Перевод: с русского на французский

с французского на русский

(в+системе+величин)

  • 1 система физических величин

    1. système de grandeurs, m
    2. systeme de grandeurs physiques

     

    система физических величин
    система величин

    Совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин.
    Примечание. В названии системы величин применяют символы величин, принятых за основные. Так система величин механики, в которой в качестве основных приняты длина L, масса М и время Т, должна называться системой LMT. Система основных величин, соответствующая Международной системе единиц (СИ), должна обозначаться символами LMTIQNJ, обозначающими соответственно символы основных величин - длины L, массы М, времени Т, силы электрического тока I, температуры Q, количества вещества N и силы света J.
    [РМГ 29-99]

    EN

    system of quantities
    set of quantities together with a set of non-contradictory equations relating those quantities
    NOTE – Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only. Nominal properties, such as colour of light, are not quantities and hence are not part of a system of quantities.
    Source: ISO/IEC GUIDE 99:2007 1.3
    [IEV number 112-01-07]

    FR

    système de grandeurs, m
    ensemble de grandeurs associé à un ensemble de relations non contradictoires entre ces grandeurs
    NOTE – Les grandeurs ordinales, telles que la dureté C de Rockwell, ne sont généralement pas considérées comme faisant partie d'un système de grandeurs, parce qu'elles ne sont reliées à d'autres grandeurs que par des relations empiriques. Les propriétés qualitatives, telles que la couleur d’une lumière, ne sont pas des grandeurs et ne font donc pas partie d’un système de grandeurs.
    Source: ISO/IEC GUIDE 99:2007 1.3
    [IEV number 112-01-07]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    2.6. Система физических величин

    Система величин

    D.    Grofiensystem

    E.    System of physical quantities

    F.    Systeme de grandeurs physiques

    Совокупность физических величин, связанных между собой зависимостями.

    Примечание. Для обозначения системы величин указывают группу основных величин (2.7), которые обычно обозначаются символами их размерностей

    Примеры. Система величин механики LMT, в которой в качестве основных величин приняты длина /, масса m и время (.

    Система величин LMTI, охватывающая механические и электрические величины, в которой в качестве основных величин приняты длина /, масса m, время t и сила электрического тока i

    Источник: ГОСТ 16263-70: Государственная система обеспечения единства измерений. Метрология. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > система физических величин

  • 2 отношение величин сопротивления в системе

    1. rapport d'impédance du réseau

     

    отношение величин сопротивления в системе
    Для заданной точки измерения, обычно на одном конце линии - отношение сопротивления источника к полному сопротивлению защищаемой зоны.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    отношение сопротивлений

    Для конкретной точки измерений это отношение сопротивления источника (системы) к сопротивлению цепи КЗ (сопротивление защищаемой зоны).
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    system impedance ratio
    source impedance ratio (US)

    at a given measurement location, commonly at one end of a line, the ratio of the power system source impedance to the impedance of the protected zone
    [IEV ref 448-14-14]

    FR

    rapport d'impédance du réseau
    en un point de mesure donné, en général à une extrémité d'une ligne, rapport de l'impédance de source du réseau d'énergie à l'impédance de la zone protégée
    [IEV ref 448-14-14]

    Тематики

    EN

    DE

    • Impedanzverhältnis, n

    FR

    Русско-французский словарь нормативно-технической терминологии > отношение величин сопротивления в системе

  • 3 основная единица системы единиц физических величин

    1. unité (de mesure) de base

     

    основная единица системы единиц физических величин
    основная единица

    Единица основной физической величины в данной системе единиц.
    Пример. Основные единицы Международной системы единиц (СИ): метр (м), килограмм (кг), секунда.
    [РМГ 29-99]

    EN

    base unit
    unit of measurement that is adopted by convention for a base quantity
    NOTE 1 – In each coherent system of units, there is only one base unit for each base quantity. In the SI for example, the metre is the base unit of length. The centimetre and the kilometre are also units of length, but they are not base units in the SI. However, in the CGS systems, the centimetre is the base unit of length.
    NOTE 2 – A base unit may also serve for a derived quantity of the same dimension. For example, rainfall, when defined as volume per area (areic volume), has the metre as a coherent derived unit in the SI. The ampere, base unit of electric current, is also the coherent derived unit of scalar magnetic potential.
    NOTE 3 – For the quantity “number of entities”, the number one, symbol 1, can be regarded as a base unit in any system of units.
    Source: ISO/IEC GUIDE 99:2007 1.10
    [IEV number 112-01-18]

    FR

    unité de base, f
    unité de mesure adoptée par convention pour une grandeur de base
    NOTE 1 – Dans chaque système cohérent d'unités, il y a une seule unité de base pour chaque grandeur de base. Dans le SI par exemple, le mètre est l'unité de base de longueur. Le centimètre et le kilomètre sont aussi des unités de longueur, mais ils ne sont pas des unités de base dans le SI. Cependant, dans les systèmes CGS, le centimètre est l'unité de base de longueur.
    NOTE 2 – Une unité de base peut aussi servir pour une grandeur dérivée de même dimension. Par exemple, la hauteur de pluie, définie comme un volume surfacique (volume par aire) a le mètre comme unité dérivée cohérente dans le SI. L’ampère, unité de base de courant électrique, est aussi l’unité dérivée cohérente de potentiel magnétique scalaire.
    NOTE 3 – Pour la grandeur « nombre d'entités », on peut considérer le nombre un, de symbole 1, comme une unité de base dans tout système d'unités.
    Source: ISO/IEC GUIDE 99:2007 1.10
    [IEV number 112-01-18]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > основная единица системы единиц физических величин

  • 4 размерность физической величины

    1. dimension, f
    2. Dimension d’une grandeur
    3. dimension d'une grandeur, f

     

    размерность физической величины
    размерность величины

    Выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь данной физической величины с физическими величинами, принятыми в данной системе величин за основные с коэффициентом пропорциональности, равным 1.
    Примечания
    1. Степени символов основных величин, входящих в одночлен, в зависимости от связи рассматриваемой физической величины с основными, могут быть целыми, дробными, положительными и отрицательными. Понятие размерность распространяется и на основные величины. Размерность основной величины в отношении самой себя равна единице, т.е. формула размерности основной величины совпадает с ее символом.
    2. В соответствии с международным стандартом ИСО 31/0, размерность величин следует обозначать знаком dim [2]. В системе величин LMT размерность величины.x будет: dim х = LlMmTt, где L, М, Т - символы, величин, принятых за основные (соответственно длины, массы, времени).
    [РМГ 29-99]

    EN

    dimension of a quantity
    quantity dimension
    dimension

    expression of the dependence of a quantity on the base quantities of a system of quantities as a product of powers of factors corresponding to the base quantities, omitting any numerical factor
    NOTE 1 – A power of a factor is the factor raised to an exponent. Each factor is the dimension of a base quantity.
    NOTE 2 – The conventional symbolic representation of the dimension of a base quantity is a single upper case letter in roman (upright) sans-serif type. The conventional symbolic representation of the dimension of a derived quantity is the product of powers of the dimensions of the base quantities according to the definition of the derived quantity. The dimension of a quantity Q is denoted by dim Q.
    NOTE 3 – In deriving the dimension of a quantity, no account is taken of its scalar, vector or tensor character.
    NOTE 4 – In a given system of quantities, – quantities of the same kind have the same dimension, – quantities of different dimensions are always of different kinds, and – quantities having the same dimension are not necessarily of the same kind. For example, in the ISQ, pressure and energy density (volumic energy) have the same dimension L–1MT–2. See also note 5.
    NOTE 5 – In the International System of Quantities (ISQ), the symbols representing the dimensions of the base quantities are:
    0543
    [IEV number 112-01-11]

    FR

    dimension, f
    dimension d'une grandeur, f

    expression de la dépendance d’une grandeur par rapport aux grandeurs de base d'un système de grandeurs sous la forme d'un produit de puissances de facteurs correspondant aux grandeurs de base, en omettant tout facteur numérique
    NOTE 1 – Une puissance d'un facteur est le facteur muni d'un exposant. Chaque facteur exprime la dimension d'une grandeur de base.
    NOTE 2 – Par convention, la représentation symbolique de la dimension d'une grandeur de base est une lettre majuscule unique en caractère romain (droit) sans empattement. Par convention, la représentation symbolique de la dimension d'une grandeur dérivée est le produit de puissances des dimensions des grandeurs de base conformément à la définition de la grandeur dérivée. La dimension de la grandeur Q est notée dim Q.
    NOTE 3 – Pour établir la dimension d'une grandeur, on ne tient pas compte du caractère scalaire, vectoriel ou tensoriel.
    NOTE 4 – Dans un système de grandeurs donné, – les grandeurs de même nature ont la même dimension, – des grandeurs de dimensions différentes sont toujours de nature différente, – des grandeurs ayant la même dimension ne sont pas nécessairement de même nature. Par exemple, dans l'ISQ, la pression et l'énergie volumique ont la même dimension L–1MT–2. Voir aussi la note 5.
    NOTE 5 – Dans le Système international de grandeurs (ISQ), les symboles représentant les dimensions des grandeurs de base sont:
    0544
    [IEV number 112-01-11]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    • dimension d'une grandeur, f
    • dimension, f

    2.9. Размерность физической величины

    Размерность величины Нрк. Формула размерности

    D.    Dimension einer GroBe

    E.    Dimensions of a quantity

    F.    Dimension d’une grandeur

    Выражение, отражающее связь величины с основными величинами системы, в котором коэффициент пропорциональности принят равным 1.

    Примечания:

    1.    Размерность величины представляет собой произведение основных величин, возведенных в соответствующие степени.

    2.    Размерность производной величины отражает, во сколько раз изменяется ее размер при изменении размеров основных величин, например, если размерность величины х равна LaM^Tv и длина изменяется от / до /', масса — от m до т' и время — от t до то новый размер величины будет больше прежнего в (/'//)а

    (/'//)v раз.

    Источник: ГОСТ 16263-70: Государственная система обеспечения единства измерений. Метрология. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > размерность физической величины

  • 5 основная физическая величина

    1. Grandeur physique derivee
    2. Grandeur physique de base
    3. grandeur de base

     

    основная физическая величина
    основная величина

    Физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы.
    [РМГ 29-99]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    2.7.    Основная физическая величина

    Основная величина

    D.    Basisgrofie

    E.    Fundamental physical quantity

    F.    Grandeur physique de base

    2.8.    Производная физическая величина

    Производная величина

    D.    Abgeleitete Grofie

    E.    Derived physical quantity

    F.    Grandeur physique derivee

    Физическая величина, входящая в систему и условно принятая в качестве независимой от других величин этой системы.

    Пример. Длина /, масса т, время t в механике.

    Физическая величина, входящая в систему и определяемая через основные величины этой системы.

    Примеры. Скорость в системе величин LMT определяется в общем случае уравнением v=*dlfdt, где v — скорость, 1 — расстояние, t — время.

    Механическая сила в этой же системе определяется уравнением F=ma, где m — масса, а — ускорение, вызываемое действием силы F.

    Источник: ГОСТ 16263-70: Государственная система обеспечения единства измерений. Метрология. Термины и определения оригинал документа

    Русско-французский словарь нормативно-технической терминологии > основная физическая величина

  • 6 безразмерная физическая величина

    1. grandeur sans dimension

     

    безразмерная физическая величина
    безразмерная величина

    Физическая величина, в размерность которой основные физические величины входят в степени, равной нулю.
    Примечание. Безразмерная величина в одной системе величин может быть размерной в другой системе. Например, электрическая постоянная eо в электростатической системе является безразмерной величиной, а в системе величин СИ имеет размерность dim eо = L-3 М-1 Т4 I2.
    [РМГ 29-99]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > безразмерная физическая величина

  • 7 дистанционная защита

    1. protection de distance

     

    дистанционная защита
    -

    [В.А.Семенов Англо-русский словарь по релейной защите]

    дистанционная защита
    Защита с относительной селективностью, срабатывание и селективность которой зависят от измерения в месте ее установки электрических величин, по которым путем сравнения с уставками зон оценивается эквивалентная удаленность повреждения
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    дистанционная защита
    Защита, чье действие и селективность основаны на локальном измерении электрических величин, по которым рассчитываются эквивалентные расстояния до места повреждения в пределах установленных зон.
    [ http://docs.cntd.ru/document/1200069370]

    дистанционная защита
    Защита, принцип действия и селективность которой основаны на измерении в месте установки защиты электрических величин, характеризующих повреждение, и сравнении их с уставками зон.
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    distance protection
    distance relay (US)

    a non-unit protection whose operation and selectivity depend on local measurement of electrical quantities from which the equivalent distance to the fault is evaluated by comparing with zone settings
    [IEV ref 448-14-01]

    FR

    protection de distance
    protection à sélectivité relative de section dont le fonctionnement et la sélectivité dépendent de la mesure locale de grandeurs électriques à partir desquelles la distance équivalente du défaut est évaluée par comparaison avec des réglages de zones
    [IEV ref 448-14-01]

    Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут использоваться более простые максимальные токовые и токовые направленные защиты.
    Дистанционной защитой определяется сопротивление (или расстояние - дистанция) до места КЗ, и в зависимости от этого защита срабатывает с меньшей или большей выдержкой времени. Следует уточнить, что современные дистанционные защиты, обладающие ступенчатыми характеристиками времени, не измеряют каждый раз при КЗ значение указанного выше сопротивления на зажимах измерительного органа и не устанавливают в зависимости от этого большую или меньшую выдержку времени, а всего лишь контролируют зону, в которой произошло повреждение. Время срабатывания защиты при КЗ в любой точке рассматриваемой зоны остается неизменным. Каждая защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80-85% длины защищаемой линии, время срабатывания защиты не более 0,15 с. Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4-0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается так же, как и для направленных токовых защит.
    На рис. 7.15 показан участок сети с двухсторонним питанием и приведены согласованные характеристики выдержек времени дистанционных защит (ДЗ). При КЗ, например, в точке К1 - первой зоне действия защит ДЗ3 и ДЗ4 - они сработают с минимальным временем соответственно t I3 и t I4. Защиты ДЗ1 и ДЗ6 также придут в действие, но для них повреждение будет находиться в III зоне, и они могут сработать как резервные с временем t III1 и t III6 только в случае отказа в отключении линии БВ собственными защитами.


    4610
    Рис. 7.14. Размещение токовых направленных защит нулевой последовательности на участке сетей и характеристики выдержек времени защит:
    Р31-Р36 - комплекты токовых направленных защит нулевой последовательности


    4611
    Рис. 7.15. Защита участка сети дистанционными защитами и характеристики выдержек времени этих защит:
    ДЗ1-ДЗ6 - комплекты дистанционных защит; l3 и l4 - расстояния от мест установки защит до места повреждения


    При КЗ в точке К2 (шины Б) оно устраняется действием защит ДЗ1 и ДЗ4 с временем t II1 и t II4.
    Дистанционная защита - сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию. На рис. 7.16 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
    Пусковой орган ПО выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток I р и напряжение U p на зажимах реле.
    Дистанционные (или измерительные) органы ДО1 и ДО2 устанавливают меру удаленности места КЗ.
    Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
    4612
    где Z p - сопротивление на зажимах реле; Z - сопротивление защищаемой линии длиной 1 км; l - длина участка линии до места КЗ, км; Z cp - сопротивление срабатывания реле.
    Из приведенного соотношения видно, что сопротивление на зажимах реле Z p пропорционально расстоянию l до места КЗ.
    Органы выдержки времени ОВ2 и ОВ3 создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления OHM разрешает работу защиты при направлении мощности КЗ от шин в линию.
    В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то Zp=0. Это означает, что и пусковой, и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток и подает сигнал о неисправности цепей напряжения. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия переводом накладки в положение "Отключено".

    4613
    Рис. 7.16. Принципиальная схема дистанционной защиты со ступенчатой характеристикой выдержки времени

    Работа защиты.

    При КЗ на линии срабатывают реле пускового органа ПО и реле органа направления OHM. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны ОВ3 и приведет его в действие. Если КЗ находится в первой зоне, дистанционный орган ДО1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени. При КЗ во второй зоне ДО1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны ДО2, который запустит реле времени ОВ2. По истечении выдержки времени второй зоны от реле ОВ2 поступит импульс на отключение линии. Если КЗ произойдет в третьей зоне, дистанционные органы ДО1 и ДО2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени ОВ3, запущенное в момент возникновения КЗ контактами реле OHM, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
    В комплекты дистанционных защит входят также устройства, предотвращающие срабатывание защит при качаниях в системе.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-4.html]

     

    Тематики

    Синонимы

    EN

    DE

    • Distanzschutz, m

    FR

    Русско-французский словарь нормативно-технической терминологии > дистанционная защита

  • 8 дистанционная защита с переключениями

    1. protection de distance à commutation

     

    дистанционная защита с переключениями
    Дистанционная защита, имеющая обычно только один измерительный орган, предназначенный для выявления всех видов замыканий и (или) для всех зон.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    дистанционная защита с переключением входных величин

    Дистанционная защита, обычно имеющая только один измерительный орган для всех видов замыканий в системе и/или для всех зон защиты.
    Для цифровых защит термин «переключаемая» не применим, так как входные величины постоянно измеряются и записываются в буфер. В измерительных органах не происходит никаких коммутаций.
    Реле, в которых используется пусковой орган, выявляющий петлю КЗ (повреждения), для которой (только этой петли) осуществляется измерение, могут быть названы односистемными дистанционными реле.
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    switched distance protection
    distance protection generally having only one measuring element for all power system faults and/or for all zones
    [ IEV ref 448-14-04]

    FR

    protection de distance à commutation
    protection de distance ayant en général un seul élément de mesure pour tous les types de défaut dans le réseau d'énergie et/ou pour toutes les zones
    [ IEV ref 448-14-04]

    Тематики

    Синонимы

    EN

    DE

    • Distanzschutz mit Auswahlschaltung, m

    FR

    Русско-французский словарь нормативно-технической терминологии > дистанционная защита с переключениями

  • 9 продольная дифференциальная защита

    1. protection différentielle longitudinale

     

    продольная дифференциальная защита
    Защита, действие и селективность которой зависят от сравнения величин (или фаз и величин) токов по концам защищаемой линии.
    [ http://docs.cntd.ru/document/1200069370]

    продольная дифференциальная защита

    Защита, срабатывание и селективность которой зависят от сравнения амплитуд или амплитуд и фаз токов на концах защищаемого участка.
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    продольная дифференциальная защита линий
    -
    [Интент]

    EN

    longitudinal differential protection
    line differential protection (US)

    protection the operation and selectivity of which depend on the comparison of magnitude or the phase and magnitude of the currents at the ends of the protected section
    [ IEV ref 448-14-16]

    FR

    protection différentielle longitudinale
    protection dont le fonctionnement et la sélectivité dépendent de la comparaison des courants en amplitude, ou en phase et en amplitude, entre les extrémités de la section protégée
    [ IEV ref 448-14-16]


    Продольная дифференциальная защита линий

    Защита основана на принципе сравнения значений и фаз токов в начале и конце линии. Для сравнения вторичные обмотки трансформаторов тока с обеих сторон линии соединяются между собой проводами, как показано на рис. 7.17. По этим проводам постоянно циркулируют вторичные токи I 1 и I 2. Для выполнения дифференциальной защиты параллельно трансформаторам тока (дифференциально) включают измерительный орган тока ОТ.
    Ток в обмотке этого органа всегда будет равен геометрической сумме токов, приходящих от обоих трансформаторов тока: I Р = I 1 + I 2 Если коэффициенты трансформации трансформаторов тока ТА1 и ТА2 одинаковы, то при нормальной работе, а также внешнем КЗ (точка K1 на рис. 7.17, а) вторичные токи равны по значению I 1 =I2 и направлены в ОТ встречно. Ток в обмотке ОТ I Р = I 1 + I 2 =0, и ОТ не приходит в действие. При КЗ в защищаемой зоне (точка К2 на рис. 7.17, б) вторичные токи в обмотке ОТ совпадут по фазе и, следовательно, будут суммироваться: I Р = I 1 + I 2. Если I Р >I сз, орган тока сработает и через выходной орган ВО подействует на отключение выключателей линии.
    Таким образом, дифференциальная продольная защита с постоянно циркулирующими токами в обмотке органа тока реагирует на полный ток КЗ в защищаемой зоне (участок линии, заключенный между трансформаторами тока ТА1 и ТА2), обеспечивая при этом мгновенное отключение поврежденной линии.
    Практическое использование схем дифференциальных защит потребовало внесения ряда конструктивных элементов, обусловленных особенностями работы этих защит на линиях энергосистем.
    Во-первых, для отключения протяженных линий с двух сторон оказалось необходимым подключение по дифференциальной схеме двух органов тока: одного на подстанции 1, другого на подстанции 2 (рис. 7.18). Подключение двух органов тока привело к неравномерному распределению вторичных токов между ними (токи распределялись обратно пропорционально сопротивлениям цепей), появлению тока небаланса и понижению чувствительности защиты. Заметим также, что этот ток небаланса суммируется в ТО с током небаланса, вызванным несовпадением характеристик намагничивания и некоторой разницей в коэффициентах трансформации трансформаторов тока. Для отстройки от токов небаланса в защите были применены не простые дифференциальные реле, а дифференциальные реле тока с торможением KAW, обладающие большей чувствительностью.
    Во-вторых, соединительные провода при их значительной длине обладают сопротивлением, во много раз превышающим допустимое для трансформаторов тока сопротивление нагрузки. Для понижения нагрузки были применены специальные трансформаторы тока с коэффициентом трансформации n, с помощью которых был уменьшен в п раз ток, циркулирующий по проводам, и тем самым снижена в n2 раз нагрузка от соединительных проводов (значение нагрузки пропорционально квадрату тока). В защите эту функцию выполняют промежуточные трансформаторы тока TALT и изолирующие TAL. В схеме защиты изолирующие трансформаторы TAL служат еще и для отделения соединительных проводов от цепей реле и защиты цепей реле от высокого напряжения, наводимого в соединительных проводах во время прохождения по линии тока КЗ.

    5313
    Рис. 7.17. Принцип выполнения продольной дифференциальной защиты линии и прохождение тока в органе тока при внешнем КЗ (а) и при КЗ в защищаемой зоне (б)

     

    5314
    Рис. 7.18. Принципиальная схема продольной дифференциальной защиты линии:
    ZA - фильтр токов прямой и обратной последовательностей; TALT - промежуточный трансформатор тока; TAL - изолирующий трансформатор; KAW - дифференциальное реле с торможением; Р - рабочая и T - тормозная обмотки реле

    Распространенные в электрических сетях продольные дифференциальные защиты типа ДЗЛ построены на изложенных выше принципах и содержат элементы, указанные на рис. 7.18. Высокая стоимость соединительных проводов во вторичных цепях ДЗЛ ограничивает область се применения линиями малой протяженности (10-15 км).
    Контроль исправности соединительных проводов. В эксплуатации возможны повреждения соединительных проводов: обрывы, КЗ между ними, замыкания одного провода на землю.
    При обрыве соединительного провода (рис. 7.19, а) ток в рабочей Р и тормозной Т обмотках становится одинаковым и защита может неправильно сработать при сквозном КЗ и даже при токе нагрузки (в зависимости от значения Ic з .
    Замыкание между соединительными проводами (рис. 7.19, б) шунтирует собой рабочие обмотки реле, и тогда защита может отказать в работе при КЗ в защищаемой зоне.
    Для своевременного выявления повреждений исправность соединительных проводов контролируется специальным устройством (рис. 7.20). Контроль основан на том, что на рабочий переменный ток, циркулирующий в соединительных проводах при их исправном состоянии, накладывается выпрямленный постоянный ток, не оказывающий влияния на работу защиты. Две секции вторичной обмотки TAL соединены разделительным конденсатором С1, представляющим собой большое сопротивление для постоянного тока и малое для переменного. Благодаря конденсаторам С1 в обоих комплектах защит создается последовательная цепь циркуляции выпрямленного тока по соединительным проводам и обмоткам минимальных быстродействующих реле тока контроля КА. Выпрямленное напряжение подводится к соединительным проводам только на одной подстанции, где устройство контроля имеет выпрямитель VS, получающий в свою очередь питание от трансформатора напряжения TV рабочей системы шин. Подключение устройства контроля к той или другой системе шин осуществляется вспомогательными контактами шинных разъединителей или. реле-повторителями шинных разъединителей защищаемой линии.
    Замыкающие контакты КЛ контролируют цепи выходных органов защиты.
    При обрыве соединительных проводов постоянный ток исчезает, и реле контроля КА снимает оперативный ток с защит на обеих подстанциях, и подастся сигнал о повреждении. При замыкании соединительных проводов между собой подается сигнал о выводе защиты из действия, но только с одной стороны - со стороны подстанции, где нет выпрямителя.
    5315
    Рис. 7.19. Прохождение тока в обмотках реле KAW при обрыве (а) и замыкании между собой соединительных проводов (б):
    К1 - точка сквозного КЗ; К2 - точка КЗ в защищаемой зоне
    В устройстве контроля имеется приспособление для периодических измерений сопротивления изоляции соединительных проводов относительно земли. Оно подаст сигнал при снижении сопротивления изоляции любого из соединительных проводов ниже 15-20 кОм.
    Если соединительные провода исправны, ток контроля, проходящий по ним, не превышает 5-6 мА при напряжении 80 В. Эти значения должны периодически проверяться оперативным персоналом в соответствии с инструкцией по эксплуатации защиты.
    Оперативному персоналу следует помнить, что перед допуском к любого рода работам на соединительных проводах необходимо отключать с обеих сторон продольную дифференциальную защиту, устройство контроля соединительных проводов и пуск от защиты устройства резервирования при отказе выключателей УРОВ.
    После окончания работ на соединительных проводах следует проверить их исправность. Для этого включается устройство контроля на подстанции, где оно не имеет выпрямителя, при этом должен появиться сигнал неисправности. Затем устройство контроля включают на другой подстанции (на соединительные провода подают выпрямленное напряжение) и проверяют, нет ли сигнала о повреждении. Защиту и цепь пуска УРОВ от защиты вводят в работу при исправных соединительных проводах.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-5.html]

    Тематики

    Синонимы

    EN

    DE

    • Längsdifferentialschutz, m

    FR

    Русско-французский словарь нормативно-технической терминологии > продольная дифференциальная защита

  • 10 алгоритм

    1. algorithme

     

    алгоритм
    Конечный набор предписаний для получения решения задачи посредством конечного количества операций.
    [ ГОСТ 34.003-90]

    алгоритм
    Конечное упорядоченное множество точно определенных правил для решения конкретной задачи.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    алгоритм
    Последовательность действий для определенного вычисления
    [ ГОСТ 30721-2000]
    [ ГОСТ Р 51294.3-99]

    алгоритм
    Набор упорядоченных шагов для решения задачи, такой как математическая формула или инструкция в программе. В контексте кодирования речи алгоритмами называют математические методы, используемые для компрессии речи. Уникальные алгоритмы кодирования речи патентуются. Конкретные реализации алгоритмов в компьютерных программах также являются субъектом авторского права.
    Совокупность четко определенных правил, процедур или команд, обеспечивающих решение поставленной задачи за конечное число шагов.
    [ http://www.morepc.ru/dict/]

    алгоритм
    алгорифм
    Точное предписание относительно последовательности действий (шагов), преобразующих исходные данные в искомый результат. Это понятие появилось за много веков до появления компьютеров, с которыми его обычно связывают. Термин же происходит от слова Algorithmi, так на латинском языке звучало имя хорезмского математика IX столетия аль-Хорезми, трактат которого в средние века был распространен в Европе. Тогда алгоритмом называлось десятичное счисление и искусство счета в этой системе. А. — основа решения любой экономико-математической задачи, задачи управления, а также построения многих экономико-математических моделей — особенно прикладных, предназначенных для практических расчетов на компьютерах. Оценка качества А. обычно определяется его сходимостью (если А. не сходится, он не годится), скоростью сходимости (чем она выше, т.е. чем меньше шагов требуется для решения, тем А. лучше); кроме того, важную роль играют время счета на компьютере (оно зависит не только от числа шагов, но и других обстоятельств), удобство обращения к А., возможность работы в режиме диалога человека и ЭВМ. Для наглядности алгоритм, если он относительно прост, можно отобразить в виде блок-схемы (см. рис. А.2). А., записанный таким образом, чтобы его могла выполнять вычислительная машина, называется программой. Рис.А.2 Блок-схема алгоритма вычисления среднего арифметического Среди важнейших (для экономико-математических приложений) видов алгоритмов назовем следующие: Алгоритмитеративный [iterative routine] - см. Итеративные методы. Алгоритм моделирующий. [simulator] - алгоритм (компьютерная программа), имитирующий при исследовании сложных систем взаимодействие элементов процесса и позволяющий при заданной совокупности экзогенных величин (параметров, управляющих переменных) получить эндогенные величины (выходы) или их искомые характеристики. Алгоритм циклический [cyclical algorithm] - алгоритм, при котором через какое-то (обычно большое) число шагов результаты начинают повторяться. Таков, например, А. вычисления на компьютере псевдослучайных чисел. Алгоритм управления [control procedure] - точно определенный порядок выработки управленческих решений, формирования планов, обмена информацией в процессе управления. Тщательная отработка А. у. — необходимый этап проектирования любой АСУ. Для проверки А.у. эффективно применение методов машинной имитации.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > алгоритм

  • 11 аналоговое двухкоордиватное графическое устройство

    1. traceur
    2. enregistreur X—Y

     

    аналоговое двухкоордиватное графическое устройство
    Устройство, предназначенное для графической записи аналоговых величин в прямоугольной системе координат.
    [Сборник рекомендуемых терминов. Выпуск 84. Аналоговая вычислительная техника. Академия наук СССР. Комитет научно-технической терминологии. 1972 г.]

    Тематики

    • аналоговая и аналого-цифровая выч.техн.

    Обобщающие термины

    EN

    • X—Y plotter
    • X—Y recorder

    DE

    • X—Y Plotter
    • X—Y Schreiber

    FR

    Русско-французский словарь нормативно-технической терминологии > аналоговое двухкоордиватное графическое устройство

  • 12 ослабление

    1. affaiblissement

     

    затухание
    Уменьшение амплитуды сигнала по мере его прохождения в среде или электрической системе. Измеряется в децибелах (дБ).
    [ http://www.vidimost.com/glossary.html]

    ослабление
    Уменьшение интенсивности рентгеновского или гамма-излучения при его прохождении через вещество за счет поглощения и рассеяния
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    ослабление

    затухание
    -
    [IEV number 312-06-06]

    EN

    attenuation
    ratio of the input to the output values of quantities of the same kind in a device or system
    NOTE – When this ratio is less than unity it is usually replaced by its reciprocal, the gain.
    [IEV number 312-06-06]

    FR

    affaiblissement
    rapport des valeurs de grandeurs de même nature à l'entrée et à la sortie d'un dispositif ou d'un système
    NOTE – Lorsque ce rapport est inférieur à l'unité on le remplace généralement par son inverse, le gain.
    [IEV number 312-06-06]

    Тематики

    • измерение электр. величин в целом

    Синонимы

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > ослабление

  • 13 регистр

    1. élément indicateur

     

    регистр
    Блок быстродействующей памяти малого объема в вычислительной системе, предназначенный для оперативного запоминания машинного слова, состоящего из битов. Указанные данные могут представлять собой команду, двоичное число, буквенно-цифровой знак. Некоторые регистры могут служить счетчиками, использоваться как сдвиговые регистры. В основе конструкции регистров лежит использование бистабильных или триггерных ячеек.
    [ Источник]

    регистр
    -
    [IEV number 314-07-09]

    EN

    register
    electromechanical or electronic device which stores and displays the information representing the measured energy
    NOTE 1 – In static meters, the register comprises both memory and display.
    NOTE 2 – A single display may be used with multiple electronic memories to form multiple registers.
    [IEV number 314-07-09]

    FR

    élément indicateur
    dispositif électromécanique ou électronique permettant la mémorisation et l’affichage des informations représentant l’énergie mesurée
    NOTE 1 – Dans les compteurs statiques, l’élément indicateur comprend la mémoire et l’affichage.
    NOTE 2 – Un affichage unique peut être utilisé avec des mémoires électroniques multiples pour former un élément indicateur à tarifs multiples.
    [IEV number 314-07-09]

    Тематики

    • измерение электр. величин в целом

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > регистр

См. также в других словарях:

  • Система единиц физических величин — (система единиц) – совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с принятыми принципами. [СН 528 80] Рубрика термина: Общие термины Рубрики энциклопедии: Абразивное… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН — величины, по определению считающиеся равными единице при измерении других величин такого же рода. Эталон единицы измерения ее физическая реализация. Так, эталоном единицы измерения метр служит стержень длиной 1 м. В принципе, можно представить… …   Энциклопедия Кольера

  • ГОСТ 24453-80: Измерения параметров и характеристик лазерного излучения. Термины, определения и буквенные обозначения величин — Терминология ГОСТ 24453 80: Измерения параметров и характеристик лазерного излучения. Термины, определения и буквенные обозначения величин оригинал документа: 121. Абсолютная спектральная характеристика чувствительности средства измерений… …   Словарь-справочник терминов нормативно-технической документации

  • Система физических величин — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (25 мая 2011) …   Википедия

  • преобразование представления величин — (вычислительная техника), перевод машинных переменных величин из аналоговой формы в цифровую или наоборот; применяется, например, при работе ЭВМ в системе автоматического регулирования технологических процессов. * * * ПРЕОБРАЗОВАНИЕ ПРЕДСТАВЛЕНИЯ …   Энциклопедический словарь

  • система физических величин — система величин Совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин. Примечание. В названии системы величин… …   Справочник технического переводчика

  • ГОСТ Р 8.738-2011: Государственная система обеспечения единства измерений. Полевые геофизические исследования. Единицы измеряемых величин — Терминология ГОСТ Р 8.738 2011: Государственная система обеспечения единства измерений. Полевые геофизические исследования. Единицы измеряемых величин оригинал документа: Геотермическая разведка °С 89 теплоемкость Вт ватт на кубический метр м ×… …   Словарь-справочник терминов нормативно-технической документации

  • ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН — конкретные физ. величины, к рым по определению присвоены числовые значения, равные единице. Многие Е. ф. в. воспроизводятся мерами, применяемыми для измерений (напр., метр, килограмм). Исторически сначала появились Е. ф. в. для измерения длины,… …   Физическая энциклопедия

  • Размерности физических величин в системе СИ — В таблице приведены размерности различных физических величин в Международной системе единиц (СИ). В столбцах «Показатели степени» указаны показатели степени в выражении единицы измерения через соответствующие единицы системы СИ. Например, для… …   Википедия

  • отношение величин сопротивления в системе — Для заданной точки измерения, обычно на одном конце линии отношение сопротивления источника к полному сопротивлению защищаемой зоны. [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС".… …   Справочник технического переводчика

  • РД 153-00.0-006-99: Отраслевая система обеспечения единства измерений в системе ТЭК. Метрологический контроль и надзор в системе ТЭК — Терминология РД 153 00.0 006 99: Отраслевая система обеспечения единства измерений в системе ТЭК. Метрологический контроль и надзор в системе ТЭК: 3.3 Аттестация испытательного оборудования процедура подтверждения возможности воспроизведения… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»