Перевод: с русского на все языки

со всех языков на русский

(как+элемент+конструкции)

  • 21 ограждение

    1. guard
    2. barrier

     

    ограждение
    Элемент, обеспечивающий защиту от прямого контакта в любом обычном направлении (минимум IP2X) и от электрической дуги, возникающей при срабатывании коммутационных аппаратов и других подобных устройств.
    Примечание — Ограждение, на которое выведены органы управления, называется ограждением с оперативной поверхностью или оперативной поверхностью.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    ограждение
    Перегородка, спроектированная как часть машины с целью обеспечения защиты персонала.
    Примечание 1
    Защитное ограждение может действовать:
    -самостоятельно; в этом случае его действие будет эффективным, если оно «закрыто» (перемещаемое ограждение) или «прочно удерживается на месте» (неподвижное ограждение);
    -вместе с блокировочным устройством с фиксацией или без нее; в этом случае защита обеспечивается в любом положении ограждения.
    Примечание 2
    Название защитного ограждения зависит от его конструкции, например кожух, щит, крышка, экран, дверца, ограждение по периметру.
    Примечание 3
    Типы защитных ограждений и требования, предъявляемые к ним по ИСО 12100-2, пункт 5 3.2 и ИСО 14120.
    [ ГОСТ Р ИСО 12100-1:2007]

    ограждение
    Элемент, обеспечивающий защиту от прямых контактов в обычных направлениях доступа.
    [ ГОСТ Р МЭК 60204-1-2007]

    ограждение
    Часть, обеспечивающая защиту от прямого контакта в любом обычном направлении.
    [ ГОСТ Р МЭК 61439.1-2013]

    EN

    barrier
    part providing protection against direct contact from any usual direction of access
    [IEC 60204-1-2006]
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    barrière
    partie assurant la protection contre les contacts directs dans toute direction habituelle d'accès
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    A partition is an element of separation between two cubicles, whereas a barrier protects the operator against direct contact and against the effects of circuit-breaker arcs propagating in the direction of usual access.
    [ABB]

    Перегородка представляет собой элемент, разделяющий два шкафа, в то время как ограждение защищает оператора от прямого прикосновения и от воздействия дуги, возникающей при коммутации автоматического выключателя и распространяющейся в направлении обычного доступа.
    [Перевод Интент]

    Тематики

    EN

    FR

    3.25 ограждение (guard): Перегородка, спроектированная как часть машины с целью обеспечения защиты персонала.

    Примечание 1 - Защитное ограждение может действовать:

    - самостоятельно; в этом случае его действие будет эффективным, если оно «закрыто» (перемещаемое ограждение) или «прочно удерживается на месте» (неподвижное ограждение);

    - вместе с блокировочным устройством с фиксацией или без нее; в этом случае защита обеспечивается в любом положении ограждения.

    Примечание 2 - Название защитного ограждения зависит от его конструкции, например кожух, щит, крышка, экран, дверца, ограждение по периметру.

    Примечание 3 - Типы защитных ограждений и требования, предъявляемые к ним по ИСО 12100-2, пункт 5 3.2 и ИСО 14120 [7].

    Источник: ГОСТ Р ИСО 12100-1-2007: Безопасность машин. Основные понятия, общие принципы конструирования. Часть 1. Основные термины, методология оригинал документа

    Русско-английский словарь нормативно-технической терминологии > ограждение

  • 22 отказ

    1. fault
    2. fauit
    3. failure
    4. -

     

    отказ
    Нарушение способности оборудования выполнять требуемую функцию.
    Примечания
    1. После отказа оборудование находится в неисправном состоянии.
    2. «Отказ» является событием, в отличие от «неисправности», которая является состоянием.
    3. Это понятие, как оно определено, не применяют к оборудованию объекту, состоящему только из программных средств.
    4. На практике термины «отказ» и «неисправность» часто используют как синонимы.
    [ГОСТ ЕН 1070-2003]
    [ ГОСТ Р ИСО 13849-1-2003]
    [ ГОСТ Р МЭК 60204-1-2007]

    отказ
    Событие, заключающееся в нарушении работоспособного состояния объекта.
    [ ГОСТ 27.002-89]
    [ОСТ 45.153-99]
    [СТО Газпром РД 2.5-141-2005]
    [СО 34.21.307-2005]

    отказ
    Событие, заключающееся в нарушении работоспособного состояния машины и (или) оборудования вследствие конструктивных нарушений при проектировании, несоблюдения установленного процесса производства или ремонта, невыполнения правил или инструкций по эксплуатации.
    [Технический регламент о безопасности машин и оборудования]

    EN

    failure
    the termination of the ability of an item to perform a required function
    NOTE 1 – After failure the item has a fault.
    NOTE 2 – "Failure" is an event, as distinguished from "fault", which is a state.
    NOTE 3 – This concept as defined does not apply to items consisting of software only.
    [IEV number 191-04-01]
    NOTE 4 - In practice, the terms fault and failure are often used synonymously
    [IEC 60204-1-2006]

    FR

    défaillance
    cessation de l'aptitude d'une entité à accomplir une fonction requise
    NOTE 1 – Après défaillance d'une entité, cette entité est en état de panne.
    NOTE 2 – Une défaillance est un passage d'un état à un autre, par opposition à une panne, qui est un état.
    NOTE 3 – La notion de défaillance, telle qu'elle est définie, ne s'applique pas à une entité constituée seulement de logiciel.
    [IEV number 191-04-01]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    3.5 отказ (failure): Прекращение способности элемента исполнять требуемую функцию.

    Примечания

    1 После отказа элемент становится неисправным.

    2 Отказ является событием в отличие от неисправности, которая является состоянием.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.3. Отказ

    Failure

    Событие, заключающееся в нарушении работоспособного состояния объекта

    Источник: ГОСТ 27.002-89: Надежность в технике. Основные понятия. Термины и определения оригинал документа

    3.4 отказ (failure): Утрата изделием способности выполнять требуемую функцию.

    Примечание - Отказ является событием в отличие от неисправности, которая является состоянием.

    Источник: ГОСТ Р ИСО 13379-2009: Контроль состояния и диагностика машин. Руководство по интерпретации данных и методам диагностирования оригинал документа

    3.2 отказ (failure): Утрата объектом способности выполнять требуемую функцию1).

    ___________

    1) Более детально см. [1].

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    3.29 отказ (failure): Событие, происходящее с элементом или системой и вызывающее один или оба следующих эффекта: потеря элементом или системой своих функций или ухудшение работоспособности до степени существенного снижения безопасности установки, персонала или окружающей среды.

    Источник: ГОСТ Р 54382-2011: Нефтяная и газовая промышленность. Подводные трубопроводные системы. Общие технические требования оригинал документа

    3.1.3 отказ (failure): Потеря объектом способности выполнять требуемую функцию.

    Примечания

    1. После отказа объект имеет неисправность.

    2. Отказ - это событие в отличие от неисправности, которое является состоянием.

    3. Данное понятие по определению не касается программного обеспечения в чистом виде.

    [МЭК 60050-191 ][1]

    Источник: ГОСТ Р 50030.5.4-2011: Аппаратура распределения и управления низковольтная. Часть 5.4. Аппараты и элементы коммутации для цепей управления. Метод оценки рабочих характеристик слаботочных контактов. Специальные испытания оригинал документа

    1. Отказ - событие, заключающееся в нарушении работоспособного состояния конструкций, зданий и сооружений.

    2. Обследование конструкций - комплекс изыскательских работ по сбору данных о техническом состоянии конструкций, необходимых для оценки технического состояния и разработки проекта восстановления их несущей способности, усиления или реконструкции.

    Источник: РД 03-422-01: Методические указания по проведению экспертных обследований шахтных подъемных установок

    3.5 отказ (failure): Неспособность конструкции, системы или компонента функционировать в пределах критериев приемлемости.

    [Глоссарий МАГАТЭ по безопасности, издание 2.0, 2006]

    Примечание 1 - Отказ - это результат неисправности аппаратных средств, дефекта программного обеспечения, неисправности системы или ошибки оператора, связанной с ними сигнальной траекторией, которая и вызывает отказ.

    Примечание 2 - См. также «дефект», «отказ программного обеспечения».

    Источник: ГОСТ Р МЭК 62340-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Требования по предотвращению отказов по общей причине оригинал документа

    3.3 отказ (failure): Утрата изделием способности выполнять требуемую функцию.

    Примечание - Обычно отказ является следствием неисправности одного или нескольких узлов машины.

    Источник: ГОСТ Р ИСО 17359-2009: Контроль состояния и диагностика машин. Общее руководство по организации контроля состояния и диагностирования оригинал документа

    3.6.4 отказ (failure): Прекращение способности функционального блока выполнять необходимую функцию.

    Примечания

    1. Определение в МЭС 191-04-01 является идентичным, с дополнительными комментариями [ИСО/МЭК 2382-14-01-11].

    2. Соотношение между сбоями и отказами в МЭК 61508 и МЭС 60050(191) см. на рисунке 4.

    3. Характеристики требуемых функций неизбежно исключают определенные режимы работы, некоторые функции могут быть определены путем описания режимов, которых следует избегать. Возникновение таких режимов представляет собой отказ.

    4. Отказы являются либо случайными (в аппаратуре), либо систематическими (в аппаратуре или в программном обеспечении), см. 3.6.5 и 3.6.6.

    x012.jpg

    x014.jpg

    x016.jpg

    x018.jpg

    Примечания

    1. Как показано на рисунке 4а), функциональный блок может быть представлен в виде многоуровневой иерархической конструкции, каждый из уровней которой может быть, в свою очередь, назван функциональным блоком. На уровне i «причина» может проявить себя как ошибка (отклонение от правильного значения или состояния) в пределах функционального блока, соответствующего данному уровню i. Если она не будет исправлена или нейтрализована, эта ошибка может привести к отказу данного функционального блока, который в результате перейдет в состояние F, в котором он более не может выполнять необходимую функцию (см. рисунок 4b)). Данное состояние F уровня i может в свою очередь проявиться в виде ошибки на уровне функционального блока i - 1, которая, если она не будет исправлена или нейтрализована, может привести к отказу функционального блока уровня i - 1.

    2. В этой причинно-следственной цепочке один и тот же элемент («объект X») может рассматриваться как состояние F функционального блока уровня i, в которое он попадает в результате отказа, а также как причина отказа функционального блока уровня i - 1. Данный «объект X» объединяет концепцию «отказа» в МЭК 61508 и ИСО/МЭК 2382-14, в которой внимание акцентируется на причинном аспекте, как показано на рисунке 4с), и концепцию «отказа» из МЭС 60050(191), в которой основное внимание уделено аспекту состояния, как показано на рисунке 4d). В МЭС 60050(191) состояние F называется отказом, а в МЭК 61508 и ИСО/МЭК 2382-14 оно не определено.

    3. В некоторых случаях отказ или ошибка могут быть вызваны внешним событием, таким как молния или электростатические помехи, а не внутренним отказом. Более того, ошибка (в обоих словарях) может возникать без предшествующего отказа. Примером такой ошибки может быть ошибка проектирования.

    Рисунок 4 - Модель отказа

    Источник: ГОСТ Р МЭК 61508-4-2007: Функциональная безопасность систем электрических, электронных, программируемых электронных, связанных с безопасностью. Часть 4. Термины и определения оригинал документа

    3.21 отказ (failure): Отклонение реального функционирования от запланированного (см. рисунок 3). [МЭК 60880-2, пункт 3.8]

    Примечание 1 - Отказ является результатом сбоя в аппаратуре, программном обеспечении, системе или ошибки оператора или обслуживания и отражается на прохождении сигнала.

    Примечание 2 - См. также «дефект», «отказ программного обеспечения».

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.22 отказ (failure): Событие, заключающееся в нарушении работоспособного состояния элементов или систем платформы.

    Источник: ГОСТ Р 54483-2011: Нефтяная и газовая промышленность. Платформы морские для нефтегазодобычи. Общие требования оригинал документа

    3.1.7. отказ (fauit):

    Состояние объекта, характеризуемое неспособностью выполнять требуемую функцию, за исключением состояний, связанных с предупредительным техническим обслуживанием или другими плановыми мероприятиями, или вследствие недостатка внешних ресурсов.

    Примечание 1. - Отказ часто является результатом повреждения самого объекта, но может произойти и без предварительного повреждения объекта.

    (МЭК 60204-1, п. 3.24).

    Источник: ГОСТ Р МЭК 60519-1-2005: Безопасность электротермического оборудования. Часть 1. Общие требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > отказ

  • 23 простое электрооборудование

    1. simple apparatus

     

    простое электрооборудование
    Электрический элемент или комбинация элементов простой конструкции с конкретными электрическими параметрами, которые не нарушают искробезопасность цепи, в которой они используются.
    [ ГОСТ Р МЭК 60050-426-2006]


    Тематики

    EN

    3.1.5 простое электрооборудование (simple apparatus): Электрический элемент или комбинация элементов простой конструкции с точно определенными электрическими параметрами, не нарушающие искробезопасности цепи, в которой они используются.

    Источник: ГОСТ Р 52350.11-2005: Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь "I" оригинал документа

    3.4.5 простое электрооборудование (simple apparatus): Электрическое устройство или совокупность электрических устройств простой конструкции с установленными значениями электрических параметров, которые соответствуют параметрам искробезопасной электрической цепи, в которой они используются.

    Примечание - Считают простым следующее электрооборудование:

    a) пассивные электрические устройства, например выключатели, распределительные коробки, резисторы и простые полупроводниковые приборы;

    b) электрические устройства, способные накапливать энергию, с установленными электрическими параметрами, значения которых учитывают при определении искробезопасности цепей (например конденсаторы или катушки индуктивности);

    c) электрические устройства, способные генерировать энергию, например термопары и фотоэлементы, параметры которых не превышают 1,5 В, 100 мА и 25 мВт. Значения индуктивности или емкости, которыми обладают эти электрические устройства, учитывают, как указано в подпункте b).

    Источник: ГОСТ Р 52350.14-2006: Электрооборудование для взрывоопасных газовых сред. Часть 14. Электроустановки во взрывоопасных зонах (кроме подземных выработок) оригинал документа

    3.5.4 простое электрооборудование (simple apparatus): Электрическое устройство или совокупность электрических устройств простой конструкции с установленными значениями электрических параметров, которые соответствуют параметрам искробезопасной электрической цепи, в которой они используются.

    Примечание - Считают простым следующее электрооборудование:

    a) пассивные электрические устройства, например выключатели, распределительные коробки, резисторы и простые полупроводниковые приборы;

    b) электрические устройства, способные накапливать энергию, с установленными электрическими параметрами, значения которых учитывают при определении искробезопасности цепей (например конденсаторы или катушки индуктивности);

    c) электрические устройства, способные генерировать энергию, например термопары и фотоэлементы, параметры которых не превышают 1,5 В, 100 мА и 25 мВт. Значения индуктивности или емкости, которыми обладают эти электрические устройства, учитывают, как указано в перечислении b).

    Источник: ГОСТ Р МЭК 60079-14-2008: Взрывоопасные среды. Часть 14. Проектирование, выбор и монтаж электроустановок оригинал документа

    Русско-английский словарь нормативно-технической терминологии > простое электрооборудование

  • 24 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 25 импульсное перенапряжение

    1. surge voltage
    2. surge overvoltage
    3. surge
    4. spike
    5. pulse surge
    6. power surge
    7. peak overvoltage
    8. high-voltage surge
    9. electrical surge
    10. damaging transient
    11. damaging surge

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > импульсное перенапряжение

  • 26 ограждение

    1. barrière

     

    ограждение
    Элемент, обеспечивающий защиту от прямого контакта в любом обычном направлении (минимум IP2X) и от электрической дуги, возникающей при срабатывании коммутационных аппаратов и других подобных устройств.
    Примечание — Ограждение, на которое выведены органы управления, называется ограждением с оперативной поверхностью или оперативной поверхностью.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    ограждение
    Перегородка, спроектированная как часть машины с целью обеспечения защиты персонала.
    Примечание 1
    Защитное ограждение может действовать:
    -самостоятельно; в этом случае его действие будет эффективным, если оно «закрыто» (перемещаемое ограждение) или «прочно удерживается на месте» (неподвижное ограждение);
    -вместе с блокировочным устройством с фиксацией или без нее; в этом случае защита обеспечивается в любом положении ограждения.
    Примечание 2
    Название защитного ограждения зависит от его конструкции, например кожух, щит, крышка, экран, дверца, ограждение по периметру.
    Примечание 3
    Типы защитных ограждений и требования, предъявляемые к ним по ИСО 12100-2, пункт 5 3.2 и ИСО 14120.
    [ ГОСТ Р ИСО 12100-1:2007]

    ограждение
    Элемент, обеспечивающий защиту от прямых контактов в обычных направлениях доступа.
    [ ГОСТ Р МЭК 60204-1-2007]

    ограждение
    Часть, обеспечивающая защиту от прямого контакта в любом обычном направлении.
    [ ГОСТ Р МЭК 61439.1-2013]

    EN

    barrier
    part providing protection against direct contact from any usual direction of access
    [IEC 60204-1-2006]
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    barrière
    partie assurant la protection contre les contacts directs dans toute direction habituelle d'accès
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    A partition is an element of separation between two cubicles, whereas a barrier protects the operator against direct contact and against the effects of circuit-breaker arcs propagating in the direction of usual access.
    [ABB]

    Перегородка представляет собой элемент, разделяющий два шкафа, в то время как ограждение защищает оператора от прямого прикосновения и от воздействия дуги, возникающей при коммутации автоматического выключателя и распространяющейся в направлении обычного доступа.
    [Перевод Интент]

    Тематики

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > ограждение

  • 27 отдельная конструкция

    1. member

     

    отдельная конструкция
    строительный элемент

    Исходная часть конструктивной системы, которую можно рассматривать отдельно с учетом граничных условий и схемы опирания (например, балка, колонна, а также сборные конструкции, такие как фермы и т. д).
    [Англо-русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > отдельная конструкция

  • 28 оборудование станции

    1. plant equipment

     

    оборудование станции
    В данном контексте “узел” означает конструкцию, систему или элемент. Вспомогательные средства системы безопасности {safety system support features}. Комплект оборудования, который обеспечивает такие виды обслуживания, как охлаждение, смазка и подача энергии, необходимые для системы защиты (системы управления защитными действиями) и систем обслуживания устройств безопасности (исполнительных систем безопасности). После постулируемого исходного события срабатывание некоторых требующихся вспомогательных средств (устройств) системы безопасности может быть инициировано системой защиты, а срабатывание других средств может инициироваться системами обслуживания устройств безопасности, которые обслуживают их; инициирование срабатывания других требующихся вспомогательных средств системы безопасности может не считаться необходимым, если они находятся в задействованном состоянии во время постулируемого исходного события. Система безопасности {safety system}. Система, важная для безопасности, обеспечивающая безопасный останов реактора или отвод остаточного тепла из активной зоны, либо ограничивающая последствия ожидаемых при эксплуатации событий и проектных аварий. Системы безопасности состоят из системы защиты, систем обслуживания устройств безопасности (исполнительных систем безопасности) и вспомогательных средств системы безопасности. Элементы систем безопасности могут предусматриваться исключительно для выполнения функций безопасности или могут выполнять функции безопасности в некоторых эксплуатационных состояниях установки и не связанных с безопасностью функций в других эксплуатационных состояниях. система защиты (система управления защитными действиями) {protection system}. Система, которая контролирует эксплуатацию реактора и которая при обнаружении ненормального условия (состояния) автоматически включает действия, направленные на предотвращение небезопасного или потенциально небезопасного режима. Здесь термин защита означает защиту станции (см. защита (2)). Система в этом случае охватывает все электрические и механические устройства и схемы от датчиков до входных клемм исполнительного устройства. Система обслуживания устройств безопасности (исполнительная система безопасности) {safety actuation system}. Комплекс оборудования, необходимого для выполнения требуемых действий по обеспечению безопасности, инициируемых системой защиты. Система, связанная с безопасностью {safety related system}. Система, важная для безопасности, которая не является частью системы безопасности. Система связанных с безопасностью контрольно-измерительных приборов и систем управления и защиты, как, например, система контрольно-измерительных приборов и систем управления и защиты, которая является важной для безопасности, но которая не является частью системы безопасности. Узел, важный для безопасности {item important to safety}. Узел, который является частью группы безопасности и/или неисправность или отказ которого может привести к радиационному облучению персонала на площадке или лиц из населения. Узлы, важные для безопасности, включают: — конструкции, системы и элементы, неисправность или отказ которых могут приводить к чрезмерному радиационному облучению персонала на площадке или лиц из населения; — конструкции, системы и элементы, которые препятствуют тому, чтобы ожидаемые при эксплуатации события приводили к аварийным условиям; — средства, которые предусматриваются для смягчения последствий неисправности или отказа конструкций, систем и элементов. Узел, связанный с безопасностью {safety related item}. Узел, важный для безопасности, который не является частью системы безопасности.
    [Глоссарий МАГАТЭ по вопросам безопасности]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > оборудование станции

  • 29 отказ (функционального блока)

    1. failure

     

    отказ
    Прекращение способности функционального блока выполнять необходимую функцию.
    Примечания
    1. Определение в МЭС 191-04-01 является идентичным, с дополнительными комментариями [ИСО/МЭК 2382-14-01-11].
    2. Соотношение между сбоями и отказами в МЭК 61508 и МЭС 60050(191) см. на рисунке.
    3. Характеристики требуемых функций неизбежно исключают определенные режимы работы, некоторые функции могут быть определены путем описания режимов, которых следует избегать. Возникновение таких режимов представляет собой отказ.
    4. Отказы являются либо случайными (в аппаратуре), либо систематическими (в аппаратуре или в программном обеспечении).
    3743
    Рис. Модель отказа
    Примечания

    1. Как показано на рисунке а), функциональный блок может быть представлен в виде многоуровневой иерархической конструкции, каждый из уровней которой может быть, в свою очередь, назван функциональным блоком. На уровне i «причина» может проявить себя как ошибка (отклонение от правильного значения или состояния) в пределах функционального блока, соответствующего данному уровню i. Если она не будет исправлена или нейтрализована, эта ошибка может привести к отказу данного функционального блока, который в результате перейдет в состояние F, в котором он более не может выполнять необходимую функцию (см. рисунок b)). Данное состояние F уровня i может в свою очередь проявиться в виде ошибки на уровне функционального блока i - 1, которая, если она не будет исправлена или нейтрализована, может привести к отказу функционального блока уровня i - 1.
    2. В этой причинно - следственной цепочке один и тот же элемент («объект X ») может рассматриваться как состояние F функционального блока уровня i, в которое он попадает в результате отказа, а также как причина отказа функционального блока уровня i - 1. Данный «объект X » объединяет концепцию «отказа» в МЭК 61508 и ИСО/МЭК 2382-14, в которой внимание акцентируется на причинном аспекте, как показано на рисунке c), и концепцию «отказа» из МЭС 60050(191), в которой основное внимание уделено аспекту состояния, как показано на рисунке d). В МЭС 60050(191) состояние F называется отказом, а в МЭК 61508 и ИСО/МЭК 2382-14 оно не определено.
    3. В некоторых случаях отказ или ошибка могут быть вызваны внешним событием, таким как молния или электростатические помехи, а не внутренним отказом. Более того, ошибка (в обоих словарях) может возникать без предшествующего отказа. Примером такой ошибки может быть ошибка проектирования.
    [ ГОСТ Р МЭК 61508-4-2007]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > отказ (функционального блока)

  • 30 стандарт на телекоммуникационную инфраструктуру центров обработки данных (ЦОД)

    1. telecommunications infrustructure standard for data centers

     

    стандарт на телекоммуникационную инфраструктуру центров обработки данных (ЦОД)
    -
    [Интент]

    Стандарт TIA/EIA-942

    Ассоциация TIA завершает разработку стандарта на телекоммуникационную инфраструктуру ЦОД—TIA/EIA-942 (Telecommunications Infrustructure Standard for Data Centers), который, по всей вероятности, будет опубликован в начале 2005 г. Основная цель данного стандарта — предоставить разработчикам исчерпывающую информацию о проектировании инфраструктуры ЦОД, в том числе сведения о планировке его помещений и структуре кабельной системы. Он призван способствовать взаимодействию архитекторов, инженеров-строителей и телекоммуникационных инженеров.

    Помимо рекомендаций по проектированию, в стандарте содержатся приложения с информацией по широкому кругу тем, связанных с организацией ЦОД. Вот некоторые из них: выбор места для развертывания ЦОД; администрирование его кабельной системы; архитектурные вопросы; обеспечение безопасности и защита от огня; электрические, заземляющие и механические системы; взаимодействие с операторами сетей общего пользования.

    Кроме того, в спецификациях стандарта отражены принятые в отрасли уровни надежности ЦОД. Уровень 1 обозначает отсутствие резервирования подсистем, а значит, низкую степень отказоустойчивости, а уровень 4 — высочайшую степень отказоустойчивости.

    Помещения и участки ЦОД

    Стандарт TIA/EIA-942 определяет ЦОД как здание или его часть, предназначенные для организации компьютерного зала и необходимых для функционирования последнего вспомогательных служб. Компьютерный зал — это часть ЦОД, основным предназначением которой является размещение оборудования обработки данных.

    В стандарте обозначены требования к компьютерному залу и комнатам для ввода кабелей (от сетей общего пользования). Так, для этих помещений определены: высота потолка (2,6 м); покрытие полов и стен; характеристики освещения; нагрузка на полы (минимальная — 732 кг/м2, рекомендуемая — 1220 кг/м2); параметры систем нагревания, вентиляции и кондиционирования воздуха; температура воздуха (20—25 °С), относительная влажность (40—55%); характеристики систем электропитания, заземления и противопожарной защиты.

    В число телекоммуникационных помещений и участков ЦОД входят:

    • Комната для ввода кабелей.

    • Главный распределительный пункт (Main Distribution Area — MDA).

    • Распределительный пункт горизонтальной подсистемы кабельной системы ЦОД (Horizontal Distribution Area — HDA).

    • Распределительный пункт зоны (Zone Distribution Area — ZDA).

    • Распределительный пункт оборудования (Equipment Distribution Area — EDA).

    Комната для ввода кабелей — это помещение, в котором кабельная система ЦОД соединяется с кабельными системами кампуса и операторов сетей общего пользования. Она может находиться как снаружи, так и внутри компьютерного зала. При организации соединения названных кабельных систем внутри компьютерного зала соответствующие средства можно оборудовать в MDA.

    С целью резервирования элементов инфраструктуры ЦОД или соблюдения ограничений на максимальную длину каналов связи в ЦОД можно организовать несколько комнат для ввода кабелей. Например, максимальная длина канала T-1, как правило, не должна превышать 200 м, тогда как типичное ограничение на длину канала T-3 составляет 137 м. Однако использование тех или иных типов кабеля и промежуточных коммутационных панелей в ряде случаев суще-ственно уменьшает максимально допустимую длину линии. В стандарте TIA/EIA-942 имеются рекомендации по максимальной длине кабельных каналов в ЦОД.

    MDA содержит главный кросс, являющийся центром коммутации каналов кабельной системы ЦОД. В помещении MDA могут находиться и горизонтальные кроссы, предназначенные для коммутации горизонтальных кабелей, идущих к оборудованию, которое напрямую взаимодействует с оборудованием MDA. Кроме того, в помещении MDA обычно устанавливают маршрутизаторы и магистральные коммутаторы локальной сети и сети SAN ЦОД. Согласно стандарту, ЦОД должен иметь по крайней мере один MDA, а в целях резервирования допускается организация второго MDA.

    Помещение HDA предназначено для установки горизонтального кросса, с помощью которого осуществляется коммутация горизонтальных кабелей, идущих к оборудованию EDA, а также переключателей KVM и коммутаторов ЛВС и SAN, взаимодействующих с оборудованием HDA.

    ZDA — факультативный элемент горизонтальной подсистемы, располагающийся между HDA и EDA. Он призван обеспечить гибкость реконфигурации этой подсистемы. В ZDA горизонтальные кабели терминируются в зоновых розетках или точках консолидации. Подключение оборудования к зоновым розеткам осуществляется посредством соединительных кабелей. Стандарт не рекомендует размещать в ZDA коммутационную панель или активное оборудование, за исключением устройств подачи электропитания по горизонтальным кабелям.

    EDA — это участок ЦОД, выделенный для размещения оконечного оборудования, в том числе компьютеров и телекоммуникационных устройств. В EDA горизонтальные кабели терминируются на розетках, которые обычно располагают на коммутационных панелях, устанавливаемых в монтажных стойках или шкафах. Стандартом допускается и соединение устройств EDA напрямую друг с другом (например, blade-серверы могут напрямую подключаться к коммутаторам, а обычные серверы — к периферийным устройствам).

    В составе ЦОД вне пределов компьютерного зала можно оборудовать телекоммуникационную комнату, предназначенную для поддержки горизонтальных кабелей, проложенных к офисам обслуживающего персонала, центру управления, помещениям с механическим и электрическим оборудованием и другим помещениям или участкам ЦОД, расположенным вне стен компьютерного зала. Типичный ЦОД имеет одну или две комнаты для ввода кабелей, одну или несколько телекоммуникационных комнат, один MDA и несколько HDA.

    Кабельная система ЦОД состоит из следующих элементов:

    • горизонтальная подсистема;

    • магистральная подсистема;

    • входной кросс, находящийся в комнате для ввода кабелей или в помещении MDA (если комната ввода кабелей объединена с MDA);

    • главный кросс, установленный в MDA;

    • горизонтальный кросс, размещенный в HDA, MDA или в телекоммуникационной комнате;

    • зоновая розетка или точка консолидации, смонтированная в ZDA;

    • розетка, установленная в EDA.

    Горизонтальная подсистема — это часть кабельной системы ЦОД, проходящая между розеткой в EDA (или зоновой розеткой в ZDA) и горизонтальным кроссом, который находится в HDA или MDA. В состав горизонтальной подсистемы может входить факультативная точка консолидации. Магистральная подсистема связывает MDA с HDA, телекоммуникационными комнатами и комнатами для ввода кабелей.

    Топология кабельной системы

    Горизонтальная и магистральная подсистемы кабельной системы ЦОД имеют топологию типа “звезда”. Горизонтальные кабели подключаются к горизонтальному кроссу в HDA или MDA. С целью резервирования путей передачи данных разные розетки в EDA или ZDA можно соединять (горизонтальными кабелями) с разными горизонтальными кроссами.

    В звездообразной топологии магистральной подсистемы каждый горизонтальный кросс, расположенный в HDA, подключен напрямую к главному кроссу в MDA. Промежуточных кроссов в кабельной инфраструктуре ЦОД не предусмотрено.

    Чтобы повысить надежность работы инфраструктуры, как уже отмечалось, допускается резервирование HDA. В этом случае все горизонтальные кроссы должны быть связаны с основным и резервным HDA.

    Стоит также отметить, что для резервирования элементов инфраструктуры и поддержки приложений, которые не могут функционировать из-за того, что длина путей передачи данных в рамках звездообразной топологии превышает максимальную дальность связи с использованием этих приложений, допускается организация прямых кабельных соединений между HDA. Кроме того, для соблюдения ограничений на максимальную длину кабельных каналов разрешено организовывать прямые соединения между второй комнатой для ввода кабелей и помещениями HDA.

    Типы кабелей

    Для поддержки разнообразных приложений стандарт TIA/EIA-942 допускает установку самых разных типов кабелей, но при этом в новых инсталляциях рекомендует использовать кабели с максимально широкой полосой пропускания. Это весьма значительно увеличивает возможный срок службы кабельной инфраструктуры ЦОД.

    К разрешенным стандартом типам кабелей относятся:

    • 100-Ом кабель из витых пар, соответствующий стандарту ANSI/TIA/EIA-568-B.2; рекомендуется использовать кабель категории 6, специфицированный в приложении ANSI/TIA/EIA-568-B.2-1.

    • Кабель с 62,5/125-мкм или 50/125-мкм многомодовым волокном, соответствующий стандарту ANSI/TIA/EIA-568-B.3; рекомендуется использовать 50/125-мкм многомодовое волокно, оптимизированное для работы с 850-нм лазером и специфицированное в документе ANSI/TIA-568-B.3-1.

    • Одномодовый оптоволоконный кабель стандарта ANSI/TIA/EIA-568-B.3.

    • 75-Ом коаксиальный кабель (типа 734 или 735), соответствующий документу GR-139-CORE фирмы Telcordia Technologies, и коаксиальные разъемы стандарта ANSI T1.404. Эти кабели и разъемы рекомендованы для организации каналов T-3, E-1 и E-3.

    Прокладка кабелей и размещение оборудования

    Для прокладки кабелей в ЦОД стандарт TIA/EIA-942 разрешает использовать самые разные полости и конструкции, включая пространство под фальшполом и верхние кабельные лотки, уже получившие широкое распространение в ЦОД. Стандарт рекомендует реализовывать фальшполы в тех ЦОД, где предполагается высокая концентрация оборудования с большим энергопотреблением, или устанавливать большую компьютерную систему, сконструированную для подвода кабелей снизу. Под фальшполом телекоммуникационные кабели следует размещать в кабельных лотках, причем они не должны мешать потоку воздуха и иметь острых краев.

    Верхние кабельные лотки стандарт рекомендует подвешивать к потолку, а не прикреплять их к верхним частям монтажных стоек или шкафов. Это обеспечивает большую гибкость применения монтажного оборудования разной высоты. И еще. Размещать осветительные приборы и водораспыляющие головки нужно в проходах между рядами стоек или шкафов с оборудованием, а не прямо над ними.

    Согласно стандарту, для организации так называемых холодных и горячих проходов между рядами стоек или шкафов с оборудованием их следует устанавливать таким образом, чтобы стойки или шкафы соседних рядов были обращены либо передними, либо задними сторонами друг к другу. Холодные проходы образуются впереди стоек или шкафов — в этих проходах плиты фальшпола имеют отверстия, через которые в помещение ЦОД поступает холодный воздух. Силовые кабели обычно прокладывают под холодными проходами. Соседние с ними проходы называются горячими — в ту сторону обращены задние части шкафов или стоек. Лотки с телекоммуникационными кабелями, как правило, располагают под горячими проходами.

    В стойках или шкафах оборудование должно быть смонтировано так, чтобы его вентиляционные отверстия, через которые всасывается холодный воздух, находились в передней части шкафа или стойки, а выход горячего воздуха осуществлялся в задней части. В противном случае система охлаждения оборудования, основанная на концепции холодных и горячих проходов, не будет работать. Данная концепция ориентирована на устройства, в которых охлаждающий воздух перемещается от передней панели к задней.

    Чтобы обеспечивать надлежащее охлаждение установленного оборудования, монтажные шкафы должны иметь средства воздухообмена. Если шкафы не оснащены вентиляторами, способствующими более эффективному функционированию горячих и холодных проходов, то в дверях шкафов должно быть большое число вентиляционных отверстий или прорезей, общая площадь которых составляла бы не менее половины площади двери.

    Для удобства монтажа оборудования и прокладки кабелей проходы между рядами шкафов или стоек не должны быть слишком узкими. Рекомендуемое расстояние между передними сторонами стоек или шкафов (соседних рядов) — 1,2 м, а минимальное — 0,9 м. Расстояние между задними сторонами стоек или шкафов (опять же соседних рядов) должно составлять 0,9 м, а минимальное — 0,6 м.

    Размещать ряды стоек или шкафов нужно так, чтобы можно было снимать плиты фальшпола спереди и сзади ряда. Таким образом, все шкафы следует выравнивать вдоль краев плит фальшпола. Чтобы резьбовые стержни, которыми монтажные стойки крепятся к межэтажным перекрытиям, не попадали на крепежные элементы плит фальшпола, стойки устанавливаются ближе к центру этих плит.

    Размеры прорезей в плитах фальшпола, находящихся под стойками или шкафами, должны быть не больше, чем это необходимо, чтобы свести к минимуму снижение давления воздуха под фальшполом. Кроме того, для минимизации продольной электромагнитной связи между силовыми и телекоммуникационными кабелями из витых пар в стандарте TIA/EIA-942 оговорены требования к расстоянию между ними.

    Стандарт TIA/EIA-942 разрабатывается с целью удовлетворения потребности ИТ-отрасли в рекомендациях по проектированию инфраструктуры для любого ЦОД независимо от его размеров (небольшой, средний или крупный) и характера использования (корпоративный ЦОД или ЦОД, в котором базируются Интернет-серверы разных компаний).

    [ http://www.ccc.ru/magazine/depot/04_13/read.html?1102.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > стандарт на телекоммуникационную инфраструктуру центров обработки данных (ЦОД)

  • 31 оболочка

    1. shell
    2. sheath
    3. over-wrap
    4. jacket (North America)
    5. enclosure

    1

     

    оболочка
    Кожух, обеспечивающий тип и степень защиты, необходимые для данного применения.
    [ ГОСТ Р МЭК 60050-195-2005]


    оболочка
    Корпус (кожух), обеспечивающий тип и степень защиты, соответствующие определенным условиям применения.
    [ ГОСТ Р МЭК 60050-826-2009]


    оболочка
    Элемент, обеспечивающий защиту оборудования от определенных внешних воздействий, а также защиту со всех сторон от прямых контактов.
    Примечание - Определение, взятое из МЭС, требует следующих пояснений относительно области применения настоящего стандарта:
    а) оболочки обеспечивают защиту людей или домашних животных и скота от доступа к опасным частям;
    б) барьеры, решетки или любые другие средства, либо присоединенные к оболочке, либо размещенные под ней и приспособленные для предотвращения или ограничения проникновения специальных испытательных датчиков, рассматривают как части оболочки, кроме случаев, когда они могут быть демонтированы без применения ключа или другого инструмента.
    Оболочка может быть в виде:
    - шкафа или коробки, установленного(ой) либо на машине, либо отдельно от нее;
    - отсека, представляющего собой закрытое пространство и являющегося частью конструкции машины.
    [ГОСТ ЕН 1070-2003]


    кожух 1)
    Часть оборудования, обеспечивающая его защиту от определенных внешних воздействий и от прямого контакта в любых направлениях.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1)   Должно быть оболочка
    [Интент]

    EN

    enclosure
    housing affording the type and degree of protection suitable for the intended application
    Source: 195-02-35
    [IEV number 151-13-08]


    enclosure
    part providing protection of equipment against certain external influences and, in any direction, protection against direct contact
    [IEC 61010-031, ed. 1.0 (2002-01)]

    FR

    enveloppe, f
    enceinte assurant le type et le degré de protection approprié pour l'application prévue
    Source: 195-02-35
    [IEV number 151-13-08]


    enveloppe
    partie assurant la protection d’un appareil contre certaines influences extérieures et, dans toutes les directions, la protection contre le contact direct
    [IEC 61010-031, ed. 1.0 (2002-01)]

    2

     

    оболочка
    сплошная непрерывная трубка из металла или неметаллического материала, как правило, наложенного с помощью экструзии
    Примечание. Термин «sheath» в Северной Америке используется только для металлической оболочки, в то время как для неметаллических покрытии применяется термин «jacket»
    [IEV number 461-05-03]

    EN

    sheath
    jacket (North America)

    uniform and continuous tubular covering of metallic or non-metallic material, generally extruded
    NOTE – The term sheath is only used for metallic coverings in North America, whereas the term jacket is used for non-metallic coverings.
    [IEV number 461-05-03]

    FR

    gaine
    revêtement tubulaire continu et uniforme en matériau métallique ou non métallique, généralement extrudé
    NOTE – En Amérique du Nord, le terme “sheath” est utilisé uniquement pour les revêtements métalliques tandis que le terme “jacket” est utilisé pour les revêtements non métalli
    [IEV number 461-05-03]


     

    Тематики

    Синонимы

    EN

    DE

    FR

    3.9 оболочка (enclosure): Совокупность стенок, дверей, крышек, кабельных вводов, тяг, валиков управления, валов и т.п. частей, которые содействуют обеспечению вида взрывозащиты и/или степени защиты IP электрооборудования.

    Источник: ГОСТ Р МЭК 61241-0-2007: Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 0. Общие требования оригинал документа

    3.26 оболочка (sheath): Однородное и сплошное металлическое или неметаллическое внешнее покрытие, внутри которого размещен электронагреватель, используемое для обеспечения его защиты от воздействия окружающей среды (коррозии, влаги и др.). См. статью 3.19.

    Источник: ГОСТ Р МЭК 60079-30-1-2009: Взрывоопасные среды. Резистивный распределенный электронагреватель. Часть 30-1. Общие технические требования и методы испытаний оригинал документа

    3.21 оболочка (shell): Емкость любой формы (цилиндрическая, призматическая, кубическая и др.), содержащая в себе газообразный водород, металлический гидрид и другие внутренние элементы МГ-контейнера

    Примечание - Оболочкой может быть емкость, сосуд высокого давления или резервуар другого типа.

    Источник: ГОСТ Р 54114-2010: Передвижные устройства и системы для хранения водорода на основе гидридов металлов оригинал документа

    3.1.13 оболочка (enclosure): Часть, обеспечивающая заданную степень защиты оборудования от внешних воздействий и заданную степень защиты от приближения или прикосновения к частям, находящимся под напряжением и подвижным частям.

    Примечание - Определение аналогично формулировке МЭК 60050(441-13-01), относящейся к комплектным устройствам.

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > оболочка

  • 32 перегородка (в НКУ)

    1. partition

     

    перегородка
    Элемент, отделяющий секцию, подсекцию друг от друга.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    перегородка
    Часть панели (шкафа), отделяющая один функциональный блок от другого или разделяющая цепи различного назначения
    [ ГОСТ Р 51732-2001]

    перегородка
    Часть оболочки секции, отделяющая ее от других секций.
    [ ГОСТ Р МЭК 61439.1-2013]

    EN

    partition
    part of the enclosure of a compartment separating it from other compartments
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    cloison
    partie de l'enveloppe d'un compartiment le séparant des autres compartiments
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    A partition is an element of separation between two cubicles, whereas a barrier protects the operator against direct contact and against the effects of circuit-breaker arcs propagating in the direction of usual access.
    [ABB]

    Перегородка представляет собой элемент, разделяющий два шкафа, в то время как ограждение защищает оператора от прямого прикосновения и от воздействия дуги, возникающей при коммутации автоматического выключателя и распространяющейся в направлении обычного доступа.
    [Перевод Интент]

    Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.
    [Schneider Electric]

    Перегородка, отделяющая присоединение проводников к аппарату со стороны источника питания от присоединения проводников со стороны нагрузки, должна быть выполнена из немагнитного материала.
    [Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Обобщающие термины

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > перегородка (в НКУ)

  • 33 монтажная панель

    1. plate
    2. panel
    3. mounting plate
    4. back plate
    5. assembly plate

     

    монтажная панель
    Панель, служащая для размещения комплектующих элементов и предназначенная для установки в НКУ.
    Примечание - Если этот конструктивный элемент содержит аппаратуру, то он может рассматриваться как отдельное самостоятельное НКУ.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    монтажная панель
    Панель, предназначенная для размещения комплектующих элементов, устанавливаемая в НКУ
    [ ГОСТ Р МЭК 61439.1-2013]

    монтажная панель
    Отдельный внутренний комплектующий элемент оболочки, предназначенный для установки и крепления на нем аппаратуры распределения и управления.
    [ ГОСТ Р 52796- 2007( МЭК 62208: 2002)]

    EN

    mounting plate
    separate internal accessory of the enclosure intended for the mounting of electrical components
    [IEC 62208, ed. 1.0 (2002-11)]

    FR

    platine
    élément interne séparé de l'enveloppe destiné au montage de l'appareillage
    [IEC 62208, ed. 1.0 (2002-11)]

    0093

    0094

    Установка неперфорированной монтажной панели в оболочку шкафа

    Неразборная сварная оболочка ящика с установленной перфорированной оцинкованной монтажной панелью

    На предприятии, выполняющем электромонтаж НКУ, монтажную панель обычно извлекают из оболочки, выполняют электромонтаж, а затем монтажную панель с установленными аппаратами и выполненным электромонтажом вставляют в оболочку.
    [Интент]


     

    Недопустимые, нерекомендуемые

    Тематики

    • НКУ (шкафы, пульты,...)

    Обобщающие термины

    EN

    FR

    Русско-английский словарь нормативно-технической терминологии > монтажная панель

  • 34 перегородка (в НКУ)

    1. cloison

     

    перегородка
    Элемент, отделяющий секцию, подсекцию друг от друга.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    перегородка
    Часть панели (шкафа), отделяющая один функциональный блок от другого или разделяющая цепи различного назначения
    [ ГОСТ Р 51732-2001]

    перегородка
    Часть оболочки секции, отделяющая ее от других секций.
    [ ГОСТ Р МЭК 61439.1-2013]

    EN

    partition
    part of the enclosure of a compartment separating it from other compartments
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    cloison
    partie de l'enveloppe d'un compartiment le séparant des autres compartiments
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    A partition is an element of separation between two cubicles, whereas a barrier protects the operator against direct contact and against the effects of circuit-breaker arcs propagating in the direction of usual access.
    [ABB]

    Перегородка представляет собой элемент, разделяющий два шкафа, в то время как ограждение защищает оператора от прямого прикосновения и от воздействия дуги, возникающей при коммутации автоматического выключателя и распространяющейся в направлении обычного доступа.
    [Перевод Интент]

    Any partition between upstream and downstream connections of the device must be made of nonmagnetic material.
    [Schneider Electric]

    Перегородка, отделяющая присоединение проводников к аппарату со стороны источника питания от присоединения проводников со стороны нагрузки, должна быть выполнена из немагнитного материала.
    [Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    Обобщающие термины

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > перегородка (в НКУ)

  • 35 монтажная панель

    1. platine

     

    монтажная панель
    Панель, служащая для размещения комплектующих элементов и предназначенная для установки в НКУ.
    Примечание - Если этот конструктивный элемент содержит аппаратуру, то он может рассматриваться как отдельное самостоятельное НКУ.
    [ ГОСТ Р 51321. 1-2000 ( МЭК 60439-1-92)]

    монтажная панель
    Панель, предназначенная для размещения комплектующих элементов, устанавливаемая в НКУ
    [ ГОСТ Р МЭК 61439.1-2013]

    монтажная панель
    Отдельный внутренний комплектующий элемент оболочки, предназначенный для установки и крепления на нем аппаратуры распределения и управления.
    [ ГОСТ Р 52796- 2007( МЭК 62208: 2002)]

    EN

    mounting plate
    separate internal accessory of the enclosure intended for the mounting of electrical components
    [IEC 62208, ed. 1.0 (2002-11)]

    FR

    platine
    élément interne séparé de l'enveloppe destiné au montage de l'appareillage
    [IEC 62208, ed. 1.0 (2002-11)]

    0093

    0094

    Установка неперфорированной монтажной панели в оболочку шкафа

    Неразборная сварная оболочка ящика с установленной перфорированной оцинкованной монтажной панелью

    На предприятии, выполняющем электромонтаж НКУ, монтажную панель обычно извлекают из оболочки, выполняют электромонтаж, а затем монтажную панель с установленными аппаратами и выполненным электромонтажом вставляют в оболочку.
    [Интент]


     

    Недопустимые, нерекомендуемые

    Тематики

    • НКУ (шкафы, пульты,...)

    Обобщающие термины

    EN

    FR

    Русско-французский словарь нормативно-технической терминологии > монтажная панель

  • 36 оболочка

    1. Umhüllung
    2. Mantel, m
    3. Gehäuse

    1

     

    оболочка
    Кожух, обеспечивающий тип и степень защиты, необходимые для данного применения.
    [ ГОСТ Р МЭК 60050-195-2005]


    оболочка
    Корпус (кожух), обеспечивающий тип и степень защиты, соответствующие определенным условиям применения.
    [ ГОСТ Р МЭК 60050-826-2009]


    оболочка
    Элемент, обеспечивающий защиту оборудования от определенных внешних воздействий, а также защиту со всех сторон от прямых контактов.
    Примечание - Определение, взятое из МЭС, требует следующих пояснений относительно области применения настоящего стандарта:
    а) оболочки обеспечивают защиту людей или домашних животных и скота от доступа к опасным частям;
    б) барьеры, решетки или любые другие средства, либо присоединенные к оболочке, либо размещенные под ней и приспособленные для предотвращения или ограничения проникновения специальных испытательных датчиков, рассматривают как части оболочки, кроме случаев, когда они могут быть демонтированы без применения ключа или другого инструмента.
    Оболочка может быть в виде:
    - шкафа или коробки, установленного(ой) либо на машине, либо отдельно от нее;
    - отсека, представляющего собой закрытое пространство и являющегося частью конструкции машины.
    [ГОСТ ЕН 1070-2003]


    кожух 1)
    Часть оборудования, обеспечивающая его защиту от определенных внешних воздействий и от прямого контакта в любых направлениях.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1)   Должно быть оболочка
    [Интент]

    EN

    enclosure
    housing affording the type and degree of protection suitable for the intended application
    Source: 195-02-35
    [IEV number 151-13-08]


    enclosure
    part providing protection of equipment against certain external influences and, in any direction, protection against direct contact
    [IEC 61010-031, ed. 1.0 (2002-01)]

    FR

    enveloppe, f
    enceinte assurant le type et le degré de protection approprié pour l'application prévue
    Source: 195-02-35
    [IEV number 151-13-08]


    enveloppe
    partie assurant la protection d’un appareil contre certaines influences extérieures et, dans toutes les directions, la protection contre le contact direct
    [IEC 61010-031, ed. 1.0 (2002-01)]

    2

     

    оболочка
    сплошная непрерывная трубка из металла или неметаллического материала, как правило, наложенного с помощью экструзии
    Примечание. Термин «sheath» в Северной Америке используется только для металлической оболочки, в то время как для неметаллических покрытии применяется термин «jacket»
    [IEV number 461-05-03]

    EN

    sheath
    jacket (North America)

    uniform and continuous tubular covering of metallic or non-metallic material, generally extruded
    NOTE – The term sheath is only used for metallic coverings in North America, whereas the term jacket is used for non-metallic coverings.
    [IEV number 461-05-03]

    FR

    gaine
    revêtement tubulaire continu et uniforme en matériau métallique ou non métallique, généralement extrudé
    NOTE – En Amérique du Nord, le terme “sheath” est utilisé uniquement pour les revêtements métalliques tandis que le terme “jacket” est utilisé pour les revêtements non métalli
    [IEV number 461-05-03]


     

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > оболочка

  • 37 оболочка

    1. gaine
    2. enveloppe, f

    1

     

    оболочка
    Кожух, обеспечивающий тип и степень защиты, необходимые для данного применения.
    [ ГОСТ Р МЭК 60050-195-2005]


    оболочка
    Корпус (кожух), обеспечивающий тип и степень защиты, соответствующие определенным условиям применения.
    [ ГОСТ Р МЭК 60050-826-2009]


    оболочка
    Элемент, обеспечивающий защиту оборудования от определенных внешних воздействий, а также защиту со всех сторон от прямых контактов.
    Примечание - Определение, взятое из МЭС, требует следующих пояснений относительно области применения настоящего стандарта:
    а) оболочки обеспечивают защиту людей или домашних животных и скота от доступа к опасным частям;
    б) барьеры, решетки или любые другие средства, либо присоединенные к оболочке, либо размещенные под ней и приспособленные для предотвращения или ограничения проникновения специальных испытательных датчиков, рассматривают как части оболочки, кроме случаев, когда они могут быть демонтированы без применения ключа или другого инструмента.
    Оболочка может быть в виде:
    - шкафа или коробки, установленного(ой) либо на машине, либо отдельно от нее;
    - отсека, представляющего собой закрытое пространство и являющегося частью конструкции машины.
    [ГОСТ ЕН 1070-2003]


    кожух 1)
    Часть оборудования, обеспечивающая его защиту от определенных внешних воздействий и от прямого контакта в любых направлениях.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]
    1)   Должно быть оболочка
    [Интент]

    EN

    enclosure
    housing affording the type and degree of protection suitable for the intended application
    Source: 195-02-35
    [IEV number 151-13-08]


    enclosure
    part providing protection of equipment against certain external influences and, in any direction, protection against direct contact
    [IEC 61010-031, ed. 1.0 (2002-01)]

    FR

    enveloppe, f
    enceinte assurant le type et le degré de protection approprié pour l'application prévue
    Source: 195-02-35
    [IEV number 151-13-08]


    enveloppe
    partie assurant la protection d’un appareil contre certaines influences extérieures et, dans toutes les directions, la protection contre le contact direct
    [IEC 61010-031, ed. 1.0 (2002-01)]

    2

     

    оболочка
    сплошная непрерывная трубка из металла или неметаллического материала, как правило, наложенного с помощью экструзии
    Примечание. Термин «sheath» в Северной Америке используется только для металлической оболочки, в то время как для неметаллических покрытии применяется термин «jacket»
    [IEV number 461-05-03]

    EN

    sheath
    jacket (North America)

    uniform and continuous tubular covering of metallic or non-metallic material, generally extruded
    NOTE – The term sheath is only used for metallic coverings in North America, whereas the term jacket is used for non-metallic coverings.
    [IEV number 461-05-03]

    FR

    gaine
    revêtement tubulaire continu et uniforme en matériau métallique ou non métallique, généralement extrudé
    NOTE – En Amérique du Nord, le terme “sheath” est utilisé uniquement pour les revêtements métalliques tandis que le terme “jacket” est utilisé pour les revêtements non métalli
    [IEV number 461-05-03]


     

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > оболочка

  • 38 расходомер жидкости (газа)

    1. Durchflußmeßgerät

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-немецкий словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 39 расходомер жидкости (газа)

    1. flowmeter

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > расходомер жидкости (газа)

  • 40 расходомер жидкости (газа)

    1. débitmètre

     

    расходомер жидкости (газа)
    расходомер
    Ндп. измеритель расхода жидкости (газа)
    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа).
    [ ГОСТ 15528-86]

    Расходомеры, служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами, или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов (рис. 1).

    5288

    Рис. 1. Диапазоны измерений расходов жидкостей, газов и паров разными расходомерами.

    Основные показатели, обусловливающие выбор расходомера: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физ.-химических свойств измеряемой и окружающей сред в расходомеры используются различные методы измерений.

    В данной статье рассматриваются наиболее важные типы расходомеры и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.

     

    5289

    Расходомеры переменного перепада давлений (рис. 2, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходомеры данного типа особенно распространены благодаря следующим достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходомеры в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значительные потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от макс. расхода.

    5290

    Расходомеры постоянного перепада давлений, или ротаметры ( рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от — 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.

    5291

    Электромагнитные расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внеш. магнитное поле, которое направлено перпендикулярно оси трубопровода. Эдс определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутри поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и другие. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.

    5292

    Тахометрические расходомеры В турбинных расходомерах (рис. 2, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, растворы кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от макс. расхода.

    В шариковых расходомерах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничит. кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.

    5293

    Ультразвуковые расходомеры (рис. 2, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д. Контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, то есть от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.

    Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от —40 до 200°С (реже-от —250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от макс. расхода.

    5294

    Вихревые расходомеры (рис. 2, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до -6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.

    5295

    Объемные расходомеры (рис. 2,ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и другие. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.

    5296

    Струйные расходомеры (рис. 2,з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи а поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал б на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах а и б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от —263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство - отсутствие подвижных элементов. Погрешность-1,5% от макс. расхода.

    5297

    Корреляционные расходомеры (рис. 2, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и других параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.

    [ http://www.chemport.ru/data/chemipedia/article_3233.html]

     

     

    Недопустимые, нерекомендуемые

    Тематики

    Синонимы

    EN

    DE

    FR

    14. Расходомер жидкости (газа)

    Расходомер

    Ндп. Измеритель расхода жидкости (газа)

    D. Durchflußmeßgerät

    E. Flowmeter

    F. Débitmètre

    Измерительный прибор или совокупность приборов, предназначенных для измерения расхода жидкости (газа)

    Источник: ГОСТ 15528-86: Средства измерений расхода, объема или массы протекающих жидкости и газа. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > расходомер жидкости (газа)

См. также в других словарях:

  • ЭЛЕМЕНТ — элемента, м. [латин. elementum, первонач. одна из четырех стихий мира: огонь, земля, вода или воздух]. 1. Составная часть чего н. Разложить что н. на элементы. Классовые элементы общества. Отдельные элементы населения. Сочувствующие элементы… …   Толковый словарь Ушакова

  • элемент — 02.01.14 элемент (знак символа или символ) [element <symbol character or symbol>]: Отдельный штрих или пробел в символе штрихового кода либо одиночная многоугольная или круглая ячейка в матричном символе, формирующие знак символа в… …   Словарь-справочник терминов нормативно-технической документации

  • Элемент Бунзена — Хром цинковый элемент (элемент Грене, элемент Бунзена, элемент Поггендорфа) это первичный резервный химический источник тока, в котором анодом является цинк, катодом прессованный графит, а электролитом водный раствор серной кислоты и бихромата… …   Википедия

  • Элемент Грене — Хром цинковый элемент (элемент Грене, элемент Бунзена, элемент Поггендорфа) это первичный резервный химический источник тока, в котором анодом является цинк, катодом прессованный графит, а электролитом водный раствор серной кислоты и бихромата… …   Википедия

  • Элемент Поггендорфа — Хром цинковый элемент (элемент Грене, элемент Бунзена, элемент Поггендорфа) это первичный резервный химический источник тока, в котором анодом является цинк, катодом прессованный графит, а электролитом водный раствор серной кислоты и бихромата… …   Википедия

  • Как довести до кондиции машину, аналогов которой нет в других армиях —        Если бы после военных парадов определялись образцы техники, привлекшие наибольшее внимание специалистов, то после 9 мая прошлого года победителем наверняка бы стала внешне неброская, многим похожая на своих предшественниц и в то же время… …   Энциклопедия техники

  • Элемент Вестона — Нормальный элемент Вестона (Weston cell). Содержание 1 Общее описание 2 Различают насыщенные и ненасыщенные НЭ …   Википедия

  • Элемент состава преступления — Состав преступления представляет собой совокупность объективных и субъективных признаков, закреплённых в уголовном законе, которые в сумме определяют общественно опасное деяние, преступление[1]. Признаки состава преступления закрепляются в нормах …   Википедия

  • конструктивный элемент — 3.58 конструктивный элемент : Конструкция, воспринимающая внешние и внутренние нагрузки и передающая их другим конструкциям или основанию. Источник: СП 78.13330.2012: Автомобильные дороги 3.2.7 конструктивный элемент; КЭ: Составная часть изделия …   Словарь-справочник терминов нормативно-технической документации

  • Хром-цинковый элемент — (элемент Грене, элемент Бунзена, элемент Поггендорфа) это первичный резервный химический источник тока, в котором анодом является цинк, катодом прессованный графит, а электролитом водный раствор серной кислоты и бихромата калия (хромовая смесь).… …   Википедия

  • Поглощающий элемент — Поглощающий стержень элемент конструкции ядерного реактора, предназначенный для управления цепной ядерной реакцией за счёт степени погружения в активную зону. Поглощающие стержни содержат в своём составе элементы с высоким сечением поглощения… …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»