Перевод: с английского на русский

с русского на английский

(в+земной+коре)

  • 101 tungsten

    1. вольфрам

     

    вольфрам
    W

    Элемент IV группы Периодич. системы; ат. н. 74, ат. м. 183,85; тугоплавкий тяжелый металл светло-серого цвета. Природный W состоит из смеси пяти стабильных изотопов:"Х 182W, ""W, 184W, I86W. Был открыт и выделен в виде WO3 в 1781 г. швед, химиком К. Шееле. Металлич. W был получен восстановлением WO3 углеродом в 1783 г. исп. химиками братьями д'Элуяр. W мало распространен в природе; его содержание в земной коре 1 • КГ4 мас. %. В свободном состоянии не встречается, образует собственные минералы, гл. обр., вольфраматы (соли вольфрамовых кислот с общей формулой лсН2О • >>WO3, из кот-рых пром. значение имеют вольфрамит (Fe, Mn)WO4 (содержащий 74-76 % WO,) и шеелит CaWO4 (-80 % WO,).
    W имеет ОЦК решетку с периодом а = = 0,31647 нм; у = 19,3 г/см*; tm = 3400 + 20 оС; tfm = 5900 °С; Х20.с= 130,2 Вт/(м • К), р20.с= = 5,5 • 10"* Ом • см. Для кованого слитка а.= = 1,0-4,3 ГПа; НВ = 3,5-4,0 ГПа; Е= 350+ 380 ГПа для проволоки и 390-410 ГПа для монокристаллич. нити. При комн. темп-ре W малопластичен. В обычных условиях W химически стоек. При 400—500 оС компактный металл заметно окисляется на воздухе до WO3. Галогены, сера, углерод, кремний, бор взаимодействуют с W при высоких темп-pax. С водородом W не реагирует до tm; с азотом выше 1500 °С образует нитрид. При обычных условиях W стоек к кислотам НСl, H2SO4, HNO, и HF, а также к царской водке. Валентность W в соединениях от 2 до 6, наиболее устойчивы соединения высшей валентности. W образует четыре оксида: высший — WO3 (вольфрамовый ангидрид), низший - WO2 и два промежуточных - W10O2, и W4Olr С хлором W образует ряд хлоридов и оксихлоридов. Наиболее важные их них: WCl6 (/1И = 275 оС, tfm= 348 °С) и WO2Cl2кип = 266 оС, выше 300 оС сублимирует) — получаются при действии хлора на WO, в присутствии угля. С серой W образует сульфиды WS2 и WS,. Карбиды вольфрама WC (tm = 2900 оС) и W2C (tm = 2750 °С) — тв. тугоплавкие соединения; образуются при взаимодействии W с углеродом при 1000-1500 °С.
    Сырьем для пром. получения W служат вольфрамитовые и шеелитовые концентраты (50-60 % WO,). Из концентратов непосредственно выплавляют ферровольфрам (сплав Fe с 65-80 % W), использ. в произ-ве стали. Для получения W, его сплавов и соединений выделяют WO3. В пром-сти применяют неск. способов получения WO3. Шеелитовые концентраты разлагают в автоклавах р-ром соды при 180—200 оС (получают техн. р-р вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую к-ту):
    = Na2WO4
    CaWO4(TB)
    СаСО,(тв),
    CaWO4(TB) + 2НСl(ж) = H2WO4(TB) +
    + СаСl2(р-р). ***#*
    Вольфрамитовые концентраты разлагают либо спеканием с содой при 800-900 °С с последующим выщелачиванием Na2WO4 водой, либо обработкой при нагревании р-ром NaOH. При разложении щелочными агентами (содой или едким натром) образуется раствор Na2WO4, загрязн. примесями. После их отделения из р-ра выделяют H2WO4. Высушенный H2WO4 содержит 0,2—0,3 % примесей. Прокаливанием H2WO4 при 700—800 °С получают WO3, а уже из него металлич. W и его соединения. При этом для произ-ва металлич. W дополнительно H2WO4 очищают аммиачным способом. Порошок W получают восстановлением WO3 водородом, а также и углеродом (в произ-ве тв. сплавов) в трубчатых электрич. печах при 700—850 °С. Компактный металл получают из порошка способами порошковой металлургии в виде заготовок-штабиков, которые хорошо поддаются обработке давлением (ковке, волочению, прокатке и т.п.). Из штабиков методом бестигельной электроннолучевой зонной плавки получают также монокристаллы W.
    W широко применяется в совр. технике в виде чистого металла и ряде сплавов, наиболее важные из которых легиров. конструкционные, быстрореж., инструмент. стали, тв. сплавы на основе карбида W, жаропрочные и нек-рые др. спец. сплавы (см. Вольфрамовые сплавы). Тугоплавкость и низкое давление пара при высоких темп-pax делают W незаменимым для деталей электровакуумных приборов в радио- и рентгенотехнике. В разных областях техники используют нек. хим. соединения W, напр. Na2WO4 (в лакокрасочной и текстильной пром-сти), WS2 (катализатор в органич. синтезе, тв. смазка для трения).
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    • W

    EN

    Англо-русский словарь нормативно-технической терминологии > tungsten

  • 102 fissure-type volcano

    Англо-русский словарь нормативно-технической терминологии > fissure-type volcano

  • 103 gadolinium

    1. гадолиний

     

    гадолиний
    Gd

    Элемент III группы периодической системы; ат. н. 64, ат. м. 157,25; металл светло-серого цвета с металлич. блеском. Открыт в 1880 г. швед, химиком Ж. Мариньяком и франц. химиком П.-Э. Лекоком де Буабодраном. Металлич. Gd впервые получил в 1937 г. франц. исследователь Ф. Тромб. Содержание Gd в земной коре 1,0 • 10 %. Gd в соединениях проявляет степень окисления +3; /1И = 1312 °С, tm> = 3000 °С; у = 7,898 г/см3; НВ = 60. Хим. активен. При высоких темп-рах активно взаимодействует с кислородом, галогенами, серой, азотом, углеродом и др. неметаллами. При длит. хранении на воздухе в присутствии водяных паров корродирует.
    Пром. минералы Gd — монацит, ксенотим и гадолинит. Получают Gd металлотермическим восстановлением. Оксиды, фториды или хлориды восстанавливают кальцием и затем дистиллируют для получения чистого металла. Выпускают Gd в виде слитков. Gd входит в состав сплавов с РЗМ, к-рые используются для раскисления и модифицирования сталей и сплавов. Металлич. Gd применяют для исследовательских целей. Перспективные области применения Gd: атомная техника (регулирующие стержни), пост. магниты с разными точками Кюри (сплавы с Fe, Co, Ni), полупроводниковые материалы (селениды и теллуриды), ферромагнитные материалы, лазеры.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    • Gd

    EN

    Англо-русский словарь нормативно-технической терминологии > gadolinium

  • 104 gallium

    1. галлий

     

    галлий
    Ga

    Элемент III группы Периодич. системы, ат. н. 31, ат. м. 69,72; серебристо-белый легкий металл. Состоит из двух стабильных изотопов с массовыми числами 69 (60,5 %) и 71 (39,5 %). Существование Ga («экаалюминия») и осн. его св-ва были предсказаны в 1870 г. Д. И. Менделеевым. Элемент был открыт спектральным анализом в пиренейской цинковой обманке и выделен в 1875 г. франц. химиком П. Э. Лекоком де Буабодраном; назван в честь Франции (лат. Gallia). Среднее содержание Ga в земной коре относительно высокое, 1,5 • 10~3 мае. %, что равно содержанию РЬ и Mo. Ga - типичный рассеянный элемент. Единственный минерал Ga -галлит 52 очень редок. Основная часть Ga в литосфере заключена в минералах алюминия. Содержание Ga в бокситах и нефелинах колеблется от 0,002 до 0,01 %.
    Ga имеет ромбич. (псевдотетрагон.) решетку с параметрами а = 0,45197 нм, Ь = 0,76601 нм, с = 0,45257 нм. Плотность, г/см3, тв. Ga 5,904 (20 оС), жидкого 6,095 (29,8 оС), т.е. при затвердевании объем увеличивается; / = = 29,8 °С, 1ШЛ = 2230 °С. Удельная теплоемкость, ДжДкг • К), тв. Ga 376, жидкого 410 в интервале 29—100 °С. Уд. электрич. сопротивление, Ом • см, тв. Ga 53,4 • 10"' (20 °С), жидкого 27,2 • 10~6 (30 оС). На воздухе при обычной температуре Ga стоек. Выше 260 оС - в сухом кислороде наблюдается медленное окисление (оксидная пленка защищает металл). В H2SO4 и НСl Ga растворяется медленно, в HF — быстро, в HNOj на холоду Ga устойчив. В горячих р-рах щелочей медленно растворяется. Сl и Вг реагируют с Ga на холоду, I — при нагревании. Расплавленный Ga при / > 300 °С взаимодействует со всеми конструкционными металлами и сплавами.
    Из солей Ga наиб. значение имеют GaCl3 (tm= 78 °С, /гап = 200 °С) и Ga2(SO,)r Последний с сульфатами щелочных металлов и аммония образует двойные соли типа квасцов, напр. (NH4)Ga(SO4)2 • 12Н20. Ga образует малорастворимый в воде и к-тах ферроцианид Ga<[Fe(CN)6]3, что используется для его отделения от Аl и ряда элементов.
    Осн. источник получения Ga — алюминиевое произ-во. Ga при переработке бокситов по способу Байера концентрируется в оборотных маточных р-рах после выделения Аl(ОН)3. Из таких р-ров Ga выделяют электролизом на Hg-катоде. Из щелочного р-ра, полученного после обработки амальгамы водой, осаждают Ga(OH)5, к-рый р-ряют в щелочи, и выделяют Ga электролизом. При содово-известковом способе переработки бокситовой или нефелиновой руды Ga концентрируется в последних фракциях осадков, выделяемых в процессе карбонизации. Для дополнит. обогащения осадок гидрооксидов обрабатывают известковым молоком. При этом большая часть Аl остается в осадке, a Ga переходит в р-р, из к-рого пропусканием СО2 выделяют галлиевый концентрат (6-8 % Ga2O3); последний растворяют в щелочи и выделяют Ga электролитически. Полученный электролизом щелочного раствора жидкий Ga, промытый водой и кислотами (НСl, HNO3), содержит 99,9-99,95 % Ga. Более чистый металл получают плавкой в вакууме, зонной плавкой или вытягиванием кристалла из расплава.
    Широкого промышл. применения Ga пока не имеет. Потенциально возможные масштабы попутного получения Ga в произ-ве Аl до сих пор значительно превосходят спрос на металл. Наиб. перспективно применение Ga в виде хим. соединений типа GaAs, GaP, GaSb, обладающих полупроводниковыми св-вами. Ga можно использовать для изготовл. оптических зеркал, отличающихся высокой отражательной способностью. Жидкий Ga и его сплавы предложено использовать для изготовл. высокотемп-рных термометров (600-1300 °С). Сплав на основе Ga (с In, Sn, Zn или Al), наз. галламой, применяют в кач-ве теплоносителей яд. реакторов, для устр-ва гидравлич. затворов, плавких предохранителей и т.п.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    • Ga

    EN

    Англо-русский словарь нормативно-технической терминологии > gallium

  • 105 hafnium

    1. гафний

     

    гафний
    Hf

    Элемент IV группы Периодич. системы; ат. н. 72, ат. м. 178,49; серебристо-белый металл. В состав природного Hf входят 6 стабильных изотопов с массовыми числами 174, 176—180. Существование Hf предсказано Д. И. Менделеевым в 1870 г. Впервые Hf обнаружили венг. хим. Ф. Хсвсши и голл. физ. Д. Костер в 1922 г., систематически исследуя минералы Zr методом спектрального анализа. Металлич. Hf впервые получил в 1925 г. Ф. Хевеши. Hf не имеет собств. минералов и в природе обычно сопутствует Zr. В земной коре содержится 3,2 • 10 4 мае. % Hf, в большинстве циркониевых минералов его содержание составляет от 1-2 до 6-7 %.
    При обычной температуре Hf имеет гексагональную решетку: а = 0,31946 нм, с = 0,50511 нм. ум.с = 13,09 г/см3, /1ш= 2222 ± ± 30 °С, /КИ11= 5400 °С. Особенность Hf- высокая эмиссионная способность. Соединения Hf обычно выделяют в конце технологич. цикла произ-ва соединений циркония из рудного сырья. Металлич. Hf получают восстановлением НГС1 магнием или натрием. Hf применяется в металлургии в кач-ве легирующ. элемента при произв-ве жаропрочных сплавов для авиации и ракетной техники. Тв. р-р карбидов Hf и Та, плавящийся выше 4000 оС — самый тугоплавкий керамич. материал; из него изготовляют тигли для плавки тугоплавких металлов, детали реакт. двигателей и др. Hf широко использ. в яд. энергетике (регулирующие стержни реакторов, экраны и т.п.) и в эл-нной технике (катоды, геттеры и т.п.).
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    • Hf

    EN

    Англо-русский словарь нормативно-технической терминологии > hafnium

  • 106 holmium

    1. гольмий

     

    гольмий
    Ho

    Элемент III группы Периодич. системы; ат. н. 67; ат. м. 164,9304; РЗЭ; металл светло-серого цвета: открыт 1879 г. швед. химиком П. Клеве; содержание в земной коре 1,3 • 10"'%; в соединениях проявляет степень окисления +3; t = 1460 °С, ?ки||= 2700 °С; у = 8,781 г/см3; HV = 50; хим. активен; при высоких темп, взаимодействует с кислородом, галогенами, серой, азотом и др. неметаллами. На воздухе окисляется. Сплавляется со мн. металлами, плавят его в инертной среде или вакууме. Пром. минералами для получения Но служат моноцит, ксенотим и эвксенит (см. Минералы РЗМ). Получают Но металлотермическим восстановлением. Оксиды Но обрабатывают до фторидов, затем восстанавливают кальцием и дистиллируют для получения чистого металла. Выпускают в виде слитков. Чистый Но используют для исследовательских целей. Г. входит в состав многих сплавов РЗМ, использ. для раскисления и модифицирования сталей и сплавов.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > holmium

  • 107 graphite

    1. графит (металлургия)
    2. графит

     

    графит
    Природный или техногенный материал, состоящий из углерода кристаллического слоистого строения.
    [ ГОСТ Р 52918-2008

    Тематики

    EN

     

    графит
    1. Минерал, гексагон. кристаллич. модификация чистого углерода, наиб, устойчивая в земной коре. Кристаллич. решетка г. — слоистого типа, в слоях атомы С расположены в узлах гексаген. ячеек слоя. Каждый атом С окружен тремя соседними на расстоянии 0,14 нм. Слои параллельны на расстоянии 0,355 нм. Связь м-ду атомами С в слое прочная, ковалентного типа; между слоями - слабая, остат.-металлич. типа. Особенности структуры г. и разные типы связей обусловливают анизотропию физ. и механ. св-в. у = 2,23 г/см3. Твердость по минералог. шкале равна 1, в слое > 5,5, tm = (3850 ± ± 50 °С), хорошие электропроводность, Р.ФИСТ = 0.42- 10"* Ом-м), кислотоупорность и сопротивл. окислению, малое сечение захвата тепловых нейтронов, легко обрабатывается.
    Различают месторожд. кристаллич. г., связ. с магматич. горными породами или кристаллич. сланцами, и месторожд. скрытнокрис-таллич. г., образовавш. при метаморфизме углей. Наряду с природным г. к кристаллич. разновидности принадлежат также искусств, (домен, и карбидный г.). Домен, г. выделяется при медл. охлажд. больших масс чугуна, карбидный - при термич. разлож. карбидов. К скрытнокристаллич. разновидности относится г., получ. в электрич. печах при нагрев, углей до > 2200 °С.
    Г. применяют во многих областях соврем, промышл.: для изготовления огнеупорных материалов и изделий, литейных форм, плавильных тиглей и т.п. Искусств. кусковой г. применяют как эрозионностойкое покрытие сопел ракетных двигателей, камер сгорания, носовых конусов и для нек-рых деталей ракет. Вследствие высокой электропроводности его широко используют для электротехнич. изделий и материалов (электродов, щелочных аккумуляторов, скользящих контактов, проводящих покрытий и пр.). Благодаря хим. стойкости, г. широко применяют как конструкц. материал в хим. машиностроении и др. областях. Малый коэфф. трения позволяет использовать г. для изготовл. смазочных антифрикц. изделий. Блоки из очень чистого искусств, г. используют в яд. технике как замедлители нейтронов.
    2. Составл. структуры чугуна или стали, формир. при кристаллизации или термич. обработке (см. Графитизирующий отжиг) имеет ту же гексаген. кристаллич. решетку слоистого типа, что и природный г. В завис-ти от формы включений различают: пластинчатый (ПГ), вермикулярный — червеобразный (ВГ), хлопьевидный (ХГ) и шаровидный г. (ШГ). Эти формы свобод. г. определяют основные типы чугунов: серый чугун (СЧ), чугун с вермикулярным г. (ЧВГ), ковкий чугун (КЧ), высокопрочный чугун с шаровидным графитом (ВЧШ Г).
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > graphite

  • 108 dysprosium

    1. диспрозий

     

    диспрозий
    Dy
    Элемент III группы Периодич. системы; ат. н. 66, ат. м. 162,5; РЗЭ; светло-серый металл с металлич. блеском. Dy открыт в 1886 г. франц. химиком П.-Э. Лекоком де Буабодраном. Содерж. Dy в земной коре 4,5715 - 4 %. Dy в соединениях проявл. степ. окисления +3; tm = 1407 °С, t= 2335 °С; Г = 8,54 г/см3, тверд. НУ42. Dy хим. активен; при высоких темп-pax взаимод. с кислородом, галогенами, азотом, серой и др. неметаллами. При длит. хран. на воздухе окисл. Сплавл. со мн. металлами; плавят его в инертной среде или вакууме.
    Пром. минералами для получения Dy служат монацит, ксенотим и эвксенит (см. Минералы РЗМ). Получают Dy металлотермич. восст. Оксиды Dy перераб. во фторид, затем восстан. кальцием и дистиллир. для получ. монокристаллов Dy, его сплавов с др. РЗЭ, к-рые используют для раскисл. и модифицир. сталей, а тж. легир. магнитных и легких сплавов. Металлич. Dy применяют для исследоват. целей. Оксид Dy примен. в к-ве огнеуп. керамич. материалов.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    • Dy

    EN

    Англо-русский словарь нормативно-технической терминологии > dysprosium

  • 109 calcite

    1. кальцит
    2. известковый шпат

     

    кальцит
    Известковый шпат, минерал состава СаСО3; содержит 56 % Са и 44 % СО2, нередко примеси Mg, Fe, Mn (до 8 %), а также Zn, Co, Sr, Ba. Встречается в виде кристаллов разн. вида. Тв. по минералогич. шкале 3; у = 2,72*2,8 г/см3. При нагревании разлаг. при 825 °С; легко р-ряется в кислотах. К. — один из наиб, распростран. минералов в земной коре; гл. составы, часть известняков, мраморов и др. осадочных пород.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > calcite

  • 110 calcspar

    1. кальцит

     

    кальцит
    Известковый шпат, минерал состава СаСО3; содержит 56 % Са и 44 % СО2, нередко примеси Mg, Fe, Mn (до 8 %), а также Zn, Co, Sr, Ba. Встречается в виде кристаллов разн. вида. Тв. по минералогич. шкале 3; у = 2,72*2,8 г/см3. При нагревании разлаг. при 825 °С; легко р-ряется в кислотах. К. — один из наиб, распростран. минералов в земной коре; гл. составы, часть известняков, мраморов и др. осадочных пород.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > calcspar

  • 111 clarke

    1. кларк элемента

     

    кларк элемента
    Среднее содержание элемента в земной коре, выраженное в процентах.
    [ Словарь геологических терминов и понятий. Томский Государственный Университет]

    Тематики

    • геология, геофизика

    EN

    Англо-русский словарь нормативно-технической терминологии > clarke

  • 112 magma

    1. магма

     

    магма
    Расплавленная огненно-жидкая силикатная масса, содержащая в растворенном состоянии летучие компоненты (углекислоту, воду, фтор, хлор и др.), возникающая в земной коре или верхней мантии.
    [ Словарь геологических терминов и понятий. Томский Государственный Университет]

    Тематики

    • геология, геофизика

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > magma

  • 113 metals

    1. металлы

     

    металлы
    Простые вещ-ва, обладающие в обычных условиях хар-рными св-вами: высокой электро- и теплопроводностью, отрицат. темп-рным коэфф. электропроводности, способностью хорошо отражать электромагн. волны, пластичностью. М. В. Ломоносов определял м. как «светлые тела, к-рые ковать можно». М. в тв. состоянии имеют кристаллич. решетку. В парообразном состоянии м. одноатомны, хар-рные св-ва м. обусловлены их эл-нным строением. Атомы м. легко отдают внешние (валентные) электроны. В кристаллич. решетке м. не все эл-ны связаны со своими атомами. Нек-рая часть (~1 эл-н на атом) подвижна и может более или менее своб. перемещаться. Таким образом, м. можно представить в виде остова (каркаса) из положит, ионов, погруженного в «эл-нный газ». Последний компенсирует силы электростатич. отталкивания м-ду положит, заряж. ионами и тем самым связывает их в тв. тело, обеспечивая так наз. ме-таллич. связь. Из известных 105 химич. элементов 83 — м. и лишь 22 — неметаллы. Если в Периодич. системе элементов провести прямую от В до At, то можно считать, что неметаллы расположены на этой линии и справа от нее, а м. — слева.
    По строению эл-нных оболочек м. принято разделять на непереходные (или нормальные) и переходные. Непереходные м. хар-ри-зуются тем, что в их атомах происходит пос-ледоват. заполнение s- и р- эл-нных оболочек. В атомах переходных м. происходит достраивание d- и /-оболочек. К непереходным м. относят 22 м., занимающих подгруппы а в Периодич. системе элементов: Li, Na, К, Be, Mg, Ca, Ba, Sb, Bi и др. Переходные металлы занимают подгруппы б в Периодич. системе элементов. Наиб, типичные переходные м.: Сu, Ag, Аu, Zn, V, Mb, Та, Сr, Mo, W, Fe, Ni, Co и др. К переходным м. относят тж. лантаноиды (14) и актиноиды (14). М. присущи многие общие химич. св-ва, обусловл. слабой связью валентных эл-нов с ядром атома: образование положит, заряж. ионов (катионов), проявление положит, валентности (окислит, числа), образование осн. оксидов и гидрооксидов, замещение водорода в кислотах и т. д.
    Большинство металлов кристаллиз. с образов, относит, простых ОЦК, ГЦК и ПГУ кристаллич. решеток, соответст. наиб, плотной упаковке атомов. Лишь немногие м. имеют более сложные типы кристаллич. решеток. М. в зависимости от внешних условий (темп-ры, давления) могут существовать в
    двух или более кристаллич. модификациях (см. Полиморфизм). Полиморфные превращения иногда, напр., превращение белого олова (p-Sn) в серое (a-Sn), сопровожд. потерей ме-таллич. св-в.
    В силу таких св-в, как прочность, твердость, пластичность, корроз. стойкость, жаропрочность, высокая электрич. проводимость и мн. др. м., играют громадную роль в соврем, технике. Большинство металлов было открыто в XIX в. Однако произ-во важнейших из них: Аl, V, Mo, W, Ti, Zr и др. - до XX в. либо не велось, либо было очень огранич. С 1970-х гг. в пром-ти применяются практически все м., встречающиеся в природе.
    Все м. и их сплавы подразделяются на черные (к ним относят железо и сплавы на его основе; на их долю приходится ок. 95 % произв. в мире металлопродукции) и цв. или, точнее, нежелезные (все ост. металлы и сплавы). Большое число нежелезных м. и широкий диапазон их св-в не позволяют классифицировать их по к.-л. единому признаку. В технике принята усл. классификация, по к-рой эти металлы разделены на неск. групп (по физич. и химич. св-вам, хар-ру значения в земной коре и др.): легкие, тяжелые, тугоплавкие, благородные, рассеянные, редкоземельные м. и др.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > metals

  • 114 mineral

    1. мн. минеральное сырьё
    2. минерал

     

    минерал
    Однородное по составу и строению химическое соединение или самостоятельно существующий химический элемент в твердом агрегатном состоянии, возникшие в земной коре в результате физико-химических процессов.
    [ ГОСТ Р 50544-93]

    Тематики

    EN

    DE

    FR

     

    мн. минеральное сырьё

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > mineral

  • 115 rare-earth elements minerals

    1. минералы редкоземельных элементов

     

    минералы редкоземельных элементов
    Минералы, содержащие лантаноиды (редкие земли) — химич. элементы Периодич. системы с ат. н. от 57 до 71. Суммарное содержание лантаноидов в земной коре ок. 0,01 % (по массе), что соответст. содержанию меди. Известно более 250 минералов, содержащих РЗЭ. К собств. минералам можно отнести 60-65 из них, в к-рых содержание суммы оксидов РЗ выше 5— 8 %. По химич. природе минералы представляют гл. обр. фосфаты, фториды или фторо-карбонаты, силикаты и силикотитанаты, ни-оботанталаты, титанониобаты. Минералы обычно содержат нек-рое кол-во тория, иногда урана.
    Наиб. промышл. значение имеют сле. минералы: монацит (Се, La...)PO,,, содержит 50-60 % La2O3 и 4-12 % ТiO2; бастнезит (Се, La...)FCO3, содержит 73-77 % La203; паризит Са(Се, La...)2(CO3)3F2, содержит 53-64,5 % Р32О3, от следов до 8 % Y (иттропаризит); лопарит (NA, Ca, Ce...)2(Ti, Nb, Ta)2O6> содержит 39,2-40 % ТiO2, 32-34 % (Се, La...)2O3, 8-10 % (Nb, Та)2О5; эвксенит (Y, Ce, Ca...)(Ti, Nb, Та)2О6, содержит 18,2-27,7 % (Y, Еr...)2О3, 0,2-4,3 % (Се, La...)2O3, 16-30 % TiO2, 4,3-41,4 % Nb2O5, 1,3-23 % Та; ксенотим YPO4, содержит 52-62,6 % Y2O3 и примеси лантаноидов. Соотнош. м-ду отд. элементами в минералах сильно колеблется. В одних преобладают элементы цериевой группы и только до 5 % иттриевых земель (например, монацит,бастнезит, лопарит), в других — итгриевой группы (ксенотим, эвксенит). Пром-ть базируется главным образом на разработке монацитовых россыпей, а тж. месторождений, в к-рых содержится бастнезит (бастнезит-кальцитовые жилы). При переработке редкоземельного сырья любого типа первоначально выделяют смесь РЗЭ (в виде оксидов, гидрооксидов), к-рая затем поступает на разделение с целью получения индивидуальных элементов.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > rare-earth elements minerals

  • 116 mineral formation

    1. минеральное образование

     

    минеральное образование
    Химическое соединение или смесь химических соединений в любом агрегатном состоянии, возникшие в земной коре в результате физико-химических процессов.
    [ ГОСТ Р 50544-93]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > mineral formation

  • 117 plicative dislocation

    1. нарушения пликативные (складчатые)

     

    нарушения пликативные (складчатые)
    Деформации в земной коре, приводящие к возникновению изгиба слоёв. При этом либо не происходит нарушения сплошности пород (складки изгиба), либо породы разбиваются системой трещин на множество мелких блоков, сдвигающихся или поворачивающихся относительно друг друга и в целом образующих складку (складки скалывания). Выделяют два главных типа: синклинали и антиклинали.
    [ Словарь геологических терминов и понятий. Томский Государственный Университет]

    Тематики

    • геология, геофизика

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > plicative dislocation

  • 118 Conrad discontinuity

    1. поверхность Конрада

     

    поверхность Конрада
    Область резкого увеличения скорости Р-волн в земной коре на глубине 17-20 км
    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > Conrad discontinuity

  • 119 rocks

    1. породы горные

     

    породы горные
    Естественные минеральные образования примерно постоянного состава и структуры, составляющие самостоятельные геологические тела, залегающие в земной коре
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > rocks

  • 120 loose rock

    1. слабоцементированная порода
    2. рыхлая горная порода

     

    рыхлая горная порода
    Горная порода, залегающая в земной коре в виде скопления раздельных зерен и обломков минеральных агрегатов.
    [ ГОСТ Р 50544-93]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > loose rock

См. также в других словарях:

  • крупные перемещения в земной коре — движение земной коры — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы движение земной коры EN crustal movements …   Справочник технического переводчика

  • Фракционирование химических элементов в земной коре — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (11 мая 2011) …   Википедия

  • Земной магнетизм —         геомагнетизм, магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий распределение в пространстве и изменения во времени геомагнитного поля, а также связанные с ним геофизические процессы в Земле и… …   Большая советская энциклопедия

  • Земной шар — Земля Фотография Земли с корабля Аполлон 17 Орбитальные характеристики Афелий 152 097 701 км 1,0167103335 а. е …   Википедия

  • Газы земной коры —         газы, встречающиеся в земной коре в свободном состоянии, в виде раствора в воде и нефти и в состоянии, сорбированном породами, особенно ископаемыми углями. Количество газов в геосферах Земли возрастает в глубь планеты (табл. 1). В… …   Большая советская энциклопедия

  • Колебательные движения земной коры —         медленные поднятия и опускания земной коры, происходящие повсеместно и непрерывно. Благодаря им земная кора никогда не остаётся в покое: она всегда разделена на участки, одни из которых поднимаются, другие прогибаются. К. д. з. к.… …   Большая советская энциклопедия

  • ВОЗРАСТ ЗЕМНОЙ КОРЫ — радиологические методы позволяют оценить В. з. к. или, точнее, возраст древнейших участков земной поверхности. Наиболее детально этот вопрос рассматривался в связи с происхождением и эволюцией рудного свинца, изотопный состав которого не остается …   Геологическая энциклопедия

  • геофизические методы исследования земной коры — используются в геофизике. Основаны на изучении физических полей: гравитационного, магнитного, электрического, упругих колебаний (сейсмического, или акустического), термического (теплового), ядерных излучений (радиационного). Измерения параметров… …   Географическая энциклопедия

  • Планеты земной группы — Сравнительные размеры планет земной группы Планеты земной группы  четыре планеты …   Википедия

  • Планета Земной группы — Планеты земной группы Планеты земной группы  4 планеты Солнечной системы: Меркурий, Венера, Земля и Марс[1]. По строению и составу к ним близки некоторые каменные астероиды, например, Веста. Планеты земной группы обладают высокой плотностью и… …   Википедия

  • ГЕОМАГНЕТИЗМ — земной магнетизм, магнитное поле Земли и околоземного космического пространства. Земля обладает магнитным полем дипольного типа, как будто бы в ее центре расположен гигантский полосовой магнит. Конфигурация этого поля медленно изменяется,… …   Энциклопедия Кольера

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»