Перевод: с русского на все языки

со всех языков на русский

(какой-либо+системы)

  • 81 хронорефлексометр

    1. Chronoreflexometer

     

    хронорефлексометр
    Ндп. измеритель времени реакций
    рефлексометр
    хронаксиметр

    Показывающий прибор с выводом измерительной информации на шкалу или цифровой индикатор для измерения интервалов времени между моментом подачи раздражения на какой-либо анализатор и моментом появления ответной реакции исследуемого на раздражение.
    [ ГОСТ 17562-72]

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    EN

    DE

    Русско-немецкий словарь нормативно-технической терминологии > хронорефлексометр

  • 82 версия

    1. version
    2. release

     

    версия
    (ITIL Service Transition)
    Версия используется для идентификации базового состояния конфигурационной единицы. Версии обычно используют соглашение об именовании, которая дает возможность определить последовательность или дату каждого базового состояния. Например, приложение расчета зарплаты версии 3 содержит обновленную функциональность из версии 2.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    version
    (ITIL Service Transition)
    A version is used to identify a specific baseline of a configuration item. Versions typically use a naming convention that enables the sequence or date of each baseline to be identified. For example, payroll application version 3 contains updated functionality from version 2.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

    4.56 версия (version): Идентифицированный экземпляр составной части.

    Примечание - Модификация какой-либо версии программного продукта, воплощенная в новой версии, требует действий менеджмента конфигурации.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    2.69 версия (version): Конфигурация всей информационной системы или ее части в конкретный момент времени.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    3.37 версия (version): Определенный экземпляр объекта.

    Примечание - В результате модификации версии программного продукта появляется новая версия, подвергающаяся управлению конфигурацией.

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.3.12 версия (release): Частный вариант элемента конфигурации, который доступен для специфической цели.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    Русско-английский словарь нормативно-технической терминологии > версия

  • 83 измерение физической величины

    1. measurement

     

    измерение физической величины
    измерение величины
    измерение

    Совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.
    Примеры
    1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути, сравнивают ее размер с единицей, хранимой линейкой, и, произведя отсчет, получают значение величины (длины, высоты, толщины и других параметров детали).
    2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчет.
    Примечания
    1. Приведенное определение понятия «измерение» удовлетворяет общему уравнению измерений, что имеет существенное значение в деле упорядочения системы понятий в метрологии. В нем учтена техническая сторона (совокупность операций), раскрыта метрологическая суть измерений (сравнение с единицей) и показан гносеологический аспект (получение значения величины).
    2. От термина «измерение» происходит термин «измерять», которым широко пользуются на практике. Все же нередко применяются такие термины, как «мерить», «обмерять», «замерять», «промерять», не вписывающиеся в систему метрологических терминов. Их применять не следует.
    Не следует также применять такие выражения, как «измерение значения» (например, мгновенного значения напряжения или его среднего квадратического значения), так как значение величины - это уже результат измерений.
    3. В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая и не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам.
    [РМГ 29-99]

    измерение физической величины
    Совокупность операций по применению технического средства, контролирующего единичную физическую величину, обеспечивающих нахождение величины соотношения измеряемой величины с ее единичным значением и оценку значений этой величины.
    [РД 01.120.00-КТН-228-06]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > измерение физической величины

  • 84 классификационный информационно-поисковый язык

    1. classificational information retrieval language

     

    классификационный информационно-поисковый язык
    Информационно-поисковый язык, предназначенный для индексирования документов (частей документов) и информационных запросов посредством понятий и кодов какой-либо классификационной системы.
    [ГОСТ 7.74-96]

    Тематики

    EN

    DE

    Русско-английский словарь нормативно-технической терминологии > классификационный информационно-поисковый язык

  • 85 линия влияния

    1. influence line

     

    линия влияния
    поверхность влияния

    Линия или поверхность, ординаты которой  выражают значение какой-либо величины (реакции, продольной или поперечной нагрузки, изгибающего момента, перемещения  в данной точке системы и т. д.) в зависимости от положения движущейся по сооружению единичной  силы постоянного направления.
    [ http://www.isopromat.ru/sopromat/terms]

    Тематики

    • строительная механика, сопротивление материалов

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > линия влияния

  • 86 линия влияния [поверхность влияния]

    1. influence line

     

    линия влияния
    поверхность влияния

    Линия или поверхность, ординаты которой выражают значение какой-либо величины (изгибающего момента, перемещения в данной точке системы и т. д.) в зависимости от положения единичной силы постоянного направления.
    [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    Тематики

    • строительная механика, сопротивление материалов

    Обобщающие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > линия влияния [поверхность влияния]

  • 87 парк транспортных средств

    1. fleet

     

    парк транспортных средств
    Транспортные средства какой-либо транспортной системы. Термин принято использовать для обозначения наземного, железнодорожного и морского транспорта.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    fleet
    Vehicles in a transport system. Usually, "fleet" refers to highway vehicles, rail vehicles as well as ships.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > парк транспортных средств

  • 88 платит не исполнивший обязательства

    1. defaulter pays

     

    платит не исполнивший обязательства
    Соглашение о распределении убытков, в соответствии с которым каждый участник обязан предоставить обеспечение по любым суммам, подверженным риску, создаваемому им для других участников. В результате убытки от неисполнения обязательств какой-либо стороной несет эта сторона.
    [Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > платит не исполнивший обязательства

  • 89 прием с восстановлением несущей

    1. exalted-carrier reception

     

    прием с восстановлением несущей
    Способ приема сигнала, при котором несущая частота выделяется непосредственно из входного сигнала с помощью какой-либо следящей системы.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > прием с восстановлением несущей

  • 90 теория (гипотеза) «один ген - один полипептид (белок)»

    1. one gene - one polypeptide hypothesis

     

    теория (гипотеза) «один ген - один полипептид (белок)»
    Концепция, возникшая на базе теории «один ген - один фермент», предполагающая, что каждый ген может кодировать только одну полипептидную цепь, которая, в свою очередь, может входить как субъединица в более сложный белковый комплекс; теория выдвинута Г. Бидлом и Э. Татумом в 1941 на основании генетико-биохимического анализа нейроспоры, они обнаружили выключение в экспериментальных условиях под действием различных мутаций каждый раз только одной какой-либо цепи биохимических реакций (в 1958 Г. Бидл и Э. Татум были удостоены за эти работы Нобелевской премии); в 80-х гг. появились работы, в которых высказывались сомнения в абсолютной справедливости данной теории в связи с открытием системы «два гена - один полипептид» (не исключается и система «один ген - два полипептида»), а также с существованием перекрывающихся генов; с функциональных позиций данная теория условна в связи с нахождением многофункциональных белков.
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > теория (гипотеза) «один ген - один полипептид (белок)»

  • 91 хронорефлексометр

    1. chronoreflexometer

     

    хронорефлексометр
    Ндп. измеритель времени реакций
    рефлексометр
    хронаксиметр

    Показывающий прибор с выводом измерительной информации на шкалу или цифровой индикатор для измерения интервалов времени между моментом подачи раздражения на какой-либо анализатор и моментом появления ответной реакции исследуемого на раздражение.
    [ ГОСТ 17562-72]

    Недопустимые, нерекомендуемые

    Тематики

    Обобщающие термины

    EN

    DE

    Русско-английский словарь нормативно-технической терминологии > хронорефлексометр

  • 92 эквивалентная плотность потока мощности

    1. equivalent power flux-density
    2. epfd

     

    эквивалентная плотность потока мощности
    Сумма плотностей потоков мощности, создаваемых в какой-либо точке на поверхности Земли всеми космическим станциями, входящими в состав негеостационарной спутниковой системы, с учетом внеосевой развязки эталонной приемной антенны, которая, как предполагается, направлена в сторону геостационарной орбиты (МСЭ-R S.1714; МСЭ-R S.1647;МСЭ-R BO.1658;МСЭ-R S.1257-3;МСЭ-R BO.1444; МСЭ-R V.573-4).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > эквивалентная плотность потока мощности

  • 93 измерение физической величины

    1. mesurage

     

    измерение физической величины
    измерение величины
    измерение

    Совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.
    Примеры
    1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути, сравнивают ее размер с единицей, хранимой линейкой, и, произведя отсчет, получают значение величины (длины, высоты, толщины и других параметров детали).
    2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчет.
    Примечания
    1. Приведенное определение понятия «измерение» удовлетворяет общему уравнению измерений, что имеет существенное значение в деле упорядочения системы понятий в метрологии. В нем учтена техническая сторона (совокупность операций), раскрыта метрологическая суть измерений (сравнение с единицей) и показан гносеологический аспект (получение значения величины).
    2. От термина «измерение» происходит термин «измерять», которым широко пользуются на практике. Все же нередко применяются такие термины, как «мерить», «обмерять», «замерять», «промерять», не вписывающиеся в систему метрологических терминов. Их применять не следует.
    Не следует также применять такие выражения, как «измерение значения» (например, мгновенного значения напряжения или его среднего квадратического значения), так как значение величины - это уже результат измерений.
    3. В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая и не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам.
    [РМГ 29-99]

    измерение физической величины
    Совокупность операций по применению технического средства, контролирующего единичную физическую величину, обеспечивающих нахождение величины соотношения измеряемой величины с ее единичным значением и оценку значений этой величины.
    [РД 01.120.00-КТН-228-06]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > измерение физической величины

  • 94 линия влияния [поверхность влияния]

    1. ligne d'influence

     

    линия влияния
    поверхность влияния

    Линия или поверхность, ординаты которой выражают значение какой-либо величины (изгибающего момента, перемещения в данной точке системы и т. д.) в зависимости от положения единичной силы постоянного направления.
    [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно-технической терминологии. 1970 г.]

    Тематики

    • строительная механика, сопротивление материалов

    Обобщающие термины

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > линия влияния [поверхность влияния]

  • 95 оператор

    1. opérateur

     

    оператор
    Человек/люди, в задачи которого(ых) входят установка, пуск в эксплуатацию, эксплуатация, наладка, поддержание в рабочем состоянии, чистка, ремонт или транспортировка машины. Термин «оператор» распространяется также на работников, осуществляющих монтаж и демонтаж машины.
    [ЕН 292-1]
    [ГОСТ Р ЕН 1005-1-2008]

    оператор

    Лицо, использующее оборудование в предназначенных целях.
    Примечание. Оператор должен пройти соответствующую подготовку для данной работы.
    [ ГОСТ Р 52319-2005( МЭК 61010-1: 2001)]

    оператор
    Лицо, которое занимается установкой и пуском в эксплуатацию, наладкой, техническим обслуживанием, очисткой, ремонтом или транспортированием оборудования.
    [ГОСТ ЕН 1070-2003]

    оператор
    Человек, занимающийся какой-либо деятельностью с использованием технических (ого) устройств(а).
    [ ГОСТ Р 43.0.2-2006]

    оператор
    "Оператор" обозначает лицо или лица, занятые в пуске, эксплуатации, наладке, текущем
    обслуживании, чистке, ремонте или транспортировке машинного оборудования.
    [Директива 98/37/ЕЭС по машинному оборудованию]

    оператор
    1. В общем смысле — правило, переводящее некоторый объект, систему из одного состояния в другое; элемент решения задачи. 2. Соответствие между элементами двух множеств X и Y, относящее каждому элементу x из X некоторый элемент y из Y. Тот же по существу смысл имеют термины отображение, операция, преобразование, функция (последняя обычно относится к числовым множествам). Пример записи оператора см. в статье Вход и выход системы. Термин «линейный оператор» — см. в статье Отображение.
    [ http://slovar-lopatnikov.ru/]

    EN

    operator
    person operating equipment for its intended purpose
    NOTE - The operator should have received training appropriate for this purpose.
    [IEC 61010-031, ed. 1.0 (2002-01)]

    operator
    ‘operator’ means the person or persons given the task of installing, operating, adjusting, maintaining, cleaning, repairing or transporting machinery.
    [DIRECTIVE 98/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL]

    FR

    opérateur
    toute personne qui utilise l’appareil pour l’usage auquel il est destiné
    NOTE - Il est recommandé que l’opérateur ait reçu une formation adaptée à cet usage.
    [IEC 61010-031, ed. 1.0 (2002-01)]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > оператор

  • 96 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 97 индекс

    1. index
    2. dddddododdo,

     

    индекс
    Индексом является 16 битовый адрес, используемый для доступа к объектному словарю CANopen. Для массивов и записей этот адрес расширяется 8 битовым субиндексом.
    [ http://can-cia.com/fileadmin/cia/pdfs/CANdictionary-v2_ru.pdf]

    индекс
    1. Индексный показатель [index value, index number], величина, получаемая как отношение показателей одинаковой размерности при их сопоставлении (например, за различные периоды времени, для разных территорий). Поэтому индексы — безразмерные величины. И. могут быть индивидуальные (или частные), групповые и общие (агрегатные). Индивидуальные И. — показатели, характеризующие изменения во времени или в пространстве простых экономических явлений, отдельные элементы которых непосредственно соизмеримы (например, индекс производства зерна в стране). Под общими или собственно экономическими И. понимаются показатели, характеризующие изменения во времени или в пространстве каких-либо сложных экономических явлений, индивидуальные элементы которых непосредственно не соизмеримы (напр., общий индекс сельскохозяйственного производства). Их получают из частных путем определенной математико-статистической обработки, чаще всего они представляют собой некоторую взвешенную среднюю из индивидуальных И. То же относится к групповым И. Индивидуальные (частные) И. являются исходными данными для индексных расчетов (или, что то же, для применения т.н. индексного метода сравнения экономических или иных показателей). Для характеристики показателей (например, сопоставления размера выпуска отдельных товаров в базисном периоде и в текущем периоде) вычисляют либо И. базисные (с постоянной, неизменной по времени базой) либо цепные (с переменной базой, т.е. получаемые путем сопоставления индексируемой величины в каждый данный срок с ее величиной в предшествующий промежуток времени и перемножения полученных И.). Для индивидуальных индексов оба эти способа дают одинаковые результаты. Специфика же индексного метода проявляется тогда, когда вычисляются отношения сводных показателей, объединяющих однородные индивидуальные индексы. При выведении средней возникает необходимость их взвешивания. Бывает, что общий или групповой индекс строится не из индивидуальных индексов, а путем предварительного объединения соответствующих данных в базисном периоде и в текущем периоде в отдельности. Когда невозможно суммировать показатели непосредственно (например, количества разнородных товаров, проданных в розничной торговле), то количества умножают на цены, обязательно одинаковые в оба периода времени, произведения суммируют. Отношение этих сумм принимается за общий И. (физического объема розничного товарооборота).. В экономико-математических моделях ( вообще в современной экономике) для этих целей используются индексы цен (см. Ласпейреса индекс, Пааше индекс), физического объема производства, производительности труда, уровня жизни (см. Индекс стоимости жизни), хозяйственной активности (см. Индекс деловой активности, «Барометры», Доу Джонса индекс). Последние годы широко развивается конструирование разного рода сложных, в какой-то мере искусственных индексов – например, т.наз. Индекс экономической свободы, Индекс экономического развития. Они образуются путем умножения или иных операций с произвольно, в какой-то степени, отобранными частными индексами, характеризующими рассматриваемое явления, причем каждому из последних придается какой-то вес, основанный на экспертных оценках. Скажем, Индекс экономического развития страны образуется на основе данных о ее ВВП, продолжительности жизни населения и среднего уровня образования. А, например, индикаторами индекса экономической свободы фонда «Наследие» являются десять показателей, включая налогообложение, отношение зарплаты к ценам, права собственности и другие. В науке, а в последнее время и в публицистике ведется активное обсуждение достоверности и точности подобных индексов, особенно на макроуровне. Причем диапазон мнений— от беспрекословного их признания до утверждений об их абсолютной непригодности для измерения и анализа агрегатных показателей. Структурные сдвигив экономике, особенно усилившиеся в эпоху НТР, — пожалуй, главная причина возникающих при этом затруднений. См. также: Индекс заработной платы, Индекс качества жизни, Индекс концентрации производства, Индекс Ласпейреса, Индекс Лернера, Индекс настроений инвесторов,Индекс Пааше, Индекс потребительских цен, Индекс прибыльности, Индекс реального обменного курса, Индекс стоимости жизни, Индекс Херфиндаля—Хиршмана, Индекс хозяйственного развития территории, Индекс цен. 2. В экономико-математической литературе — надстрочный [superscript] или подстрочный [subscript] буквенный либо цифровой указатель, которым снабжаются математические обозначения (для того, чтобы отличать их друг от друга). Например, коэффициент прямых затрат в межотраслевом балансе aij означает затраты продукции отрасли i на единицу продукции отрасли j, а коэффициент aji, наоборот, — затраты продукции отрасли j на единицу продукции отрасли i. Количество индексов при переменных в какой-то степени характеризует сложность экономико-математических задач: различают задачи одноиндексные, двухиндексные, трехиндексные и т.д. 3. В библиотечных, почтовых и других классификациях И. — буквенное или цифровое обозначение (код). 4. См. также Массив данных.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    6. Индекс

    Кодированная импульсная последовательность, записанная на сервоповерхности вида:

    dddddododdo,

    где d означает: для сервозоны - пару дибитов, для защитных зон - одиночный дибит;

    о - означает: для сервозоны - отсутствующую пару дибитов, для защитных зон - отсутствующий одиночный дибит.

    Индексом обозначается начальная точка данной дорожки

    Источник: СТ СЭВ 4291-83: Машины вычислительные и системы обработки данных. Пакеты магнитных дисков емкостью 100 и 200 Мбайт. Технические требования и методы испытаний

    Русско-английский словарь нормативно-технической терминологии > индекс

  • 98 управление электропитанием

    1. power management

     

    управление электропитанием
    -
    [Интент]


    Управление электропитанием ЦОД

    Автор: Жилкина Наталья
    Опубликовано 23 апреля 2009 года


    Источники бесперебойного питания, функционирующие в ЦОД, составляют важный элемент общей системы его энергообеспечения. Вписываясь в контур управления ЦОД, система мониторинга и управления ИБП становится ядром для реализации эксплуатационных функций.

    Три задачи

    Системы мониторинга, диагностики и управления питанием нагрузки решают три основные задачи: позволяют ИБП выполнять свои функции, оповещать персонал о происходящих с ними событиях и посылать команды для автоматического завершения работы защищаемого устройства.

    Мониторинг параметров ИБП предполагает отображение и протоколирование состояния устройства и всех событий, связанных с его изменением. Диагностика реализуется функциями самотестирования системы. Управляющие же функции предполагают активное вмешательство в логику работы устройства.

    Многие специалисты этого рынка, отмечая важность процедуры мониторинга, считают, что управление должно быть сведено к минимуму. «Функция управления ИБП тоже нужна, но скорее факультативно, — говорит Сергей Ермаков, технический директор компании Inelt и эксперт в области систем Chloride. — Я глубоко убежден, что решения об активном управляющем вмешательстве в работу систем защиты электропитания ответственной нагрузки должен принимать человек, а не автоматизированная система. Завершение работы современных мощных серверов, на которых функционируют ответственные приложения, — это, как правило, весьма длительный процесс. ИБП зачастую не способны обеспечивать необходимое для него время, не говоря уж о времени запуска какого-то сервиса». Функция же мониторинга позволяет предотвратить наступление нежелательного события — либо, если таковое произошло, проанализировать его причины, опираясь не на слова, а на запротоколированные данные, хранящиеся в памяти адаптера или файлах на рабочей станции мониторинга.

    Эту точку зрения поддерживает и Алексей Сарыгин, технический директор компании Radius Group: «Дистанционное управление мощных ИБП — это вопрос, к которому надо подходить чрезвычайно аккуратно. Если функции дистанционного мониторинга и диспетчеризации необходимы, то практика предоставления доступа персоналу к функциям дистанционного управления представляется радикально неверной. Доступность модулей управления извне потенциально несет в себе риск нарушения безопасности и категорически снижает надежность системы. Если существует физическая возможность дистанционно воздействовать на ИБП, на его параметры, отключение, снятие нагрузки, закрытие выходных тиристорных ключей или блокирование цепи байпаса, то это чревато потерей питания всего ЦОД».

    Практически на всех трехфазных ИБП предусмотрена кнопка E.P.O. (Emergency Power Off), дублер которой может быть выведен на пульт управления диспетчерской. Она обеспечивает аварийное дистанционное отключение блоков ИБП при наступлении аварийных событий. Это, пожалуй, единственная возможность обесточить нагрузку, питаемую от трехфазного аппарата, но реализуется она в исключительных случаях.

    Что же касается диагностики электропитания, то, как отмечает Юрий Копылов, технический директор московского офиса корпорации Eaton, в последнее время характерной тенденцией в управляющем программном обеспечении стал отказ от предоставления функций удаленного тестирования батарей даже системному администратору.

    — Адекватно сравнивать состояние батарей необходимо под нагрузкой, — говорит он, — сам тест запускать не чаще чем раз в два дня, а разряжать батареи надо при одном и том же токе и уровне нагрузки. К тому же процесс заряда — довольно долгий. Все это не идет батареям на пользу.

    Средства мониторинга

    Производители ИБП предоставляют, как правило, сразу несколько средств мониторинга и в некоторых случаях даже управления ИБП — все они основаны на трех основных методах.

    В первом случае устройство подключается напрямую через интерфейс RS-232 (Com-порт) к консоли администратора. Дальность такого подключения не превышает 15 метров, но может быть увеличена с помощью конверторов RS-232/485 и RS-485/232 на концах провода, связывающего ИБП с консолью администратора. Такой способ обеспечивает низкую скорость обмена информацией и пригоден лишь для топологии «точка — точка».

    Второй способ предполагает использование SNMP-адаптера — встроенной или внешней интерфейсной карты, позволяющей из любой точки локальной сети получить информацию об основных параметрах ИБП. В принципе, для доступа к ИБП через SNMP достаточно веб-браузера. Однако для большего комфорта производители оснащают свои системы более развитым графическим интерфейсом, обеспечивающим функции мониторинга и корректного завершения работы. На базе SNMP-протокола функционируют все основные системы мониторинга и управления ИБП, поставляемые штатно или опционально вместе с ИБП.

    Стандартные SNMP-адаптеры поддерживают подключение нескольких аналоговых или пороговых устройств — датчик температуры, движения, открытия двери и проч. Интеграция таких устройств в общую систему мониторинга крупного объекта (например, дата-центра) позволяет охватить огромное количество точек наблюдения и отразить эту информацию на экране диспетчера.

    Большое удобство предоставляет метод эксплуатационного удаленного контроля T.SERVICE, позволяющий отследить работу оборудования посредством телефонной линии (через модем GSM) или через Интернет (с помощью интерфейса Net Vision путем рассылки e-mail на электронный адрес потребителя). T.SERVICE обеспечивает диагностирование оборудования в режиме реального времени в течение 24 часов в сутки 365 дней в году. ИБП автоматически отправляет в центр технического обслуживания регулярные отчеты или отчеты при обнаружении неисправности. В зависимости от контролируемых параметров могут отправляться уведомления о неправильной эксплуатации (с пользователем связывается опытный специалист и рекомендует выполнить простые операции для предотвращения ухудшения рабочих характеристик оборудования) или о наличии отказа (пользователь информируется о состоянии устройства, а на место установки немедленно отправляется технический специалист).

    Профессиональное мнение

    Наталья Маркина, коммерческий директор представительства компании SOCOMEC

    Управляющее ПО фирмы SOCOMEC легко интегрируется в общий контур управления инженерной инфраструктурой ЦОД посредством разнообразных интерфейсов передачи данных ИБП. Установленное в аппаратной или ЦОД оборудование SOCOMEC может дистанционно обмениваться информацией о своих рабочих параметрах с системами централизованного управления и компьютерными сетями посредством сухих контактов, последовательных портов RS232, RS422, RS485, а также через интерфейс MODBUS TCP и GSS.

    Интерфейс GSS предназначен для коммуникации с генераторными установками и включает в себя 4 входа (внешние контакты) и 1 выход (60 В). Это позволяет программировать особые процедуры управления, Global Supply System, которые обеспечивают полную совместимость ИБП с генераторными установками.

    У компании Socomec имеется широкий выбор интерфейсов и коммуникационного программного обеспечения для установки диалога между ИБП и удаленными системами мониторинга промышленного и компьютерного оборудования. Такие опции связи, как панель дистанционного управления, интерфейс ADC (реконфигурируемые сухие контакты), обеспечивающий ввод и вывод данных при помощи сигналов сухих контактов, интерфейсы последовательной передачи данных RS232, RS422, RS485 по протоколам JBUS/MODBUS, PROFIBUS или DEVICENET, MODBUS TCP (JBUS/MODBUS-туннелирование), интерфейс NET VISION для локальной сети Ethernet, программное обеспечение TOP VISION для выполнения мониторинга с помощью рабочей станции Windows XP PRO — все это позволяет контролировать работу ИБП удобным для пользователя способом.

    Весь контроль управления ИБП, ДГУ, контроль окружающей среды сводится в единый диспетчерский пункт посредством протоколов JBUS/MODBUS.
     

    Индустриальный подход

    Третий метод основан на использовании высокоскоростной индустриальной интерфейсной шины: CANBus, JBus, MODBus, PROFIBus и проч. Некоторые модели ИБП поддерживают разновидность универсального smart-слота для установки как карточек SNMP, так и интерфейсной шины. Система мониторинга на базе индустриальной шины может быть интегрирована в уже существующую промышленную SCADA-систему контроля и получения данных либо создана как заказное решение на базе многофункциональных стандартных контроллеров с выходом на шину. Промышленная шина через шлюзы передает информацию на удаленный диспетчерский пункт или в систему управления зданием (Building Management System, BMS). В эту систему могут быть интегрированы и контроллеры, управляющие ИБП.

    Универсальные SCADA-системы поддерживают датчики и контроллеры широкого перечня производителей, но они недешевы и к тому же неудобны для внесения изменений. Но если подобная система уже функционирует на объекте, то интеграция в нее дополнительных ИБП не представляет труда.

    Сергей Ермаков, технический директор компании Inelt, считает, что применение универсальных систем управления на базе промышленных контроллеров нецелесообразно, если используется для мониторинга только ИБП и ДГУ. Один из практичных подходов — создание заказной системы, с удобной для заказчика графической оболочкой и необходимым уровнем детализации — от карты местности до поэтажного плана и погружения в мнемосхему компонентов ИБП.

    — ИБП может передавать одинаковое количество информации о своем состоянии и по прямому соединению, и по SNMP, и по Bus-шине, — говорит Сергей Ермаков. — Применение того или иного метода зависит от конкретной задачи и бюджета. Создав первоначально систему UPS Look для мониторинга ИБП, мы интегрировали в нее систему мониторинга ДГУ на основе SNMP-протокола, после чего по желанию одного из заказчиков конвертировали эту систему на промышленную шину Jbus. Новое ПО JSLook для мониторинга неограниченного количества ИБП и ДГУ по протоколу JBus является полнофункциональным средством мониторинга всей системы электроснабжения объекта.

    Профессиональное мение

    Денис Андреев, руководитель департамента ИБП компании Landata

    Практически все ИБП Eaton позволяют использовать коммуникационную Web-SNMP плату Connect UPS и датчик EMP (Environmental Monitoring Probe). Такой комплект позволяет в числе прочего осуществлять мониторинг температуры, влажности и состояния пары «сухих» контактов, к которым можно подключить внешние датчики.

    Решение Eaton Environmental Rack Monitor представляет собой аналог такой связки, но с существенно более широким функционалом. Внешне эта система мониторинга температуры, влажности и состояния «сухих» контактов выполнена в виде компактного устройства, которое занимает минимум места в шкафу или в помещении.

    Благодаря наличию у Eaton Environmental Rack Monitor (ERM) двух выходов датчики температуры или влажности можно разместить в разных точках стойки или помещения. Поскольку каждый из двух датчиков имеет еще по два сухих контакта, с них дополнительно можно принимать сигналы от датчиков задымления, утечки и проч. В центре обработки данных такая недорогая система ERM, состоящая из неограниченного количества датчиков, может транслировать информацию по протоколу SNMP в HTML-страницу и позволяет, не приобретая специального ПО, получить сводную таблицу измеряемых величин через веб-браузер.

    Проблему дефицита пространства и высокой плотности размещения оборудования в серверных и ЦОД решают системы распределения питания линейки Eaton eDPU, которые можно установить как внутри стойки, так и на группу стоек.

    Все модели этой линейки представляют четыре семейства: системы базового исполнения, системы с индикацией потребляемого тока, с мониторингом (локальным и удаленным, по сети) и управляемые, с возможностью мониторинга и управления электропитанием вплоть до каждой розетки. С помощью этих устройств можно компактным способом увеличить количество розеток в одной стойке, обеспечить контроль уровня тока и напряжения критичной нагрузки.

    Контроль уровня потребляемой мощности может осуществляться с высокой степенью детализации, вплоть до сервера, подключенного к конкретной розетке. Это позволяет выяснить, какой сервер перегревается, где вышел из строя вентилятор, блок питания и т. д. Программным образом можно запустить сервер, подключенный к розетке ePDU. Интеграция системы контроля ePDU в платформу управления Eaton находится в процессе реализации.

    Требование объекта

    Как поясняет Олег Письменский, в критичных объектах, таких как ЦОД, можно условно выделить две области контроля и управления. Первая, Grey Space, — это собственно здание и соответствующая система его энергообеспечения и энергораспределения. Вторая, White Space, — непосредственно машинный зал с его системами.

    Выбор системы управления энергообеспечением ЦОД определяется типом объекта, требуемым функционалом системы управления и отведенным на эти цели бюджетом. В большинстве случаев кратковременная задержка между наступлением события и получением информации о нем системой мониторинга по SNMP-протоколу допустима. Тем не менее в целом ряде случаев, если характеристики объекта подразумевают непрерывность его функционирования, объект является комплексным и содержит большое количество элементов, требующих контроля и управления в реальном времени, ни одна стандартная система SNMP-мониторинга не обеспечит требуемого функционала. Для таких объектов применяют системы управления real-time, построенные на базе программно-аппаратных комплексов сбора данных, в том числе c функциями Softlogic.

    Системы диспетчеризации и управления крупными объектами реализуются SCADA-системами, широкий перечень которых сегодня присутствует на рынке; представлены они и в портфеле решений Schneider Electric. Тип SCADA-системы зависит от класса и размера объекта, от количества его элементов, требующих контроля и управления, от уровня надежности. Частный вид реализации SCADA — это BMS-система(Building Management System).

    «Дата-центры с объемом потребляемой мощности до 1,5 МВт и уровнем надежности Tier I, II и, с оговорками, даже Tier III, могут обслуживаться без дополнительной SCADA-системы, — говорит Олег Письменский. — На таких объектах целесообразно применять ISX Central — программно-аппаратный комплекс, использующий SNMP. Если же категория и мощность однозначно предполагают непрерывность управления, в таких случаях оправданна комбинация SNMP- и SCADA-системы. Например, для машинного зала (White Space) применяется ISX Central с возможными расширениями как Change & Capacity Manager, в комбинации со SCADA-системой, управляющей непосредственно объектом (Grey Space)».

    Профессиональное мнение

    Олег Письменский, директор департамента консалтинга APC by Schneider Electric в России и СНГ

    Подход APC by Schneider Electric к реализации полномасштабного полноуправляемого и надежного ЦОД изначально был основан на базисных принципах управления ИТ-инфраструктурой в рамках концепции ITIL/ITSM. И история развития системы управления инфраструктурой ЦОД ISX Manager, которая затем интегрировалась с программно-аппаратным комплексом NetBotz и трансформировалась в портал диспетчеризации ISX Central, — лучшее тому доказательство.

    Первым итогом поэтапного приближения к намеченной цели стало наращивание функций контроля параметров энергообеспечения. Затем в этот контур подключилась система управления кондиционированием, система контроля параметров окружающей среды. Очередным шагом стало измерение скорости воздуха, влажности, пыли, радиации, интеграция сигналов от камер аудио- и видеонаблюдения, системы управления блоками розеток, завершения работы сервера и т. д.

    Эта система не может и не должна отвечать абсолютно всем принципам ITSM, потому что не все они касаются существа поставленной задачи. Но как только в отношении политик и некоторых тактик управления емкостью и изменениями в ЦОД потребовался соответствующий инструментарий — это нашло отражение в расширении функционала ISX Central, который в настоящее время реализуют ПО APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager. С появлением этих двух решений, интегрированных в систему управления реальным объектом, АРС предоставляет возможность службе эксплуатации оптимально планировать изменения количественного и качественного состава оборудования машинного зала — как на ежедневном оперативном уровне, так и на уровне стратегических задач массовых будущих изменений.

    Решение APC by Schneider Electric Capacity обеспечивает автоматизированную обработку информации о свободных ресурсах инженерной инфраструктуры, реальном потреблении мощности и пространстве в стойках. Обращаясь к серверу ISX Central, системы APC by Schneider Electric Capacity Manager и APC by Schneider Electric Change Manager оценивают степень загрузки ИБП и систем охлаждения InRow, прогнозируют воздействие предполагаемых изменений и предлагают оптимальное место для установки нового или перестановки имеющегося оборудования. Новые решения позволяют, выявив последствия от предполагаемых изменений, правильно спланировать замену оборудования в ЦОД.

    Переход от частного к общему может потребовать интеграции ISX Central в такие, например, порталы управления, как Tivoli или Open View. Возможны и другие сценарии, когда ISX Central вписывается и в SCADA–систему. В этом случае ISX Central выполняет роль диспетчерской настройки, функционал которой распространяется на серверную комнату, но не охватывает целиком периметр объекта.

    Случай из практики

    Решение задачи управления энергообеспечением ЦОД иногда вступает в противоречие с правилами устройств электроустановок (ПУЭ). Может оказаться, что в соответствии с ПУЭ в ряде случаев (например, при компоновке щитов ВРУ) необходимо обеспечить механические блокировки. Однако далеко не всегда это удается сделать. Поэтому такая задача часто требует нетривиального решения.

    — В одном из проектов, — вспоминает Алексей Сарыгин, — где система управления включала большое количество точек со взаимными пересечениями блокировок, требовалось не допустить снижения общей надежности системы. В этом случае мы пришли к осознанному компромиссу, сделали систему полуавтоматической. Там, где это было возможно, присутствовали механические блокировки, за пультом дежурной смены были оставлены функции мониторинга и анализа, куда сводились все данные о положении всех автоматов. Но исполнительную часть вывели на отдельную панель управления уже внутри ВРУ, где были расположены подробные пользовательские инструкции по оперативному переключению. Таким образом мы избавились от излишней автоматизации, но постарались минимизировать потери в надежности и защититься от ошибок персонала.

    [ http://www.computerra.ru/cio/old/products/infrastructure/421312/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > управление электропитанием

  • 99 экономико-математическая модель

    1. economico-mathematical model
    2. economic model

     

    экономико-математическая модель
    Математическое описание экономического процесса или объекта, произведенное в целях их исследования и управления ими: математическая запись решаемой экономической задачи (поэтому часто термины “модель” и “задача” употребляются как синонимы). Существует еще несколько вариантов определения этого термина. В самой общей форме модель — условный образ объекта исследования, сконструированный для упрощения этого исследования. При построении модели предполагается, что ее непосредственное изучение дает новые знания о моделируемом объекте (см. Моделирование). Все это полностью относится и к Э.-м.м. В принципе в экономике применимы не только математические (знаковые), но и материальные модели. Например, гидравлические (в которых потоки воды имитируют потоки денег и товаров, а резервуары отождествляются с такими экономическими категориями, как объем промышленного производства, личное потребление и др.) и электрические (в США была известна модель «Эконорама», представлявшая собой сложную электрическую схему, в которой имитировались экономические процессы). Но все эти попытки имели лишь демонстрационное применение, а не служили средством изучения закономерностей экономики. С развитием же электронно-вычислительной техники потребность в них, по-видимому, и вовсе отпала. Э.-м.м. оказывается в этих условиях основным средством модельного исследования экономики. Модель может описывать либо внутреннюю структуру объекта, либо, если структура неизвестна, — его поведение, т.е. реакцию на воздействие известных факторов (принцип «черного ящика«). Один и тот же объект может быть описан различными моделями в зависимости от исследовательской или практической потребности, возможностей математического аппарата и т.п. Поэтому всегда необходима оценка модели и области, в которой выводы из ее изучения могут быть достоверны. Во всех случаях необходимо, чтобы модель содержала достаточно детальное описание объекта, позволяющее, в частности, осуществлять измерение экономических величин и их взаимосвязей, чтобы были выделены факторы, воздействующие на исследуемые показатели. Например, формула, по которой определяется на заводе потребность в материалах, исходя из норм расхода, есть Э.-м.м. Если количество видов изделий обозначить через n, нормативы расхода — ai, количество изделий каждого вида — xi, то модель запишется так: где i = 1, 2, …, n. Кроме того, полезно записать условия, в которых она действительна, т.е. ограничения модели (например, лимиты на те или иные материалы). Строго говоря, расчет по такой формуле не даст точного результата: потребность в материалах может зависеть также от случайных изменений в размерах брака и отходов, от страховых запасов и т.д. Но в общем, она зависит именно от указанных двух видов величин: норм расхода материала и объемов выпуска продукции. Первые из них в данном случае называются параметрами модели, вторые — переменными модели. Такая модель называется описательной, или дескриптивной; она описывает зависимость расхода (потребности в материале), от двух факторов: количества изделий и расходных норм. Большое значение в экономике имеют оптимизационные модели (или оптимальные). Они представляют собой системы уравнений, равенств и неравенств, которые кроме ограничений (условий) включают также особого рода уравнение, называемое функционалом или критерием оптимальности. С помощью такого критерия находят решение, наилучшее по какому-либо показателю, например, минимум затрат на материалы при заданном объеме продукции, или, наоборот, максимум продукции (или прибыли) при заданных ограничениях по ресурсам и т.д. Например, можно попытаться найти такой план работы цеха, который при заданном объеме материалов (т.е. их расход не должен быть больше какой-то величины, допустим, B) гарантирует наибольший объем продукции. Единственное, что надо при этом знать дополнительно — цену единицы продукции — pi. Тогда модель будет записываться так при условии Кроме того, обязательно надо учесть, что искомые величины объемов производства каждого изделия не должны быть отрицательными: xi ? 0, i = 1, 2, …, n. Мы получили элементарную оптимизационную модель, относящуюся к типу моделей линейного программирования. Решив эту модель, т.е. узнав значения всех xi от 1-го до n-го, мы получим искомый план. Важное свойство Э.-м.м. — их применимость к разным, на первый взгляд непохожим ситуациям. Например, если в приведенном примере через ai обозначить нормы внесения удобрений, а через xi — размеры участков, то та же самая формула покажет общий объем потребности в удобрениях. Точно такую же формулу можно применить к расчету затрат семьи на покупку разных продуктов, и во многих других случаях. Модель может быть сформулирована тремя способами: в результате прямого наблюдения и изучения некоторых явлений действительности (феноменологический способ), вычленения из более общей модели (дедуктивный способ), обобщения более частных моделей (индуктивный способ). Подобные модели, в которых описывается моментное состояние экономики, называются статическими (от слова «статика»). Те же, которые показывают развитие объекта моделирования, — динамическими. Модели могут строиться не только в виде формул, как рассмотренные здесь (это называется аналитическое представление модели; см. Аналитическая модель), но и в виде числовых примеров (численное представление) и в форме таблиц (матричное представление), и в форме особого рода графов (сетевое представление модели). Соответственно различают модели числовые, аналитические, матричные, сетевые. Экономическая наука давно пользуется моделями. Одной из первых была модель воспроизводства, разработанная французским ученым Ф.Кенэ еще в XYIII в. А в XX в. первая общая модель развивающейся экономики была сконструирована Дж. фон Нейманом. Значительный опыт построения э.-м. моделей накоплен учеными СССР, применявшими их для анализа экономических процессов, прогнозирования и планирования во всех звеньях и на всех уровнях экономики, вплоть до планирования развития народного хозяйства страны в целом, особенно — перспективного. Принято подразделять Э-м.м. на две большие группы: модели, отражающие преимущественно производственный аспект экономики; модели, отражающие преимущественно социальные аспекты экономики. Разумеется, такое деление в значительной степени условно, поскольку в каждой из моделей в той или иной степени сочетаются производственный и социальный аспекты. Из моделей первой группы можно назвать: модели долгосрочного прогноза сводных показателей экономического развития; межотраслевые модели; отраслевые модели оптимального планирования и размещения производства, а также модели оптимизации структуры производства в отраслях. Из моделей второй группы наиболее разработаны модели, связанные с прогнозированием и планированием доходов и потребления населения, демографических процессов. Существует большое число классификаций типов Э.-м.м., которые, однако, носят фрагментарный характер. И это, по-видимому, неизбежно, так как нереально охватить все многообразие социально-экономических задач, объектов и процессов, описываемых различными моделями. Представленные в нашем словаре модели можно условно классифицировать следующим образом 1. Наиболее общее деление моделей — по способу отражения действительности: Аналоговая модель Иконическая модель (то же: портретная модель) Концептуальная модел Структурная модель Функциональная модель. 2. По предназначению (цели создания и применения) модели: Балансовая модель Дескриптивная модель (то же: Описательная) Имитационная модель Информационная модель Нормативная модель (то же: Прескриптивная модель), в т.ч. Оптимальная модель (то же: Оптимизационная модель). 3. По способу логико-математического описания моделируемых экономических систем: Аналитическая модель Вероятностная модель (то же: Стохастическая модель) Детерминированная модель Дискретная модель Линейная модель Математико-статистическая модель Матричная модель Нелинейная модель Непрерывная модель Модель равновесия Неравновесная модель Регрессионная модель Сетевая модель Числовая модель Эконометрическая модель. - дискретного выбора - непрерывной длительности (выживания) -логит-иодель -пробит-модель - тобит-модель.. 4. По временному и пространственному признаку: Гравитационная модель Динамическая модель (см. Динамические модели экономики) Модели с «бесконечным временем» Статическая модель Точечная модель Трендовая модель и др.. 5. По уровню моделируемого объекта в хозяйственной иерархии: Глобальная модель Макроэкономическая модель (то же: Агрегатная модель) Модели мезоэкономики Микроэкономическая модель 6. По внутренней структуре модельного описания системы: Автономная модель Закрытая модель Комплекс моделей Многосекторная модель (многоотраслевая, многопродуктовая) Однопродуктовая модель Открытая модель Система моделей (в том числе многоуровневая или многоступенчатая). 7.. По сфере применения. Выше было указано на необозримость областей применения Э.-м.м.; поэтому мы не даем здесь их перечисления, а отсылаем к соответствующим статьям словаря: например, о прогнозных моделях — к статье Прогнозирование, об отраслевых — к статье Отраслевые задачи оптимального планирования развития и размещения производства, и т.д. Наиболее развитая типология социально-экономических задач и моделей представлена в кн.: Вилкас Э.Й., Майминас Е.З. Решения: теория, информация, моделирование. — М.: “Радио и связь”, 1981.При разработке приведенной выше условной классификации учитывались материалы этой книги.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > экономико-математическая модель

  • 100 риск ликвидности

    1. liquidity risk

     

    риск ликвидности
    Риск того, что контрагент (или участник расчетной системы) не осуществит расчет по обязательству в полном объеме в срок. Риск ликвидности не подразумевает неплатежеспособности контрагента или участника, поскольку он, возможно, сможет осуществить расчет по необходимым обязательствам в какое-либо неопределенное время позднее.
    [Глоссарий терминов, используемых в платежных и расчетных системах. Комитет по платежным и расчетным системам Банка международных расчетов. Базель, Швейцария, март 2003 г.]

    риск ликвидности
    Риск того, что компания столкнется с трудностями в привлечении средств для исполнения обязательств, связанных с финансовыми инструментами.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    3.44 риск ликвидности (liquidity risk): Риск того, что у контрагента в системе будет недостаточно средств для выполнения своих финансовых обязательств в системе в полном объеме в срок, хотя существует возможность, что он сможет сделать это в какой-то момент в будущем [7].

    Источник: ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.44 риск ликвидности (liquidity risk): Риск того, что у контрагента в системе будет недостаточно средств для выполнения своих финансовых обязательств в системе в полном объеме в срок, хотя существует возможность, что он сможет сделать это в какой-то момент в будущем [7].

    Источник: ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    Русско-английский словарь нормативно-технической терминологии > риск ликвидности

См. также в других словарях:

  • Системы координат — летательного аппарата правые прямоугольные системы координат, используемые при решении задач динамики полёта, а также для описания геометрических характеристик самолётов. Основными С. к., используемыми в динамике полёта, являются С. к., в которых …   Энциклопедия техники

  • системы снижения шума разных типов — Системы снижения шума, существенно отличающиеся от исходной, например: 1) элементы системы снижения шума, указанные в 4.1, имеют различные фабричные и торговые марки; 2) характеристики материалов, из которых изготовлен какой либо элемент системы …   Справочник технического переводчика

  • СИСТЕМЫ — 54. СИСТЕМЫ совокупность элементов, предназначенных для выполнения заданных функций. Источник: ПНАЭ Г 05 035 94: Учет внешних воздействий природного и техногенного происхождения на ядерно и радиационно опасн …   Словарь-справочник терминов нормативно-технической документации

  • системы координат — Рис. 1. Взаимное положение связанной, скоростной и полусвязанной систем координат. системы координат летательного аппарата — правые прямоугольные системы координат, используемые при решении задач динамики полёта, а также для описания… …   Энциклопедия «Авиация»

  • системы координат — Рис. 1. Взаимное положение связанной, скоростной и полусвязанной систем координат. системы координат летательного аппарата — правые прямоугольные системы координат, используемые при решении задач динамики полёта, а также для описания… …   Энциклопедия «Авиация»

  • системы снижения шума разных типов — 2.4 системы снижения шума разных типов: Системы снижения шума, существенно отличающиеся от исходной, например: 2.4.1 элементы системы снижения шума, указанные в 4.1, имеют различные фабричные и торговые марки; 2.4.2 характеристики материалов, из… …   Словарь-справочник терминов нормативно-технической документации

  • СИСТЕМЫ СУДОВЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК — совокупность трубопроводов, устройств, аппаратов, механизмов и другого оборудования, предназначенного для обеспечения работы судовой энергетической установки. Каждая система используется для перемещения какой либо рабочей среды (топлива, масла,… …   Морской энциклопедический справочник

  • Системы терминов родства — Системы терминов родства  исторически обусловленные системы терминов кровного родства и свойства (родства по браку). Содержание 1 История изучения 2 …   Википедия

  • Какой бывает мёд — Состав Мёд содержит почти все микроэлементы и по составу чем то напоминает плазму крови человека. Его называют кладовой витаминов в нем содержатся В1, В2, В6, Е, К, С, провитамин А каротин, фолиевая кислота. По лечебным свойствам аналогов меду в… …   Энциклопедия ньюсмейкеров

  • ИНФОРМАЦИОННЫЕ СИСТЕМЫ — системы обработки данных какой либо предметной области со средствами накопления, хранения, обработки, преобразования, передачи, обновления информации с использованием компьютерной и др. техники …   Профессиональное образование. Словарь

  • ГОСТ Р ИСО 22745-2-2011: Системы промышленной автоматизации и их интеграция. Открытые технические словари и их применение к основным данным. Часть 2. Словарь — Терминология ГОСТ Р ИСО 22745 2 2011: Системы промышленной автоматизации и их интеграция. Открытые технические словари и их применение к основным данным. Часть 2. Словарь оригинал документа: 11.10 акроним: Сокращение, составленное из начальных… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»