Перевод: с русского на все языки

со всех языков на русский

давление+окружающей+среды

  • 81 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 82 расходомер жидкости (газа)

    1. débitmètre

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 83 взрывоопасная среда

    1. hazardous area (1)
    2. explosive atmosphere (2)
    3. explosive atmosphere

     

    взрывоопасная среда
    1. Среда внутри или снаружи помещения, в которой имеется взрывоопасная смесь или предполагается ее наличие в объеме, который требует специальных мер предосторожности, предъявляемых к конструкции, установке и применению электрооборудования.
    Примечания
    Классификация взрывоопасных газовых сред (см. 426-03-03,426-03-04 и 426-03-05) приведена в МЭК 60079-10.
    Классификация взрывоопасных пылевых сред (см. 426-03-23,426-03-24 и 426-03-25) приведена в МЭК61241 -10.
    [ ГОСТ Р МЭК 60050-426-2006]


    взрывоопасная среда
    2. Смесь с воздухом, при атмосферных условиях, горючих веществ в виде газа, пара, пыли, волокон или летучих частиц, в которой после воспламенения происходит самоподдерживающееся распространение пламени.
    [ ГОСТ Р МЭК 60050-426-2006]

    Взрывоопасная среда

    Взрывоопасную среду могут образовать: смеси веществ (газов, паров, пылей) с воздухом и другими окислителями (кислород, озон, хлор, окислы азота и др.); вещества, склонные к взрывному превращению (ацетилен, озон, гидразин и др.).
    [ ГОСТ 12.1.010-76]

    Предотвращение возникновения источника инициирования взрыва должно быть обеспечено:
    - регламентацией огневых работ;
    - предотвращением нагрева оборудования до температуры самовоспламенения взрывоопасной среды;
    - применением средств, понижающих давление во фронте ударной волны;
    - применением материалов, не создающих при соударенииискр, способных инициировать взрыв взрывоопасной среды;
    - применением средств защиты от атмосферного и статического электричества, блуждающих токов, токов замыкания на землю и т. д.;
    [ ГОСТ 12.1.010-76]

    Настоящий стандарт устанавливает требования безопасности электрооборудования, непосредственно связанного с опасностью воспламенения окружающей его взрывоопасной среды.
    [ ГОСТ Р 51330. 0-99 ( МЭК 60079-0-98)]

    Взрывоопасная атмосфера

    Настоящий стандарт входит в комплекс государственных стандартов, разрабатываемых
    Техническим комитетом по стандартизации ТК 403 “Взрывозащищенное и рудничное
    электрооборудование” на основе применения международных стандартов МЭК на
    взрывозащищенное электрооборудование.
    Стандарт содержит технические требования и методы испытаний электрооборудования,
    взрывозащита которого обеспечивается путем герметизации электрооборудования, его
    составных частей и Ех компонентов электроизоляционным компаундом, предотвращающим
    доступ взрывоопасной атмосферы к частям электрооборудования, способным вызвать ее воспламенение за счет искрения или нагрева.

    [ ГОСТ Р 51330. 17-99 ( МЭК 60079-18-92)]

    Переносное и передвижное электрооборудование общего назначения, сварочное
    электрооборудование и т.д. не должно использоваться во взрывоопасной зоне до тех пор, пока порядок его эксплуатации не будет взят под контроль, а в местах его эксплуатации не будет гарантировано отсутствие взрывоопасной атмосферы (кроме случаев, регламентируемых Правилами устройства электроустановок.

    [ ГОСТ Р 51330. 16-99 ( МЭК 60079-17-96)]

    Те же меры предосторожности необходимо принять, если изготовитель предусматривает использование машины в потенциально взрывоопасной атмосфере.
    [ ГОСТ Р 51333-99]

    Тушение пожаров класса С возможно, если при этомне образуется взрывоопасная атмосфера.
    [НПБ 88-2001]

    Тематики

    Синонимы

    EN

    3.1.1 взрывоопасная среда (explosive atmosphere): Смесь с воздухом при атмосферном давлении горючих веществ в форме газа, пыли, пара или аэрозоля, в которой после воспламенения горение распространяется на весь объем смеси.

    Источник: ГОСТ Р 52350.14-2006: Электрооборудование для взрывоопасных газовых сред. Часть 14. Электроустановки во взрывоопасных зонах (кроме подземных выработок) оригинал документа

    3.19 взрывоопасная среда (explosive atmosphere): Смесь горючих веществ в виде газов, паров, тумана или пыли с воздухом при атмосферных условиях, в которой после воспламенения горение распространяется на всю несгоревшую смесь.

    Источник: ГОСТ Р ЕН 1127-2-2009: Взрывоопасные среды. Взрывозащита и предотвращение взрыва. Часть 2. Основополагающая концепция и методология (для подземных выработок)

    3.3.1 взрывоопасная среда (explosive atmosphere): Смесь с воздухом при атмосферных условиях горючих веществ в виде газа, пара или тумана, горение в которой после воспламенения распространяется на весь объем взрывоопасной смеси.

    Источник: ГОСТ Р 54070-2010: Электрооборудование для потенциально взрывоопасных сред. Ручное электростатическое распылительное оборудование оригинал документа

    3.1 взрывоопасная среда (explosive atmosphere): Смесь горючих веществ в виде газов, паров, тумана или пыли с воздухом при атмосферных условиях, в которой после воспламенения горение распространяется на всю несгоревшую смесь.

    Источник: ГОСТ Р ЕН 1834-3-2010: Двигатели внутреннего сгорания поршневые. Требования безопасности к двигателям, предназначенным для применения в потенциально взрывоопасных средах. Часть 3. Двигатели Группы III для применения в средах, содержащих горючую пыль

    3.1 взрывоопасная среда (explosive atmosphere): Смесь горючих веществ в виде рудничного газа и/или горючей пыли с воздухом при атмосферных условиях, в которой после воспламенения горение распространяется на всю несгоревшую смесь.

    Источник: ГОСТ Р ЕН 1834-2-2010: Двигатели внутреннего сгорания поршневые. Требования безопасности к двигателям, предназначенным для применения в потенциально взрывоопасных средах. Часть 2. Двигатели Группы I для применения в подземных выработках, опасных по воспламенению рудничного газа и/или горючей пыли

    3.1 взрывоопасная среда (explosive atmosphere): Смесь горючих веществ в виде газов, паров или тумана с воздухом при атмосферных условиях, в которой после воспламенения горение распространяется на всю несгоревшую смесь.

    Источник: ГОСТ Р ЕН 1834-1-2010: Двигатели внутреннего сгорания поршневые. Требования безопасности к двигателям, предназначенным для применения в потенциально взрывоопасных средах. Часть 1. Двигатели Группы II для применения в средах, содержащих горючий газ и пар

    3.1 взрывоопасная среда (explosive atmosphere): Смесь горючих веществ в виде рудничного газа и/или горючей пыли с воздухом при атмосферных условиях, в которой после воспламенения горение распространяется на всю несгоревшую смесь.

    Источник: ГОСТ 31440.2-2011: Двигатели внутреннего сгорания поршневые. Требования безопасности к двигателям, предназначенным для применения в потенциально взрывоопасных средах. Часть 2. Двигатели Группы I для применения в подземных выработках, опасных по воспламенению рудничного газа и/или горючей пыли оригинал документа

    3.1 взрывоопасная среда (explosive atmosphere): Смесь горючих веществ в виде газов, паров или тумана с воздухом при атмосферных условиях, в которой после воспламенения горение распространяется на всю несгоревшую смесь.

    Источник: ГОСТ 31440.1-2011: Двигатели внутреннего сгорания поршневые. Требования безопасности к двигателям, предназначенным для применения в потенциально взрывоопасных средах. Часть 1. Двигатели группы II для применения в средах, содержащий горючий газ и пар оригинал документа

    3.1 взрывоопасная среда (explosive atmosphere): Смесь горючих веществ в виде газов, паров, тумана или пыли с воздухом при атмосферных условиях, в которой после воспламенения горение распространяется на всю несгоревшую смесь.

    Источник: ГОСТ 31440.3-2011: Двигатели внутреннего сгорания поршневые. Требования безопасности к двигателям, предназначенным для применения в потенциально взрывоопасных средах. Часть 3. Двигатели Группы III для применения в средах, содержащих горючую пыль оригинал документа

    3.19 взрывоопасная среда (explosive atmosphere): Химически активная смесь горючих веществ в форме газа, пара, влаги или пыли с воздухом при атмосферных условиях, находящаяся в таких условиях, при которых может произойти взрыв [35].

    Источник: ГОСТ Р 54110-2010: Водородные генераторы на основе технологий переработки топлива. Часть 1. Безопасность оригинал документа

    3.1 взрывоопасная среда (explosive atmosphere): Смесь с воздухом при атмосферных условиях горючих веществ в виде газа, пара, аэрозоля или пыли, в которой после воспламенения происходит самоподдерживающееся распространение пламени.

    Источник: ГОСТ Р МЭК 61241-17-2009: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 17. Проверка и техническое обслуживание электроустановок во взрывоопасных средах (кроме подземных выработок) оригинал документа

    3.5 взрывоопасная среда (explosive atmosphere): Смесь с воздухом при атмосферных условиях, горючих веществ в виде газа, пара, тумана или пыли, горение в которой после воспламенения распространяется на весь объем взрывоопасной смеси.

    Источник: ГОСТ Р ЕН 50303-2009: Оборудование группы I, уровень взрывозащиты Ма для применения в среде, опасной по воспламенению рудничного газа и/или угольной пыли

    Русско-английский словарь нормативно-технической терминологии > взрывоопасная среда

  • 84 отбор

    Влияние отбора на концентрацию гена в данной популяции.

    Предложенный Дарвиным принцип выживания ( в природе) представителей вида, наиболее приспособленных к окружающей среде.

    Выбор родителей для получения потомства на основе одного или нескольких генетических признаков.

    Отбор, в результате которого выживают генотипы, наиболее приспособленные к резким воздействиям внешних условий.

    Чередование направлений отбора в результате циклических изменений среды.

    Русско-английский словарь терминов по микробиологии > отбор

  • 85 absolute permeability

    1. well lining
    2. injection well

    16 ловушка углеводородов

    Примечание - Рассматриваются залежи, по количеству, качеству и условиям залегания пригодные для промышленной разработки.

    20 контур нефтеносности

    Примечание - Основные виды пластовой энергии: энергия напора пластовых вод, свободного и выделяющегося при понижении давления растворенного в нефти газа, упругости сжатых пород и жидкостей и энергия напора, обусловленная тяжестью нефти.

    24 гидродинамическое взаимодействие продуктивных пластов

    Комплекс геолого-разведочных работ, направленных на выявление промышленно ценных скоплений нефти [газа] и на их предварительную геолого-экономическую оценку.

    Комплекс работ, позволяющий оценить промышленное значение месторождения нефти [газа], выявленного на этапе поиска, и подготовить его к разработке.

    Способ бурения скважин путем разрушения горной породы за счет вращения долота, прижатого к забою.

    34 турбинное бурение

    36 наклонно-направленное бурение

    Примечание - Кустовое бурение целесообразно при разработке месторождений нефти и газа, расположенных в акватории морей, сильно заболоченной местности или в местности со сложным рельефом поверхности.

    Примечания

    1 Строительство многоствольной скважины дает возможность избежать обустройства многочисленных площадок.

    2 Возможно сооружение многоствольных горизонтальных скважин, в частности, при раздельной или совместной эксплуатации нескольких продуктивных пластов.

    42 забойное давление

    44 ингибирование (нефтегазопромысловая геология)

    well lining

    50 испытание буровой скважины

    Примечание - Различают открытое и закрытое фонтанирование нефти (нефтяной фонтан) и газа (газовый фонтан).

    54 газовая скважина

    injection well

    61 глушение буровой скважины

    63 текущий ремонт буровой скважины

    Примечание - При ликвидации буровой скважины проводят комплекс работ, исключающий ее негативное влияние на состояние недр и окружающей природной среды.


    Источник: ГОСТ Р 53554-2009: Поиск, разведка и разработка месторождений углеводородного сырья. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > absolute permeability

См. также в других словарях:

  • давление окружающей среды — aplinkos slėgis statusas T sritis automatika atitikmenys: angl. ambient pressure vok. Umgebungsdruck, m rus. давление окружающей среды, n pranc. pression ambiante, f …   Automatikos terminų žodynas

  • условия окружающей среды — 3.7 условия окружающей среды: Внешние по отношению к вводу физические условия, в т.ч. температура, давление, излучение, влажность, испарения химических продуктов, но не ограниченные ими, которые предполагаются как нормальные эксплуатационные… …   Словарь-справочник терминов нормативно-технической документации

  • Устойчивость окружающей среды — позволит поддерживать жизнь человека в нынешнем её виде. Снимок Blue Marble, NASA: 2001 (слева), 2002 (справа). Устойчивость окр …   Википедия

  • микропроцессорное многофункциональное устройство контроля параметров окружающей среды — (относительная влажность, давление, скорость, температура наружного воздуха) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN microprocessor based multifunction environmental monitor …   Справочник технического переводчика

  • Давление осмотическое — внутриклеточное давление, превышение которого над давлением в соседней клетке или в почетном растворе позволяет получать воду и растворенные в ней вещества или, наоборот, отдавать их им более энергично, чем при уравновешенном давлении. У… …   Экологический словарь

  • Давление избыточное — разность двух абсолютных давлений, наружного гидростатического и внутреннего. Источник: ВН 39 1.9 005 98: Нормы проектирования и строительства морского газопровода 8. Давление избыточное разность абсолютного давления и давления окружающей среды,… …   Словарь-справочник терминов нормативно-технической документации

  • Абиотические факторы окружающей среды — Абиотические факторы компоненты и явления неживой, неорганической природы, прямо или косвенно воздействующие на живые организмы. Основными абиотическими факторами среды являются: температура; свет; вода; солёность; кислород; магнитное поле Земли; …   Википедия

  • давление пара — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN vapour pressure The partial pressure of water vapour in the atmosphere. For a liquid or solid, the pressure of the vapour in equilibrium with the liquid or solid. (Source: MGH) …   Справочник технического переводчика

  • давление — 2.3 давление: Механическая величина, характеризующая интенсивность сил, действующих на внутреннюю (внутреннее давление среды) или наружную (внешнее давление воды, грунта) поверхность трубопровода по нормали к ней. Источник: СТО Газпром 2 2.1 318… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р МЭК 60079-13-2010: Взрывоопасные среды. Часть 13. Защита оборудования помещениями под избыточным давлением «p» — Терминология ГОСТ Р МЭК 60079 13 2010: Взрывоопасные среды. Часть 13. Защита оборудования помещениями под избыточным давлением «p» оригинал документа: 3.13 верхний концентрационный предел распространения пламени, ВКПР (upper explosive limit, UEL) …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р МЭК 60079-19-2011: Взрывоопасные среды. Часть 19. Ремонт, проверка и восстановление электрооборудования — Терминология ГОСТ Р МЭК 60079 19 2011: Взрывоопасные среды. Часть 19. Ремонт, проверка и восстановление электрооборудования оригинал документа: 3.16 взрывозащита вида «d» (type of protection «d»): Вид взрывозащиты электрооборудования, при котором …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»