В задачах математического программирования системы ограничений (т.е. выражающих их уравнений и неравенств) удобно записывать в векторной форме: f (x) = b или f (x) ? b и т.п., где x — вектор-столбец управляющих переменных xi (i = 1, 2, …, n), b — вектор-столбец, компонентами которого являются функции ограничений bi (примеры см. в статье Математическое программирование). В моделях планирования ограничения снизу имеют смысл плановых заданий (которые допустимо перевыполнять), ограничения сверху — смысл «квот» на выпуск тех или иных видов продукции. При совпадении ограничений сверху и снизу экономический субъект полностью лишается свободы принятия решений в данной области. В системах моделей различаются общесистемные (или глобальные) О.м., имеющие силу для всей моделируемой экономической системы, и локальные ограничения для моделей отдельных подсистем. Несовместность локальных ограничений с общесистемными приводит к неразрешимости системы моделей.   Рис.О.3  Линейные и нелинейные ограничения
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > ограничения модели

  • 14 Вейерштрасса теорема

    1. Weierstrass theorem

     

    Вейерштрасса теорема
    Фундаментальная теорема математического программирования, формулирующая условия существования глобального максимума (см. Максимизация). Заключается в том, что если допустимое множество X является компактным и непустым (см. статью Множество), то непрерывная целевая функция F(x), определенная на этом множестве, достигает глобального максимума на внутренней или граничной точке множества X. При обобщении этой теоремы на случай бесконечномерного пространства (см. Многомерное, n-мерное пространство), можно получить основную теорему существования для задач управления — т.н. обобщенную теорему Вейерштрасса. Согласно этой теореме, решение общей задачи управления существует, если целевой функционал является непрерывным функционалом от функций управления и если подмножество бесконечномерного пространства, к которому принадлежат управления (см. Управление, значение 2), является компактным.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > Вейерштрасса теорема

  • 15 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 16 вершина допустимого многогранника

    1. corner point

     

    вершина допустимого многогранника
    (области допустимых решений в задачах линейного программирования) - точка пересечения линейных ограничений (см. рис.Л.1. к статье Линейное программирование). Поскольку множество допустимых решений в задаче линейного программирования всегда выпукло, вершинная точка является крайней точкой множества и она может быть принята за допустимое базисное решение задачи.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > вершина допустимого многогранника

См. также в других словарях:

  • ДОПУСТИМОЕ МНОЖЕСТВО — (feasible set) Множество вариантов распределения ресурсов, которое удовлетворяет всем введенным в экономическую модель ограничениям. Для потребителя, например, допустимым множеством являются все планируемых расходы, не выходящие за рамки его… …   Экономический словарь

  • Допустимое множество — [opportunity set, feasible set] см. Допустимый план, Область допустимых решений …   Экономико-математический словарь

  • Допустимый план, допустимое решение — [feasible plan] такой вариант плана, который удовлетворяет всем заданным ограничениям задачи, но не обязательно оптимальный. Например, на рис.Л.1  (к статье Линейное программирование) это любая точка в пределах области допустимых решений.… …   Экономико-математический словарь

  • Математическое программирование —         математическая дисциплина, посвященная теории и методам решения задач о нахождении экстремумов функций на множествах, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами).          М. п. раздел науки об… …   Большая советская энциклопедия

  • область допустимых решений — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] область допустимых решений допустимое множество множество возможностей множество допустимых решений область допустимых значений область свободы решений Понятие математического …   Справочник технического переводчика

  • МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ — математическая дисциплина, посвященная теории и методам решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами). М. п.… …   Математическая энциклопедия

  • допустимый план — допустимое решение Такой вариант плана, который удовлетворяет всем заданным ограничениям задачи, но не обязательно оптимальный. Например, на рис.Л.1 (к статье Линейное программирование) это любая точка в пределах области допустимых решений.… …   Справочник технического переводчика

  • Оптимизация (математика) — У этого термина существуют и другие значения, см. Оптимизация. Оптимизация  в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного …   Википедия

  • Задача оптимизации — Задачей оптимизации в математике называется задача о нахождении экстремума (минимума или максимума) вещественной функции в некоторой области. Как правило, рассматриваются области, принадлежащие и заданные набором равенств и неравенств. Содержание …   Википедия

  • Ограничения модели — [model constraints] запись условий, в которых действительны расчеты, использующие эту модель. Обычно представляя собою систему уравнений и неравенств, они в совокупности определяют область допустимых решений (допустимое множество). Совместность… …   Экономико-математический словарь

  • ограничения модели — Запись условий, в которых действительны расчеты, использующие эту модель. Обычно представляя собою систему уравнений и неравенств, они в совокупности определяют область допустимых решений (допустимое множество). Совместность системы ограничений… …   Справочник технического переводчика

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»